

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

2

International Journal of Computer Science Education in Schools

April 2019, Vol 3, No.1

DOI: https://doi.org/10.21585/ijcses.v3i1

Table of Contents

 Page

Kyungbin Kwon1, Jongpil Cheon2

Exploring problem decomposition and program development

through block-based programs

3 - 16

Sibel Kılıçarslan Cansu, PhD 1, Fatih Kürşat Cansu2

An Overview of Computational Thinking

17- 30

https://doi.org/10.21585/ijcses.v3i1

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

3

Exploring problem decomposition and program development

through block-based programs

Kyungbin Kwon1

Jongpil Cheon2

1 Indiana University

2 Texas Tech University

DOI: 10.21585/ijcses.v3i1.54

Abstract

Although teachers need to assess computational thinking (CT) for computer science education in K-12, it is not

easy for them to evaluate students’ programs based on the perspective. The purpose of this study was to investigate

students’ CT skills reflected in their Scratch programs. The context of the study was a middle school coding club

where seven students voluntarily participated in a five-week coding activity. A total of eleven Scratch programs

were analyzed in two aspects: problem decomposition and program development. Results revealed that students

demonstrated proper decompositions of problems, which supported program development processes. However, in

some cases, students failed to decompose necessary parts as their projects got sophisticated, which resulted in the

failure or errors of programs. Regarding program development, algorythmic thinking had been identified as the

area to be improved. Debugging and evaluation of programs were the necessary process students needed to

practice. Implications for teaching CT skills were discussed.

Keywords: computational thinking, Scratch, decomposition, computer science education, block-based

programming

1. Introduction

Since Wing (2006) suggested that computational thinking (CT) is “a fundamental skill for everyone, not just for

computer scientists (p. 33),” many stakeholders have tried to develop a sustainable curriculum that encourages

more students to learn programming earlier. However, the deficiency of K-12 computer science (CS) education is

not getting better (Google & Gallup, 2015). To compensate for the lack of CS education, many researchers and

teachers have offered after-school activities, such as coding clubs (e.g., Smith, Sutcliffe, & Sandvik, 2014).

Researchers have suggested that young students can engage in CT concepts and practices through block-based

programming (BBP), such as Scratch and Alice (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017; Sáez-López,

Román-González, & Vázquez-Cano, 2016). BBP provides a visual representation of programming, which reduces

the cognitive load by excluding the chances of syntax errors, using commands similar to spoken languages,

providing immediate feedback, and visualizing abstract concepts (Maloney, Resnick, Rusk, Silverman, &

Eastmond, 2010). Because of its educational features, the use of BBP has increased in introductory CS education

courses (Aivaloglou & Hermans, 2016). However, considering the limited amount of time, teachers’ expertise,

voluntary engagement in activities, and different skill levels among the students, there are concerns about their

effectiveness (Buss & Gamboa, 2017).

CT requires problem-solving skills that involve analytical thinking to design systems (Wing, 2006). Thus, the core

CT concepts, including decomposition (break problems down into smaller parts) and abstraction (model the core

aspects of problems), are the target capacities of K-12 CS education (Liu, Cheng, & Huang, 2011). Although

utilizing BBP has been encouraged for its effect of enhanced understanding of programming concepts, logic, and

https://doi.org/10.21585/ijcses.v3i1.54

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

4

computational practices (Sáez-López et al., 2016), there is a scarcity of studies that suggest pedagogical guidance

based on students’ CT skills in K-12 CS education contexts.

One of the reasons for the lack of pedagogical guidance may be due to the difficulty of evaluating CT skills that

are embedded in the programs that students create. For example, a student may not be successful in decomposing

the main task and developed an ineffective program that included errors. Without direct communication regarding

the student’s solution plan and conceptual understanding of the code, it will be difficult to pinpoint the reasons

for the errors by only examining the outcome of the thinking process: successful or unsuccessful programs

(Brennan & Resnick, 2012). It is also possible that multiple factors affect the problem-solving processes and the

quality of the program in turn.

To evaluate CT skills, we need a precise definition and evaluation frame. Although many scholars have defined

CT and identified its components (D. Barr, Harrison, & Conery, 2011; Shute, Sun, & Asbell-Clarke, 2017; Wing,

2006), it has not been sufficiently suggested how instructors can evaluate the CT concepts based on students’

programs. Additionally, valid evaluation rubrics to measure computational thinking have not been established yet.

As Buss and Gamboa (2017, p. 201) suggested, computational thinking is “a rich mixture of cognitive skills and

attitudes” that should be evaluated from multiple aspects rather than one simple result: success or failure. To

provide meaningful feedback and guidance, teachers need to assess computational thinking in detail and figure

out students’ misconceptions.

Considering the limited evaluations in CS education, the current study aims to examine CT skills reflected in

students’ programs, which will suggest an evaluation framework of CT. This study also suggests instructional

strategies to be considered in secondary CS education.

2. Literature review

2.1 Computational thinking

The concept of CT has been refined through the collaboration of scholars since Wing (2006) coined the term by

identifying its core elements as “solving problems, designing systems, and understanding human behavior by

drawing on the concepts fundamental to computer science” (p. 33). As Wing’s definition emphasizes, CT does not

simply refer to computer programming skills, but is more closely related to the way we solve problems by utilizing

the power of computing. From this perspective, the International Society for Technology in Education (ISTE) and

the Computer Science Teachers Association (CSTA) defined CT as a problem-solving process that includes:

formulating problems, logically organizing and analyzing data, representing data through abstractions, evaluating

possible solutions, automating solutions through algorithmic thinking, and generalizing solutions (D. Barr et al.,

2011; CSTA & ISTE, 2011). The definition provides a framework for K-12 educators to design CT activities and

evaluate CT skills. Based on this common understanding, many researchers have reached an agreement that CT

involves the thought processes of decomposition, abstraction, generalization, algorithmic thinking, and debugging

(Angeli et al., 2016).

Considering the context of problem-solving, we can imagine how CT is associated with students’ thought

processes. When students have a problem to solve or a task to achieve, they will break the problem (or the task)

into smaller parts so they can manage their cognitive resources effectively (decomposition of problems). After

figuring out the necessary functions or solutions of each part, they will devise a sequence of the solutions to

identify the order of the actions and the conditions of control (algorithmic thinking). If students consider the

efficiency and utility of the problem-solving process, they will try to create a model by extracting the fundamental

characteristics of the solutions (abstraction) and generalize the solutions by parameterizing the variables

(generalization). After developing the solutions, students will test whether each action corresponds to the intended

instruction and fix the errors once they occur (debugging).

Although the definition of CT and its components have been refined for over a decade, there is a lack of evaluation

criteria and analysis methods to reveal the levels of CT. Because CT involves problem-solving, it is difficult to

measure CT through a simple test. In the following section, we will review a few trials to evaluate decomposition

and program development process in problem-solving contexts.

2.2 Decomposition of problems

The core function of decomposition is to identify subtasks and define the objects and methods required in each

decomposed task to solve a problem (V. Barr & Stephenson, 2011). How can we measure the decomposition

process while students solve a problem? Decomposing a problem is required to design a solution. Instructors

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

5

can evaluate decomposition by examining students’ solution plans. Kwon (2017) analyzed students’ solution plans

and identified their misconceptions of programming. The study revealed cases where students (novice

programmers) did not consider all the possible solutions while decomposing a problem, failed to identify the

specific functions required, and designed inefficient solutions. Students’ insufficient decomposition of problems

could be attributed to the lack of knowledge schemas and the higher cognitive load required in their thought

processes (Kwon, 2017; Robins, Rountree, & Rountree, 2003).

2.3 Program development (abstraction, generalization and algorithmic thinking)

Even when students have a clear plan, they often demonstrate an iterative cycle of developing codes: trying out

codes, changing plans, integrating new ideas, and so on (Brennan & Resnick, 2012). Thus, if we evaluate CT only

based on the knowledge-based concepts (e.g., sequences, loops, conditional, and events), we will not be able to

evaluate how students use or apply the knowledge into their programs (Davies, 1993).

Students can demonstrate their CT skills during the process of developing programs and through artifacts (Lee,

2010). In this sense, scholars have recently suggested various ways to evaluate CT based on student-developed

programs. For example, Moreno-León, Robles, and Román-González (2015) introduced Dr. Scratch

(http://www.drscractch.org) that automatically evaluates Scratch programs. Dr. Scratch allows teachers and

students to evaluate programs in terms of the CT concepts: abstraction and problem decomposition, logical

thinking, synchronization, parallelism, algorithmic notions of flow control, user interactivity, and data

representation. It is noteworthy that Dr. Scratch assesses CT concepts by evaluating students’ programs rather than

asking their knowledge (e.g., Grover & Basu, 2017; Meerbaum-Salant, Armoni, & Ben-Ari, 2013). However,

there is a limitation in that Dr. Scratch does not consider the purpose and functionality of the codes that are related

to the effectiveness and efficiency of programs.

Recently, Kwon, Lee, and Chung (2018) evaluated CT by manually analyzing students’ Scratch programs in

consideration of programming goals and tasks. They found that students often added unnecessary sets of programs,

which caused a redundancy of codes that increased the complexity and the chances of errors. They also suggested

the positive relation between the ability to decompose problems and the quality of the solutions. It is suggested

that evaluating CT skills in authentic tasks where students apply the CT skills to solve problems.

3. Purpose of study

The current study aimed to examine students’ Scratch programs from two perspectives: problem decomposition

and program development (abstraction, generalization, and algorithmic thinking). The findings of the study would

provide insight to build an evaluation framework for CT. This study, therefore, addressed the following research

questions:

1. How do students decompose tasks for Scratch programs?

2. How do students create Scratch programs by utilizing abstraction, generalization, and algorithmic

thinking?

4. Method

4.1 Participants

Seven middle school students (six girls and one boy) participated in the after-school coding event. All students

learned in “Hour of Code” during their school curriculum. Four students had experienced coding with BBP, such

as Scratch or Tynker, before participating in the event. Students rated their coding skill as basic (2.1 out of 5 in

average) at the beginning of the event. They were not given compensation for their participation in the study. The

study was approved by the University Institutional Review Board (#1802262819) and public school corporation.

4.2 Context of Learning

Partnering with the middle school coding club, a researcher (the first author) from a university in the Midwest

developed the curriculum for the five-week coding event: “Going Beyond the Hour of Code.” The event was

designed for middle school students to learn CT skills by developing games, quizzes, and applications using a

BBP called Scratch (https://scratch.mit.edu). The curriculum was designed to let students represent a problem and

solve it using a computer program, break a problem down into smaller parts, design a series of instructions to

formulate the solution, and apply problem-solving skills to a wide variety of problems. No prior coding experience

was required for the students during the recruiting process. Before the event, the students participated in an

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

6

introductory session that explained the purpose of the event and an opportunity to participate in the research. Table

1 describes the contents of the curriculum.

Once the students gathered in the computer lab, the researcher explained the theme for the week, and demonstrated

how to create a corresponding Scratch project. The researcher emphasized the main CT skills during the

demonstration and encouraged students to develop a Scratch project that fulfilled the requirements. Typically, the

researcher led the demonstration for 20 to 30 minutes, and students had 45 to 55 minutes to create their own

Scratch project.

Table 1. Overview of Coding Event Curriculum

Week Theme CT skills Required components Tasks to achieve

1 Dance

(Loop)

Develop a

program

repeating

particular

actions by

utilizing loops

• Changing the costumes of

the sprite

• Playing music

• Changing the background

• Moving the sprite

repeatedly

Create a dancing spite and play

music.

Change the background

appropriately.

2 Maze

(Conditions)

Develop

decision

making skills

by utilizing the

if block

• Motion blocks

• Sensing block (touching

color, touching “object”)

• If block (utilizing sensing

and motion blocks)

Create a maze game.

Let the sprite (mouse) come

back to the beginning point

when either it hits a maze or

another sprite (cat).

3 Catch &

Avoid

(Data)

Define

variables and

use them for

decision-

making

processes

• Making a variable

• Updating values of the

variable

• Examples of using

variables in the if block

Create a game that increases

the scores when the user

completes a task.

Specify how many trials (lives)

that the user has.

4 Quiz

(Patterns)

Receive user’s

input

Use a

broadcast

block to

control other

sprites

• Ask for user responses and

receive inputs

• Make a decision based on

the inputs

• Broadcast commands to

other sprites

Create a quiz game

Decide whether the answer is

correct and increase the score

accordingly.

Change other sprites’ costumes

based on the answer.

4.3 Data

Each week, students submitted their Scratch projects in a learning management system, Canvas. A total of 18

projects were collected, but the researchers only analyzed the projects of the students who submitted an informed

consent form. So, a total of 11 projects from four students were analyzed for this study. The names are pseudonyms.

4.4 Analysis

To have an in-depth understanding of the Scratch programs that the students created, we analyzed them in terms

of decomposition and program development reflected in the programs. The unit of analysis was a semantic unit

that included one or several code blocks executing a particular task. To identify decomposition, we considered the

alignments of sub-tasks and sets of blocks. To evaluate program development, we evaluated sets of blocks in terms

of their functionality and efficiency.

5. Results

Scratch projects were analyzed based on two CT aspects: decomposition and developing programs (abstraction,

generalization, and algorithmic thinking). The results are presented by the weekly theme.

5.1 Week 1 Loops: Decomposition

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

7

5.1.1 Changing a sprite’s look or position

All the projects showed that the students successfully identified the required tasks to decompose (see Table 2).

Table 2. Week 1 decomposition and program development

Dance (Loop) Make sprites dance by using repeat blocks

Decomposition of tasks • Changing a sprite’s look or position

• Making a meaningful story

Program development • Creating a set of blocks (Motion or Look) to repeat

• Using a repeat block

a

b

c

d

e

f

Figure 1. Code blocks of week 1

5.2 Week 1 Loops: Program development

5.2.1 Successful aspects

Boa, and Emily used the ‘switch costume’ block to make the sprites dance, while Susan changes a ball’s size and

location using the ‘change size’ and ‘position’ blocks. Most of the students successfully utilized the ‘forever’ block

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

8

to repeat a set of codes to move a sprite.

We found that a student discovered an alternative way to move a sprite. Kathy used the ‘switch costume’ block to

make a moving sprite dribble a ball (see Figure 1-a). She changed the location of the sprite in the canvas and

switched its costumes, which seemed to make it move (see Figure 1-b). After she synchronized the locations of

two sprites (main character and its glasses), she tried to adjust the ball’s location. At that moment, she did not

know “move” block but, soon after, realized the block and used it for next tasks (see Figure 1-c).

5.2.2 Issues to be considered

We found two issues in Susan’s project. First, she used different blocks to move the ball and change its size (see

Figure 1-d). She already knew how to use condition blocks to check the position of a sprite to control it from

crossing the boundaries of the stage (see Figure 1-f). She also used variables and randomized position values (see

Figure 1-e). The code blocks demonstrated her abstraction skills to program the decomposed tasks. However, there

was an error in the ‘if’ statement: x position < -200 or > 200 (see Figure 1-f). In order to limit the range of the

sprite, the statement should be x position > -200 or < 200. It seemed that Susan did not check the logical expression

and failed to recognize the error.

5.3 Week 2 Conditions: Decomposition

To make a maze game, they needed to identify the events that would occur during the game, including allowing

the user to move the main sprite with keystrokes, resetting the game when the sprite touched a maze or was hit by

an object, and finishing the game when a sprite reached the finish line. The Scratch projects showed that Kathy

and Susan decomposed the necessary events accordingly (see Table 3). Additionally, Kathy developed two

different stages in her maze game that was an advanced feature among other projects.

Table 3. Week 2 decomposition and program development

Maze (Conditions) Develop a maze game that makes decisions as pre-defined events occur

by utilizing conditions

Decomposition of tasks Identifying required events with conditions

• Moving sprites according to keystrokes

• Resetting the game when being hit by objectives

• Resetting the game when touching the maze

• Ending a game when arrive at the finish line

Program development Using forever and if blocks to create the event handlers

• with arrow keys

• with touch

5.4 Week 2 Conditions: Program development

Regarding the decomposed events, students should utilize the ‘forever’ and ‘if’ blocks with two different

conditions, such as the ‘when a key pressed’ and ‘touching’ blocks, to develop a maze game.

5.4.1 Successful aspects

Kathy utilized a ‘forever’ block to nest several ‘if’ blocks that identified the events, such as the “key pressed”,

“touching a color”, and “touching another sprite” blocks (see Figure 2-a). All the event handlers in her program

shared the same structure (if blocks nested in forever block that monitored a particular event). Thus, Kathy was

able to abstract the structure of the codes for each event. Susan used a ‘broadcast’ block to reset the game when

the main sprite touched the maze (blue color) (see Figure 2-c and 2-f).

5.4.2 Issues to be considered

Susan did not use a ‘forever’ block to check if the main sprite touched a color. Instead, she used a pre-defined

event block ‘When key pressed’ with the ‘if’ block (see Figure 2-c). The way Susan utilized the event handlers

required four duplicated codes for four different key presses. She also had an unnecessary block, ‘wait 0.6 secs.’

The results suggested that Susan failed to find an efficient way to check for the specific condition (i.e., touching

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

9

color).

Susan wanted the sprite to say, “You Win!” when it touched the ending spot that was a green dot. However, she

used the ‘repeat until <touching color green>’ block (see Figure 2-e). It would be possible that the ‘say’ block was

inside of the ‘repeat until’ block, which resulted in showing “You Win!” from the beginning repeatedly. Because

she did not resolve the issue, she moved the say block to out of the ‘repeat until’ block. The issue was related to

the lack of understanding of envent handlers. She should have used a ‘forever’ and ‘if’ block to make the event

handler work as intended.

5.4.3 Additional Findings

Because Kathy developed multiple stages, she needed to change the backdrop and sprites accordingly. She wanted

to hide an object during the final stage came after the main sprite passed the maze. However, she could not hide

the objects used in the maze. It was related to the synchronization of codes in Scratch. The researcher asked for

her intention and suggested that she use the ‘broadcast’ block, which she hadn’t learned at that moment. She easily

understood the use of the ‘broadcast’ block to make the objects disappear after a short conversation with the

researcher (see Figure 2-b). This finding suggested the importance of tailored guidance according to student needs

for discovery learning. As mentioned, Kathy, including other students, tried to discover solutions that they had not

learned yet while developing programs.

a

b

d

c

e

f

Figure 2. Code blocks of week 2

5.5 Week 3 Data: Decomposition

The primary objective of week 3 was to update user scores according to the user’s performance in a game. The

decomposed tasks to create this game were defining a mission to accomplish (e.g., catching an objective while

avoiding another object), gaining or losing points and finishing a game according to the score (such as changing

the levels of game or success/failure based on the accumulated score), showing or hiding an object in random

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

10

locations, and moving sprites with keystrokes (see Table 4). Both Kathy and Susan were able to decompose the

main task to smaller sub-tasks, which allowed them to organize code blocks based on the sub-tasks. Susan,

however, did not identify the condition to finish the game.

Table 4. Week 3 decomposition and program development

Catch & Avoid (Data) Develop a game that saves scores and makes a decision based on the scores.

Decomposition of tasks • Defining a mission (e.g., touch or avoid specified objects)

• Gaining or losing a score when accomplish or fail a mission

• Moving sprites according to keystrokes

• Showing/hiding objects in random locations

• Finishing game according to the score

Program development • Using variables to save and update values

• Using forever and if blocks to create the event handlers

o with arrow keys

o with touch

• Using random block to display objects in random places

• Using if block to check the condition to finish a game

5.6 Week 3 Data: Program development

5.6.1 Successful aspects

The analysis of code revealed that Kathy considered the efficiency of the codes and selected a proper way to fulfill

the objective. In contrast of the previous program, Kathy separated her code into five sets according to their

purposes, such as touching obstacles, accomplishing a level, changing the stages of game, and ending the game

(See figure 3-a). Although the researcher did not explicitly mention the concept of parallelism while demonstrating

an exemplary program, she grasped the concept and organized her codes as the tasks decomposed.

Kathy realized that there were several different ways to achieve a particular task. For example, she used the value

of variables to determine when a certain sprite should disappear. In her code, all the sprites were set to disappear

when the value of “life” became less than 1 (see Figure 3-b). She made multiple stages of the game, which required

changing the backdrops and sprites accordingly. She utilized ‘broadcast’ blocks to fulfill the requirement. The

‘broadcast’ blocks sent out messages when a level was completed (e.g., Level 1: Completed) and each sprite

reacted on the messages (see Figure 3-c and 3-d).

Susan defined a variable and used a ‘random’ block to assign random values to the variable. By using this method,

she could change the backdrops randomly (see Figure 3-e). In this process, Susan gave each backdrop a numerical

value that cooperated with a random number. It is noteworthy that she utilized the name of the backdrops for a

computational purpose.

5.6.2 Issues to be considered

Kathy did not figure out the conditional logics while developing multiple decision-making processes by utilizing

‘if’ blocks. As figure 3-c illustrates, she included three ‘if’ blocks to identify the criteria of three decision making

points: Score > 12, Score > 24, and Score >30. Considering the flow of game, we assume that Kathy wanted to

identify the threshold of the levels as follows: if Score = 13, Score = 25, and Score = 31. Kathy might have

assumed that the computer would run the second condition when the score got to 25. However, the ‘if’ blocks in

the first conditional statement would never proceed to the next conditions because the first condition would be

“true” for other conditions. The results suggests that students can make mistakes when they assume that a

computer works as humans think (Kwon, 2017; Pea, 1986). To overcome egocentrism in programming (Pea, 1986),

it is necessary for students to distinguish the intent of the programmer and the actual instructions that are explicitly

programmed into the code.

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

11

a

c

b

d

e

f

Figure 3. Code blocks of week 3

Susan committed an error that caused a conflict for the arrow keys. She used the arrow keys to control the

movement of the sprite, while assigning the left and right keys to change costume of the sprite as well (see Figure

3-f). Although she successfully decomposed the tasks, she failed to consider the whole program and did not figure

out how the code would conflict when a single key had two functions. Considering the limitation of novice

programmer’s cognitive capacity, providing a concrete model representing the codes and encouraging students to

describe how the codes will run in their words will be beneficial (Mayer, 1981).

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

12

5.7 Week 4 Patterns: Decomposition

To create a quiz program, students needed to consider the following tasks: asking questions, receiving user inputs,

evaluating the inputs, and providing feedback (see Table 5). Because there were multiple questions in a quiz set,

the tasks should be repeated with the same process. To create an efficient program, students should identify the

patterns of the tasks and develop code blocks that could be used multiple times with different contents, such as

questions and correct answers. As an exemplary case, Kathy created four different categories with different sets

of questions. Kathy successfully decomposed the tasks and identified patterns to develop an efficient program.

However, Emily failed to organize the sub-tasks required to check user-entered answers and provide feedback.

Table 5. Week 4 decomposition and program development

Quiz (Patterns) Make a quiz that asks multiple questions and provides feedback accordingly

Decomposition of tasks • Asking questions

• Checking answers entered by users

• Providing feedback according to the answers

Program development • Using ask block to show questions

• Using if-else block to compare user inputs and correct answers

• Using broadcast block or other blocks to provide feedback

5.8 Week 4 Patterns: Program development

5.8.1 Successful aspects

Kathy successfully demonstrated her abstraction skills in her coding. As Figure 4-a illustrates, she used three sets

of blocks for one question: ‘ask’, ‘if-else’, and ‘broadcast’ blocks. For example, the ‘if-else’ block evaluated user

input and decided whether it was correct or incorrect. The set of these three blocks were repeated for the other

questions. Her use of ‘broadcast’ blocks demonstrated her abstraction skill. As possible results of user input, Kathy

defined two ‘broadcast’ blocks: “Correct Answer” and “Wrong Answer” (see Figure 4-b). As the names of the

blocks were implied, one sent a message that the user input was correct, while the other sent a message that the

user input was incorrect. It is noteworthy that Kathy could identify these patterns and developed reusable code

blocks for every question. Her conditional expression in the ‘if-else’ block demonstrated her understanding of

conditional logic. Distinctly, she used the ‘logical OR’ expression to consider multiple correct answers (i.e., see

Figure 4-a), which suggested her advanced computational thinking skill in developing “short” programs while

considering “multiple cases.”

5.8.2 Issues to be considered

In contrast, Emily failed to abstract the primary structure of code blocks and made the program complex and

inefficient. As Figure 4-c illustrates, she did not identify the patterns of the tasks as Kathy did. Without clearly

decomposing the tasks, she used the nested ‘if-else’ blocks to consider whether the user-entered answers were

correct or not. It also seemed that she was distracted by other minor features, including the size or costume of the

sprites that were not the primary tasks of the program. The analysis of her program suggests that students may

develop inefficient and more complex programs when they fail to decompose the tasks and develop a program

without a clear plan, such as flowchart.

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

13

a

c

b

Figure 4. Code blocks of week 4

6. Discussion and conclusion

The findings showed that students quickly grasped the concepts of sequence including repeat and decomposed the

required subtasks for simple projects. The abstraction and parallelism skills have been progressively improved as

they practiced. On the other hand, some students failed to decompose sub-tasks for sophisticated games and debug

errors in their codes. If they tested their program more often, they would have a chance to fix the errors. It seems

challenging for them to make a conditional statement more efficiently (e.g., expressing multiple conditions

exclusively). In addition, the condition statements with operators were not logical to determine the correct

conditions. The challenges found in Scratch programs yield numbers of implications for teaching CT skills through

programming based on the results. The implications include instructional considerations for 1) planning activities,

2) decomposition, 3) logical thinking, and 4) debugging.

First, guided planning activities are necessary at the beginning of programming. As Emily’s project showed,

students can focus on a specific task without considering the purpose of the program. We often observed that

students started programming without a clear plan and tinkered with code blocks by trial and error. We suggest

that students need to learn how to sketch out their story, and that it should be the first step to design a program

after learning the core concepts of programming (Kim, Kim, & Kim, 2013). Instructional strategies for planning,

such as creating a story synopsis or storyboard by writing or drawing, can be adopted (Brennan & Resnick, 2012).

Second, students need to be trained to decompose a task properly. The findings showed that students struggled

with decomposing tasks as their project got sophisticated. For example, Susan did not set the end of the game, and

Emily failed to identify the sub-tasks of the quiz game. Decomposition is an essential process to represent

problems and identify the tasks to achieve by considering the events, decision-making points, and functions of the

codes when designing a program (Kazimoglu, Kiernan, Bacon, & MacKinnon, 2012). Without proper

decomposition, students cannot design appropriate sequences of codes, consider parallelization of multiple codes,

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

14

and develop modularized code blocks. The decomposition process should be emphasized when teaching

programming so that students can design small sets of code according to the sub-tasks. Possible activities to help

decomposition is to create a decomposition chart, or flowchart, using graphic representation (Robins et al., 2003).

Students can use a worksheet or template to practice the decomposition process.

Third, students need scaffolding that supports their logical thinking in developing programs. The results revealed

some issues were related to reasoning in program development. In week 2, for example, Susan duplicated codes

when checking if the sprite touched a specific color and failed to meet the goal of using ‘forever’ and ‘if’ blocks.

In week 3, Kathy was not able to figure out the right conditional logic to determine moving to next level due to

the error in ‘if’ conditions. Additionally, Susan had the conflict with the multiple functions of the keystrokes to

move the sprit and change its costume. In week 4, Emily could not program correctly nested ‘if’ block to check

text users entered. Lack of knowledge about the relevant blocks could cause the mistakes; however, the lack of

logical thinking could yield the errors because most of them failed to write correct logical expressions and develop

complex conditional structures even though they used the proper blocks. Therefore, we should guide students to

work on core logic by practicing a simpler version first. As the elaboration theory advocates (Reigeluth, 1999),

students need to practice simple tasks involving a specific reasoning skill earlier. Also, a condition chart or pseudo

code could aid with logical reasoning to structure decomposed tasks and determine relevant conditions (Kim et

al., 2013).

Lastly, instructors need to emphasize debugging practice to students. By only analyzing Scratch programs, we

were not able to examine students’ debugging process. However, we found that students often overlooked or

ignored errors that could be detected by simple tests. For example, the errors of conditional statements and the

conflict of the same keystrokes could have been caught if the students tested the programs. Debugging includes

not only fixing errors but also increasing the efficiency of code (Robins et al., 2003). The findings suggest that

students need to evaluate their programs efficiency as well. It could be done by sharing projects with peers and

evaluating programs together (Wang, Li, Feng, Jiang, & Liu, 2012), such as pair programming.

Although there are many ways to measure computational thinking, the current study has explored the way to

analyze Scratch programs based on two major computational thinking components (i.e., decomposition and

program development). The results revealed the challenges students faced during the design and development

phases of their programs, and instructional strategies were discussed regarding facilitating planning activities,

decomposition, logical thinking and debugging. However, the measurement of this study is limited, and future

research based on the limitations should be noted. First, analyzing the larger samples of Scratch programs will

give us more accurate pictures of students programming patterns and mistakes. Second, other supplementary data

would provide the students' thinking process in detail (Lye & Koh, 2014). It limits the understanding of the

programming process (e.g., pattern recognition or debugging) by only analyzing the final products (programs).

As we suggested earlier, working documents, such as story synopses, decomposition charts, condition charts or

reflection journals (Robertson, 2011), would be not only helpful for developing programs to students, but also be

significant data source to the instructors for in-depth analysis of computational thinking. Third, the benefit of

computational thinking should be investigated. For example, the effect of computational thinking skills on

problem-solving skills have not been empirically tested, and further research on the relationships among sub-

computational thinking components should be considered. The findings of the further research will contribute to

better instructions that will enhance computational thinking.

References

Aivaloglou, E., & Hermans, F. (2016). How Kids Code and How We Know: An Exploratory Study on the Scratch

Repository. Paper presented at the Proceedings of the 2016 ACM Conference on International Computing

Education Research, Melbourne, VIC, Australia.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 Computational

Thinking Curriculum Framework: Implications for Teacher Knowledge. Journal of Educational

Technology & Society, 19(3), 47-57.

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A Digital Age Skill for Everyone. Learning

& Leading with Technology, 38(6), 20-23. doi:citeulike-article-id:10297515

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role

of the computer science education community? ACM Inroads, 2(1), 48-54.

doi:10.1145/1929887.1929905

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

15

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: blocks and beyond.

Communications of the ACM, 60(6), 72-80. doi:10.1145/3015455

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational

thinking. Paper presented at the Proceedings of the 2012 annual meeting of the American Educational

Research Association, Vancouver, Canada.

Buss, A., & Gamboa, R. (2017). Teacher Transformations in Developing Computational Thinking: Gaming and

Robotics Use in After-School Settings. In P. J. Rich & C. B. Hodges (Eds.), Emerging Research, Practice,

and Policy on Computational Thinking (pp. 189-203). Cham: Springer International Publishing.

CSTA, & ISTE. (2011). Operational definition of computational thinking for Ke12 education. Retrieved from

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine Studies,

39(2), 237-267. doi:10.1006/imms.1993.1061

Google, & Gallup. (2015). Searching for Computer Science: Access and Barriers in U.S. K-12 Education.

Retrieved from https://goo.gl/oX311J

Grover, S., & Basu, S. (2017). Measuring Student Learning in Introductory Block-Based Programming:

Examining Misconceptions of Loops, Variables, and Boolean Logic. Paper presented at the Proceedings

of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington,

USA.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning Programming at the Computational

Thinking Level via Digital Game-Play. Procedia Computer Science, 9, 522-531.

doi:10.1016/j.procs.2012.04.056

Kim, B., Kim, T., & Kim, J. (2013). Paper-and-Pencil Programming Strategy toward Computational Thinking for

Non-Majors: Design Your Solution. Journal of Educational Computing Research, 49(4), 437-459.

doi:10.2190/EC.49.4.b

Kwon, K. (2017). Novice programmer's misconception of programming reflected on problem-solving plans.

International Journal of Computer Science Education in Schools, 1(4), 14-24.

doi:10.21585/ijcses.v1i4.19

Kwon, K., Lee, S. J., & Chung, J. (2018). Computational concepts reflected on Scratch programs. International

Journal of Computer Science Education in Schools, 2(3). doi:10.21585/ijcses.v2i3.33

Lee, Y. (2010). Developing computer programming concepts and skills via technology-enriched language-art

projects: A case study. Journal of Educational Multimedia and Hypermedia, 19(3), 307-326.

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on the learning of computational

problem solving. Computers & Education, 57(3), 1907-1918. doi:10.1016/j.compedu.2011.04.002

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.

doi:10.1016/j.chb.2014.09.012

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language

and Environment. ACM Transactions on Computing Education, 10(4), 1-15.

doi:10.1145/1868358.1868363

Mayer, R. E. (1981). The Psychology of How Novices Learn Computer Programming. ACM Computing Surveys,

13(1), 121-141. doi:10.1145/356835.356841

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with Scratch.

Computer Science Education, 23(3), 239-264. doi:10.1080/08993408.2013.832022

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch projects

to assess and foster computational thinking. RED. Revista de Educación a Distancia(46), 1-23.

Pea, R. D. (1986). Language-independent conceptual" bugs" in novice programming. Journal of Educational

Computing Research, 2(1), 25-36. doi:10.2190/689T-1R2A-X4W4-29J2

Reigeluth, C. M. (1999). The elaboration theory: Guidance for scope and sequence decisions. In C. M. Reigeluth

(Ed.), Instructional design theories and models: A new paradigm of instructional theory (Vol. 2, pp. 425-

453). Hillsdale, NJ: Lawrence Erlbaum Associates.

Robertson, J. (2011). The educational affordances of blogs for self-directed learning. Computers & Education,

57(2), 1628-1644. doi:10.1016/j.compedu.2011.03.003

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A Review and Discussion.

Computer Science Education, 13(2), 137-172. doi:10.1076/csed.13.2.137.14200

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated

across the curriculum in elementary school: A two year case study using “Scratch” in five schools.

Computers & Education, 97, 129-141. doi:10.1016/j.compedu.2016.03.003

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research

Review, 22, 142-158. doi:10.1016/j.edurev.2017.09.003

Smith, N., Sutcliffe, C., & Sandvik, L. (2014). Code Club: bringing programming to UK primary schools through

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf
https://goo.gl/oX311J

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

16

Scratch. Paper presented at the 45th ACM Technical Symposium on Computer Science Education

(SIGCSE 14), Atlanta, GA.

Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012). Assessment of programming language learning based on

peer code review model: Implementation and experience report. Computers & Education, 59(2), 412-

422. doi:10.1016/j.compedu.2012.01.007

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

doi:10.1145/1118178.1118215

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

17

An Overview of Computational Thinking

Sibel Kılıçarslan Cansu, PhD 1

Fatih Kürşat Cansu2

1 Abant İzzet Baysal University Faculty of Natural Sciences

2 Bahçeşehir University Institute of Educational Sciences

DOI: 10.21585/ijcses.v3i1.53

Abstract

Computers and smart devices have become ubiquitous staples of our lives. Computers and computer-controlled

devices are used in all industries from medicine to engineering, and textile production. One field where computers

have inevitably spread into is education, and one pre-requisite of controlling computers, or increasing the level

and efficiency of our control over them, is making human-computer interaction as efficient as possible. This

process of efficient and effective computer use, known as “Computer-like Thinking” or “Computational Thinking”,

is seen as a field with the potential to support individual and societal development in our rapidly progressing world

and to provide significant economic benefits. The fundamental concepts and scope of this field have been

delineated in diverse manners by different researchers. Similarly, researchers have also advanced distinct critical

viewpoints towards and potential benefits of computational thinking. This study aims to first define the concept

of computational thinking by referencing source literature, then analyze the aims of certain criticisms of the field,

and discuss the fundamental elements of computational thinking and contemporary research on these elements.

Keywords: computational thinking, computer-like thinking, computational-informatic thinking

1. Introduction

“Computer” as a word references a device that

“computes”, localized into Turkish as “bilgisayar” by

Prof. Dr. Aydın Köksal (Keser,2011: p.88). Yet it is

difficult to claim the same about “computational

thinking”, which is localized in a number of ways by

researchers. Özden et al. (2015) use “bilgisayarca

düşünme”, whereas Yesan, Özçınar and Tanyeri (2017)

prefer “hesaplamalı düşünme”. Çınar and Tüzün

(2017), meanwhile, used “bilgi sayımsal düşünme” and

“bilgi işlemsel düşünme” in their paper. This study will

primarily use “bilgi işlemsel düşünme” (Computational

Thinking). The presence of such diverse localization

attempts is natural. As Piaget has (Bringuier, 1980:

p.57) specified, definition of terms comes after the

creation of terms in scientific research. The novelty of

this field, leading to a lack of uniformity in jargon and

everyday divergence of terms in common usage, may

be the explanation of this phenomenon. A similar

differentiation is observed in the computer science /

informatics divide separating researchers in the field.

Whereas European sources prefer the term

“informatics”, putting information before the devices

used to process it; American researchers seem to prefer

“computer science” as their term for this field

(Kalelioğlu, Gülbahar and Kukul, 2016). Nonetheless,

despite differences in terminology, it is observed that

the fundamental focus of this field is the basic

principles of computer science and their interaction

with mankind.

https://doi.org/10.21585/ijcses.v3i1.53

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1

ISSN 2513-8359

2. The History of Computational Thinking

While computational thinking is widely considered to have begun by Wing’s (2006) article on the subject, it was

first referenced by Papert (1996), as “procedural thinking”. Papert, then in MIT’s Department of Mathematics,

in the course of his research on computer and software usage in solving geometric problems claimed that

computational thinking could be employed in defining the relationship between a problem and its solution and the

structuring of data. Papert and his colleagues had developed the LOGO programming language in the 1960’s. The

main aim of this language was aiding students in thinking mathematically and logically. LOGO was at its core a

constructivist language, accepting learning to be a fundamentally individual activity and explaining it in Piagetian

terms. Papert (1991: p.1)’s individualization of this concept resulted in the notion of learning-by-making. Papert’s

adoption of this philosophy is not surprising, considering his experience working alongside Piaget in the Centre of

Genetic Epistemology in Geneva between 1958 and 1963. LOGO was thus designed as an environment conducive

to and supportive of Piagetian learning (Logo, 2015).

Figure 1. Seymour Papert and LOGO-based robot Turtle.

LOGO and the constructivist ethos behind it were considered to have the potential to transform education when

the language was first introduced. This potential did not come to life however, as constructivism gradually lost

traction in the education systems of the UK and the USA (Agalianos, Noss, and Whitty, 2001: p.497). This loss

was not unprecedented, as other programming languages such as PLATO (Programmed Logic for Automatic

Operations), CAI (Computer Assisted Instruction), CBT (Computer Based Training) and CAL (Computer Assisted

Learning) also faced the same fate (Etherington, 2017).

3. Defining Computational Thinking

As computational thinking is a newborn field, its definition varies from researcher to researcher. Due to this

variation between academics, this paper will consider practical definitions offered by organizations such as ISTE

(International Society for Technology in Education) and CSTA (Computer Science Teacher Association) in

addition to those determined by the academics themselves. Wing (2006, p.33) defines computational thinking as

“Computational thinking involves solving problems, designing systems, and understanding human behavior, by

drawing on the concepts fundamental to computer science.”. However, after further revisions [as the original article

was 4 pages long and many topics were not fully explored.] a different definition was accepted in 2011. According

to Wing (2011), computational thinking is defined as “Computational thinking is the thought processes involved

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 19

in formulating problems and their solutions so that the solutions are represented in a form that can be effectively

carried out by an information-processing agent.”. Table 1 showcases the various definitions of computational

thinking employed by the contemporary academia.

Table 1. Contrasting Definitions of Computational Thinking.

Definition Source

...the thought processes involved in formulating problems and their solutions

so that the solutions are represented in a form that can be effectively carried

out by an information-processing agent.

(Cuny, Snyder, Wing, 2010

akt. Wing, 2011, p.20)

Computational thinking is the thought processes used to formulate a problem

and express its solution or solutions in terms a computer can apply effectively.

Wing (2014)

The mental process for abstraction of problems and the creation of

automatable solutions.

Yadav et al. (2014)

Computational thinking is the process of recognising aspects of computation

in the world that surrounds us, and applying tools and techniques from

Computer Science to understand and reason about both natural and artificial

systems and processes.

Furber (2012)

Computational thinking has a long history within computer science. Known

in the 1950s and 1960s as “algorithmic thinking,” it means a mental

orientation to formulating problems as conversions of some input to an output

and looking for algorithms to perform the conversions. Today the term has

been expanded to include thinking with many levels of abstractions, use of

mathematics to develop algorithms, and examining how well a solution scales

across different sizes of problems.

Denning (2009)

...[Computational Thinking] is to teach them how to think like an economist,

a physicist, an artist, and to understand how to use computation to solve their

problems, to create, and to discover new questions that can fruitfully be

explored.

Hemmendinger (2010)

These definitions tend to focus on the cognitive performances and processes of individuals. Accordingly, we may

conclude that activities based on computational thinking are essentially meant to improve cognitive skills and

support the processes of teaching and learning in the affected individuals.

Researchers in the field have also held workshops with the aim of establishing the true nature of and a working

definition for computational thinking. Some of these workshops have concluded that a rigorous and consistent

definition would benefit the field (BİD Workshop Committee, 2011). On the other hand, certain researchers held

that attempting to define computational thinking in clear-cut terms is unnecessary and that effort should be applied

in establishing the internal relationships within the computational thinking corpus (Voogt et al., 2015: p.726).

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 20

“There is no clear-cut definition for CT and the main tension in the attempt to define

CT has to do with defining the core competencies of CT versus the more peripheral

competencies. We argue that for the purpose of conceptualizing CT and integrating it in

education, we should not try to give an ultimate definition of CT, but rather try to find

similarities and relationships in the discussions about CT (Voget et al., 2015: p.726).”

Whilst a general concept of computational thinking can be established based on these definitions, they offer little

insight into how computational thinking should be applied in practice in the field of education. Practical definitions

of computational thinking and its constituents are needed before achievement targets and educational programmes

can be created in the classroom. CSTA and ISTE have provided activity rubrics for computational thinking in the

years 2011, 2015 and 2016. Table 2 is a list of these activities, sorted according to keywords.

Table 2. Practical computational thinking activities, curated by ISTE.

Keywords Source

Formulating, organizing, analyzing, modelling,

abstractions, algorithmic thinking, automating,

efficiency, generalizing, transferring

ISTE (2011)

Creativity, algorithmic thinking, critical thinking,

problem solving, cooperation

ISTE (2015; Oden et al. 2015)

Data analysis, abstract thinking, algorithmic thinking,

modelling, representing data, breaking problems into

components, automation

ISTE (2016) (Computational Thinker Definition)

As these definitions show, the activity lists provide a framework for educators, delineating the educational

achievements which they should aim for and outlining methods for assessment and evaluation of these

achievements. For example, an educator using these rubrics would know that teaching visual programming tools

such as Scratch or KODU in class, is not only meant to help students have fun while designing computer games;

They would also use the experience as a medium for instilling some of the concepts and abilities outlined in Table

2.

4. Components of Computational Thinking

The fundamental components of computational thinking are also a source of divergence between researchers. In

order to establish a baseline for further analysis, components used by various researchers have been provided in

Table 3.

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 21

Table 3. Components of Computational Thinking

Components Source

Abstraction, Algorithms, Automation, Problem

Decomposition, Parallelization, Simulation

Barr & Stephenson (2011)

Abstraction, Automation, Analysis Lee et al. (2011)

Abstraction, Algorithmic Thinking, Decomposition,

Evaluation, Generalization

Selby & Woollard (2013)

Abstraction, Algorithms, Decomposition, Debugging,

Generalization

Angeli et al. (2016)

Abstraction, Algorithms, Automation, Problem

Decomposition, Generalization

Wing (2006, 2008, 2011)

While the exact components may differ, we believe the essential concepts they represent are largely uniform across

the field. Computational thinking abilities are essentially the set of skills needed to convert complex, messy,

partially defined, real-world problems into a form that a mindless computer can tackle without further assistance

from a human (BCS, 2014, p.3). As such, this paper will use the definitions of abstraction, problem decomposition,

algorithmic thinking, automation and generalization from amongst the components provided. These definitions

can be listed as (Humphreys, 2015):

● Abstraction makes problems or systems easier to think about. Abstraction is the process of making an

artefact more understandable through reducing the unnecessary detail and number of variables; therefore

leading to more straightforward solutions. One of the best-known examples of this is the London

Underground example, provided by Humphreys (2015). The London Underground map provides just

enough information for the traveller to navigate the underground network without the unnecessary burden

of information such as distance and exact geographic position. It is a representation that contains precisely

the information necessary to plan a route from one station to another – and no more. Similar examples

may be provided for other subjects, allowing the concept to be better understood (Wing, 2008):

○ Verbal and story-based problems in mathematics such as filling rates of pools, areas to be fenced

off and accounting calculations are essentially an exercise in abstraction for the students where

they are required to separate relevant and irrelevant data and state their solutions in the symbolic

language of algebra, geometry, or arithmetic.

○ In geography, students make use of specialized maps (physical, topographic, political, touristic

etc.), ignoring many aspects of real-world geography in favour of ease-of-access for data

relevant to their current study.

○ History lessons are essentially abstractions of local histories and individual biographies taught

as national or world history – abstract projections of real-world events.

● Problem Decomposition is a method for taking apart problems and breaking them into smaller and more

understandable constituents. This method is also known as “Divide and Conquer”.

● Algorithmic Thinking is the process of constructing a scheme of ordered steps which may be followed to

provide solutions to all constituent problems necessary to solve the original problem.

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 22

● Automation is the configuration of formed algorithms over computers and technological resources to be

efficiently applicable to other problems.

● Generalization is the process of adapting formulated solutions or algorithms into different problem states,

even if the variables involved are different.

There are also a number of techniques used to exemplify and evaluate computational thinking. These comprise the

equivalent of a scientific method for computer science. They are employed to put computational thinking to

practice in the classroom, at home and at work (Humphreys, 2015):

● Reflection

○ Reflection is the skill of making judgements (evaluation) that are fair and honest in complex

situations that are not value-free. Within computer science this evaluation is based on criteria

used to specify the product, heuristics (or rules of thumb) and user needs to guide the judgements.

A child’s realization, when playing with pebbles, that 3 + 4 is the same as 4 + 3 is an example

of reflection (or rather, reflective abstraction). The information created in this example is derived

not from the pebbles themselves but from the actions taken on them.

● Coding

○ An essential element of the development of any computer system is translating the design into

code form and evaluating it to ensure that it functions correctly under all anticipated conditions.

Debugging is the systematic application of analysis and evaluation using skills such as testing,

tracing, and logical thinking to predict and verify outcomes.

● Designing

○ Designing involves working out the structure, appearance and functionality of artefacts. It

involves creating representations of the design, including human readable representations such

as flowcharts, storyboards, pseudo-code, systems diagrams, etc. It involves further activities of

decomposition, abstraction and algorithm design.

Figure 2. 4 basic strategies for computational thinking (McNicholl, 2018: p.37).

Decomposition Abstraction

Pattern Recognition Algorithms

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 23

● Analysing

○ Analysing involves breaking down into component parts (decomposition), reducing the

unnecessary complexity (abstraction), identifying the processes (algorithms) and seeking

commonalities or patterns (generalisation). It involves using logical thinking both to better

understand things and to evaluate them as fit for purpose.

● Applying

○ Applying is the adoption of pre-existing solutions to meet the requirements of another context.

It is in generalization - the identification of patterns, similarities and connections - and exploiting

those features of the structure or function of artefacts. An example includes the development of

a subprogram or algorithm in one context that can be re-used in a different context.

5. Critique and Contemporary Research in Computational Thinking

Wing (2006), in the article “Computational Thinking”, provided a definition of computational thinking, and held

that computational thinking is a fundamental ability for the future which will become a necessity for all individuals

and should be employed in the curriculums for students of all levels. However, the article itself in Wing (2006)

totaled only 4 pages, was not based on independent research and lacked in-depth analysis of many topics covered

in the article. While the article has been used as a foundation for research done by many academics, it has also

been put under a heavy amount of critique. Hemmendinger (2010) especially claimed that the components of

computational thinking as presented in Wing (2006) are not unique to computational thinking. According to

Hemmendiger (2010):

● Reformulating hard problems is typical of all domains of problem solving,

● Philosophers have been thinking about thinking — recursively — for a long time,

● Mathematics surely uses abstraction, and so do all disciplines that build models,

● Separation of concerns and using heuristics also characterizes problem-solving in general.,

Furthermore, Hemmendinger (2010) advances that teaching individuals involved in other disciplines how to think

like a computer scientist is unreasonable. Rather than employing a single discipline to dictate the thought processes

for all disciplines, physicists should think like physicists and economists should think like economists while

making use of computational thinking and computational processing technologies in order to solve questions in

their field efficiently and determine new questions which would result in novel, efficient methods once solved.

Another objection to Wing comes from Denning (2016). According to Denning (2016), the article ascribes an

undeservedly significant weight to algorithms and algorithmic thinking. Rather than valuing algorithms above

their contribution, Denning (2016) suggests that an algorithmically-controlled computational thinking model

should not be ignored as an alternative. Additionally, they advance the notion that computational thinking is not a

fundamental skill and cannot be regarded as an equal to fundamental abilities such as reading and writing. In short,

the idea that every individual can use computational thinking and campaigns with claims such as “Coding for

Everyone”, “A Nation of Coders” and “A Coder at Every Home” are unrealistic. The question of whether every

profession and every individual really needs to employ computational thinking and consequential coding abilities

as a part of computational thinking, is an unresolved discussion in the field. One of the most striking comments

on this conundrum is provided by Barr & Stephenson (2011: p.113):

The ultimate goal should not be to teach everyone to think like a computer scientist, but rather

to teach them to apply these common elements to solve problems and discover new questions

that can be explored within and across all disciplines (Barr and Stephenson, 2011: p.113).

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 24

Learning computational thinking and computer science are not one and the same. Yet colloquially, these two

expressions are used interchangeably. This supposed equivalency is erroneous as the latter is essentially meant to

educate learners in the study and use of the principles of mathematical calculation. One reason why this belief is

in wide circulation could possibly be Wing (2006)’s original claim that “computational thinking is thinking like a

computer scientist.”. Denning (2009) and Hemmendinger (2010) oppose this claim mainly because of their thesis

that such a definition of computational thinking could give the impression that computational thinking is only

relevant to the field of computer science and is largely inapplicable to everyday situations in would-be

computational thinking learners.

Programming education is a sub-field of computer science and while primarily conducted to educate learners in

the best practices of computer programming, one of its goals is being conducive to the creation of high-quality

computer programs. Computational thinking, while it has considerable overlap with computer science on certain

elements, focuses mainly on developing and disseminating approaches to problem solving, unlike computer

science.

While the terms “coding” and “programming” are used interchangeably with each other, “coding” has been

employed as a more exciting and less scary alternative, especially to entice and motivate beginners in scripting.

Platforms such as Code Studio, Hour of Code, Code Monkey and MIT’s Scratch and App Inventor 2 tend to use

coding rather than programming. More advanced text-based and OOP languages (Python, Java etc.) edge towards

the use of programming instead. One widely-held belief is that computational thinking, and as a result coding and

programming education, has a positive effect on students’ problem-solving abilities. Multiple different

manifestations of this belief may be observed in contemporary research, and it can be connected to more solid

scientific reasoning via analyzing the results of contemporary research:

● Palumbo (1990)’s meta-analysis study concluded that strong evidence to the existence of a meaningful

correlation between programming education and problem-solving abilities could not be found. Palumbo

(1990) came to this conclusion by evaluating different studies conducted on high school students by a

variety of researchers. These included studies based on CAI (Computer Aided Instruction), LOGO and

BASIC languages being taught to different groups of students in various class hours and total course

length in weeks configurations – none of which discovered a scientifically significant correlation. As

previously stated in this article, one of the reasons for the near-extinction of these programming languages

may be their inability to provide the expected contribution to the students’ problem-solving abilities.

● Kalelioğlu & Gülbahar (2014) held a 5-week long study with 5th Grade Middle School students (22 girls

and 27 boys) in the 2013-2014 educational year. Students conducted varying activities in the Scratch

programming language as part of the study. Their results indicated that when quantitative data is analyzed,

there was no statistically significant divergence between the pre-study and post-study problem-solving

ability quotients. Analysis of qualitative data, on the other hand, showed increased student enthusiasm

towards programming.

● Kukul & Gökçearslan (2014) worked with 304 5th and 6th grade students who had not taken any

programming lessons previously. Similarly, to Kalelioğlu & Gülbahar (2014), they also used Scratch.

Their conclusions indicated that no statistically significant change in the students’ problem-solving

abilities was observed.

● Morelli et al. (2011) analyzed the results under specific indicators. The “App Inventor” mobile

programming application was taught to high school students as part of a summer programme. Neither the

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 25

“problem-driven learning” nor “support for learning” indicators mention an increase in the problem-

solving abilities of students, instead opting to focus on the increase in motivation observed.

● Wong et al. (2015) conducted an experimental study on 264 5th Grade students in Hong Kong between

the years of 2012 and 2014. The first year of the study was used to teach KODU (A game engine

developed by Microsoft) to the students, while in the second year Scratch and Small Basic were used in

the curriculum. The students’ mathematics grade average rose from 74.86 in 2012-2013 to 77.59 in 2013-

2014. The students’ creativity, critical thinking and problem-solving abilities were also evaluated. Based

on t-Test results conducted on data retrieved from the ESDA student evaluation portal, the students’

problem-solving abilities appeared to rise from 2.75 to 2.95. However, while the researchers did indicate

that participation in coding developed certain abilities in the students, other fundamental abilities were

not conclusively affected.

Various strong claims have been made regarding the positive influence of programming/coding education in the

cognitive development of children. Papert (1980), believed that programming allowed children to shape their own

learning environments. Papert’s most important claim was that learning LOGO improved problem-solving abilities

by providing concrete experiences which were conductive to conceptualizing pictures on an operational scale (As

Papert himself was a mathematician, his examples were frequently based on mathematics and geometry. Concrete

experiences were defined as the appearance of geometric shapes on the screen.). Formal operational thinking was

defined by Piaget as the ability to construct relationships, make inferences and build hypotheses (Kıncal & Yazgan,

2010: p.724). An individual capable of formal operational thinking can make abstractions, understand

mathematical constructs requiring high-level thinking, generalize by applying the acquisitions from these problems

to other problems, is able to make plans, and employs a procedural method of thinking. At this point, the similarities

between formal operational thinking as defined by Piaget and CT-based abilities become apparent. This is why

Papert claimed that LOGO could aid in dismissing negative attitudes towards math in students, teaching

mathematical concepts, and strengthening self-control and success-oriented attitudes in children (Liao & Bright,

1991: p.252).

Results from these studies show conflicting opinions in computational thinking literature when it comes to the

question of whether programming education on its own has a meaningful effect in the problem-solving abilities of

students. But studies where components of computational thinking are employed show an increase in the students’

problem-solving, abstract-thinking, troubleshooting and cooperative learning abilities.

● Roman-Gonzales et al. (2017) studied 1251 Spanish students in 5th – 10th grades. CTt (Computational

Thinking Test) and PMAt (Primary Mental Abilities Test) were applied to the students. The correlation

between CT abilities and “spatial memory”, “Reasoning” and “Problem-solving” was calculated

experimentally, with spatial memory being k (r=0.44), reasoning (r=0.44) and problem-solving (r=0.67).

Problem-solving appears to be more heavily-influenced than other abilities.

● Grover, Pea & Cooper (2015) worked with 54 students in Northern California who were between 11 and

14 years old. A 7-week course was designed for the students where they used the Scratch coding platform

and were able to translate their code into text-based platforms based on their acquisitions from the

platform. The researchers were able to correlate CT abilities with problem-solving abilities. When the

results are analyzed, the students are shown to have advanced themselves especially in algorithmic

thinking abilities. Another interesting point is that the students’ previous CT experiences and

mathematical abilities (as determined by an introductory exam conducted by the researches) were strong

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 26

indicators of learning outcomes. Pea & Kurland (1984, p.35) enumerated “mathematical ability”,

“memory capacity”, “analogical reasoning ability”, “situational reasoning ability” and “procedural

thinking ability” as the mathematical skills necessary for acquisition of programming ability, while also

specifying that students who are especially able to operate the LOGO language successfully were also

successful in English and humanities classes, and not merely in mathematics.

● Webb (2010) assayed the contribution of programming education to students’ troubleshooting abilities. A

regimen of 2 hours per week for 5 weeks was planned; with CT skills being connected to problem-solving

ability. While 19 boys and 21 girls were present at the beginning, due to personal reasons and exams, only

24 students (16 boys, 8 girls) completed the regimen. At the end of the study, the students were asked to

“Fix the Frogger Program” in 40 minutes. Only 1 student failed this assignment, with the rest proceeding

to the debugging phase.

● The study conducted by Bers et al. (2013) was based on 3 pre-school classes (2 public and 1 private) of

53 students in total, and had a length of 20 hours. During this study, learners were exposed to 6 main

subjects including engineering design processes, robotics, instruction-based programming, loops, sensors,

and control mechanisms. TangibleK robots and software were employed in the study. The contents of

these subjects were tailored to suit the students’ age. Songs, games, and rhythmic and repetitive moves

were inserted to the applications. For example, “Simon Says” was used in lesson 3: algorithmic

programming and CHERP (Creative Hybrid Environment for Robotic Programming), a drag-and-drop

software was taught. The students’ troubleshooting, understanding of the relationship between

instructions and movement, and use of instruction order and flow-control instructions was studied. The

results indicated that students’ abilities to cooperate, create ideas, share via negotiation as well as motor

skills improved. Furthermore, the students were described to have become more active in their creativity

and problem-solving abilities, both in the mathematical and real world.

● The study conducted by Durak and Sarıtepeci (2018) was applied to 156 public school students in Ankara.

Two different data collection tools were used in this study. The first one is the personal information form

and the second one is the computational thinking ability form. In this study, the factors affecting the

computational thinking skills of students were examined. These factors are gender, education level, IT

usage experience, daily internet usage period, mathematics achievement, attitudes towards the

mathematics course, attitudes towards science courses, achievements in science courses, achievements in

information technology courses and attitudes towards information technology courses. Among these

factors, it was determined that the most effective factors on computational skills were education level,

mathematics achievement, attitude towards the mathematics course and attitude towards science courses.

Upon analysis of these studies, it becomes apparent that it is lessons in coding, mathematics, natural sciences,

social sciences and language arts, taught according to computational thinking skills and not mere programming or

coding education, which affect an increase in the problem-solving, abstract thinking, troubleshooting, procedural

thinking and similar abilities in students. An appropriate and interdisciplinary application of the component of CT

abilities needs to be advanced in order to raise students not only as coders but as individuals with a radical way of

thought and perspective. Furthermore, it may be appropriate for Computational thinking and STEAM (Science,

Technology, Engineering, Arts and Mathematics) to be considered together as these two fields share a great deal

of subject material (Gülbahar, 2017: p.331). Interdisciplinary work on the part of the students and their ability to

realize relationships between areas of study, determine the problems they are facing, investigate potential solutions,

decide upon the correct solution, gather data, analyze data, troubleshoot, develop their models and generalize

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 27

solutions (ISTE, 2016) will aid their problem-solving abilities.

6. Conclusion

Computer science-based technologies are developing rapidly in our era, influencing the problem-solving processes

and social lives of both individuals and societies. From medical work to social media use, results of computer

science studies are integrated to the daily lives of individuals in a multitude of fields. The effects of computer

science on modern society is also an indicator of its effects on the scientific method and therefore, naturally,

scientists. Natural scientists have long positioned computation as a “third” foundation of the scientific method

alongside theory and experimentation, and that computational thinking is essential to their work (Denning, 2009).

Though the definitions of and framework for computational thinking as set out by Wing (2006) have long been

critiqued by other researchers, the importance of computer science has been growing daily, finding applications in

multiple fields from curing disease to preventing terrorist attacks. Nonetheless, the claim that computer science

and as a results computational thinking is a fundamental discipline on par with reading, writing and basic arithmetic,

is still being debated.

Populist notions such as “Computer Science and Computational Thinking for All”, aimed at bringing the field to

the mainstream, will make it more difficult for the field to preserve its rightful rigour. As we have deducted from

the works of Denning, Hemmendinger and Barr amongst others presented in this article, ascribing an undeserved

importance to certain fields – whether they be deemed coding, computer science, or computational thinking –

would be inappropriate. Still, researchers may benefit from holding computational thinking as a potential method

of transforming education, as long as they also hold the criticisms applied to the field in equal regard. As Denning

(2010, p.28) has also stated, holding computational thinking (and coding) in (undeservedly) excessive esteem may

lead us back to the same pitfalls we are attempting to avoid.

As a final remark, we hold that the fundamental goal of computational thinking (and instilling this ability in

students) and computer education should be aiding students in understanding and – through use of their creative

impulses – changing the world they live in, for the better (Department for Education, 2014, p.217).

References

Agalianos, A., Noss, R., & Whitty, G. (2001). Logo in mainstream schools: the struggle over the soul of an

educational innovation. British Journal of Sociology of Education, 22(4), 479-500.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational

thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology &

Society, 19(3), 47.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the role

of the computer science education community?. Acm Inroads, 2(1), 48-54.

BCS, The Chartered Institute for IT. 2014. Call for evidence - UK Digital Skills Taskforce. http://bit.ly/ILi8mdn

[Retrieved 17.01.2018].

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:

Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.

Bringuier, J. C. (1980). Conversations with Jean Piaget. Society, 17(3), 56-61.

Çınar, M. & Tüzün, H. (2017, February). Bilgisayımsal Düşünme Sürecinin Doğasına İlişkin Nitel Bir Analiz (A

http://bit.ly/ILi8mdn

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 28

Qualitative Analysis on the Nature of the Computational Thinking Process). Presented to 19. Akademik

Bilişim Konferası (Conference on Academic Informatics), Aksaray University, retrieved 24.12.2017 from

http://ab.org.tr/ab17/ozet/233.html.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to

measure understanding of computer science concepts?. Computers & Education, 58(1), 240-249.

Denning, P. J. (2009). The profession of IT Beyond computational thinking. Communications of the ACM, 52(6),

28-30.

Department for Education. 2014. The National Curriculum in England, Framework Document. Reference: DFE-

00177-2013. Retrieved 26.12.2017 from:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335116/Master_final_national

_curriculum_220714.pdf.

Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various

variables with the structural equation model. Computers & Education, 116, 191-202.

Etherington,C. (2017), Retrieved 24.12.2017 from: https://news.elearninginside.com/how-plato-changed-the-

world-in-1960/.

Furber S (2012) Shut down or restart? The way forward for computing in UK schools. Technical report, The Royal

Society, London.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for

middle school students. Computer Science Education, 25(2), 199-237.

 Hemmendinger, D. (2010). A plea for modesty. Acm Inroads, 1(2), 4-7.

Humpreys, S. (2015). Computational Thinking, a guide for teacher. Computing at School. Charlote BCS. The

Chartered Institue for IT

ISTE (2011), Operational definitions of computational thinking, retrieved 24.12.2017 from:

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf.

ISTE (2016), ISTE Standarts for Students, retrieved 24.12.2017 from: http://www.iste.org/docs/Standards-

Resources/iste-standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327.

Kalelioglu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem solving skills:

a discussion from learners' perspective. Informatics in Education, 13(1), 33.

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a systematic

research review. Baltic Journal of Modern Computing, 4(3), 583.

Keser, H. (2011). Türkiye'de Bilgisayar Eğitiminde İlk Adım: Orta Öğretimde Bilgisayar Eğitimi İhtisas

Komisyonu Raporu (Turkey’s First Steps in Computer Education: Specialized Commission on Computer

Education in Secondary Education Report). Eğitim Teknolojisi Kuram ve Uygulama (Theoretical and Practical

Educational Technologies), 1(2), 83-94.

Kıncal, R. Y., & Yazgan, A. D. (2010). Investigating the formal operational thinking skills of 7th and 8th grade

primary school students according to some variables. Elementary Education Online, 9(2), 723-733.

Korkmaz, Ö., Çakır, R., Özden, M. Y., Oluk, A., & Sarıoğlu, S. (2015). Bireylerin Bilgisayarca Düşünme

Becerilerinin Farklı Değişkenler Açısından İncelenmesi (A Multi-Variable Investigation of the Computational

Thinking Abilities of Individuals). Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi (19th May University

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 29

Faculty of Education Journal), 34(2), 68-87.

Korkmaz, Ö., Çakır, R., Özden, M. Y., Oluk, A., & Sarıoğlu, S. (2015). Bireylerin Bilgisayarca Düşünme

Becerilerinin Farklı Değişkenler Açısından İncelenmesi (A Multi-Variable Investigation of the Computational

Thinking Abilities of Individuals). Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi (19th May University

Faculty of Education Journal), 34(2), 68-87.

Kukul, V., & Gökçearslan, Ş. (2014). Scratch ile programlama eğitimi alan öğrencilerin problem çözme

becerilerinin incelenmesi. (Investigation of the Problem-solving Skills of Students with Scratch-based

Programming Education.)

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational thinking

for youth in practice. Acm Inroads, 2(1), 32-37.

Liao, Y. K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive outcomes: A meta-analysis.

Journal of Educational Computing Research, 7(3), 251-268.

Logo Foundation (2015). Logo and Learning, retrieved 24.12.2017 from: http://el.media.mit.edu/logo-

foundation/what_is_logo/logo_and_learning.html.

McNicholl, R.(2018). Computational thinking using code.org. Hello World, 4, 37.

Morelli, R., De Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011, March). Can android app

inventor bring computational thinking to k-12. In Proc. 42nd ACM technical symposium on Computer science

education (SIGCSE'11) (s. 1-6).

National Research Council. (2010). Committee for the Workshops on Computational Thinking. In Report of a

workshop on the scope and nature of computational thinking, Natl Academy Pr.

Palumbo, D. B. (1990). Programming language/problem-solving research: A review of relevant issues. Review of

educational research, 60(1), 65-89.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New ideas in

psychology, 2(2), 137-168.

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2016). Which cognitive abilities underlie

computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human

Behavior, 1-14

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition.

Tekerek, M., & Altan, T. (2014). The effect of scratch environment on student's achievement in teaching algorithm.

World Journal on Educational Technology, 6(2), 132-138.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:

Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728.

Wing, J. (2014). Computational thinking benefits society. 40th Anniversary Blog of Social Issues in Computing,

2014.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical transactions of the royal

society of London A: mathematical, physical and engineering sciences, 366(1881), 3717-3725.

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 30

Wing, J.M. (2011), Research Notebook: Computational thinking -what and why? The Link Magazine, 20-23.

https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking in elementary

and secondary teacher education. ACM Transactions on Computing Education (TOCE), 14(1), 5.

Yecan, E., Özçınar, H., & Tanyeri, T. (2017). Bilişim Teknolojileri Öğretmenlerinin Görsel Programlama Öğretimi

Deneyimleri (A Collection of Visual Programming Experiences by Information Technologies Educators).

İlköğretim Online (Elementary Education Online), 16(1).

International Journal of Computer Science Education in Schools, April 2019, Vol. 3, No. 1
ISSN 2513-8359

 31

	Kyungbin Kwon1
	Jongpil Cheon2
	1 Indiana University
	2 Texas Tech University
	Abstract
	1. Introduction
	Since Wing (2006) suggested that computational thinking (CT) is “a fundamental skill for everyone, not just for computer scientists (p. 33),” many stakeholders have tried to develop a sustainable curriculum that encourages more students to learn progr...
	CT requires problem-solving skills that involve analytical thinking to design systems (Wing, 2006). Thus, the core CT concepts, including decomposition (break problems down into smaller parts) and abstraction (model the core aspects of problems), are ...
	One of the reasons for the lack of pedagogical guidance may be due to the difficulty of evaluating CT skills that are embedded in the programs that students create. For example, a student may not be successful in decomposing the main task and develope...
	To evaluate CT skills, we need a precise definition and evaluation frame. Although many scholars have defined CT and identified its components (D. Barr, Harrison, & Conery, 2011; Shute, Sun, & Asbell-Clarke, 2017; Wing, 2006), it has not been sufficie...
	Considering the limited evaluations in CS education, the current study aims to examine CT skills reflected in students’ programs, which will suggest an evaluation framework of CT. This study also suggests instructional strategies to be considered in s...
	2. Literature review
	2.1 Computational thinking
	4. Method
	4.1 Participants
	Seven middle school students (six girls and one boy) participated in the after-school coding event. All students learned in “Hour of Code” during their school curriculum. Four students had experienced coding with BBP, such as Scratch or Tynker, before...
	4.2 Context of Learning
	Partnering with the middle school coding club, a researcher (the first author) from a university in the Midwest developed the curriculum for the five-week coding event: “Going Beyond the Hour of Code.” The event was designed for middle school student...
	Once the students gathered in the computer lab, the researcher explained the theme for the week, and demonstrated how to create a corresponding Scratch project. The researcher emphasized the main CT skills during the demonstration and encouraged stude...
	Table 1. Overview of Coding Event Curriculum
	4.3 Data
	Each week, students submitted their Scratch projects in a learning management system, Canvas. A total of 18 projects were collected, but the researchers only analyzed the projects of the students who submitted an informed consent form. So, a total of ...
	4.4 Analysis
	To have an in-depth understanding of the Scratch programs that the students created, we analyzed them in terms of decomposition and program development reflected in the programs. The unit of analysis was a semantic unit that included one or several co...
	5. Results
	References
	Sibel Kılıçarslan Cansu, PhD 1
	2 Bahçeşehir University Institute of Educational Sciences

