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Abstract 

To help novice learners overcome the obstacles of learning computational thinking (CT) through programming, it 
is vital to identify difficult CT components. This study aimed to determine the computational concepts and 
practices that learners may have difficulties acquiring and discuss how programming instructions should be 
designed to facilitate learning CT in online learning environments. Participants included 92 undergraduate students 
enrolled in an online course. Data were collected from a CT knowledge test and coding journals. Results revealed 
that four computational concepts (i.e., parallelism, conditionals, data, and operators) and two computational 
practices (i.e., testing and debugging and abstracting and modularizing) were identified as CT components that 
were difficult to learn. The findings of this study imply that CT instructions should offer additional instructional 
supports to enhance the mastery of difficult computational concepts and practices. Further research is necessary to 
investigate instructional approaches to successful CT learning. 
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1. Introduction 

Digital transformation is everywhere. Although innovation in digital technology advances our well-being, the fast 
rate of world change generates unprecedented social, economic, and environmental challenges. A United Nations 
report (2019) examining how digital technology would transform our lives and communities emphasized that many 
people become more vulnerable to uncertain adversity and risks when they do not have the fundamental skills 
required for finding solutions to real-life problems in the digital age. In this increasingly evolving world, 
computational thinking (CT) has emerged as a problem-solving skill that new generations of students must acquire 
to prepare them for tomorrow’s challenges and expand their potential. As a response to these issues, educators, 
researchers, and policymakers are rapidly recognizing that CT is a new core skill needed by all people, not just 
computer programmers (Wing, 2011). Emphasis is being increasingly placed on developing effective curricula for 
computer science (CS) and CT education. Also, many efforts have been made in various educational settings to 
integrate CT components into existing classroom activities.  

As part of these ongoing efforts, in 2016 in the United States, the Computer Science for All initiative laid the 
foundation for providing students in pre-K through 12th grade with opportunities to participate in CS education 
(National Science Foundation, 2016). Later on, the Common Core State Standards and Next Generation Science 
Standards were reformed to encompass CT as an interdisciplinary approach. With these recent educational reforms, 
which incorporated CS/CT into both K-12 and higher education curricula, educators need to adapt their existing 
pedagogical strategies to properly teach CS/CT to learners. They also need to learn appropriate pedagogies for 
delivering a new subject, particularly in those aspects of CS/CT competencies. Although recent literature 
pertaining to CS education in school emphasizes many ways to make CS/CT education more accessible to K-20 
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students, educators, researchers, and administrators still must manage the ambiguity of CT definitions and methods 
of instruction and assessment. Particularly, attempts have been made to propose instructional tools to facilitate CT 
learning, but these studies did not present the most difficult CT components for learners to engage in block-based 
programming learning. This may be due to the lack of empirical research findings to identify difficult CT concepts 
and practices in block-based programming environments. Thus, it is crucial to identify difficult-to-learn CT 
components via learning block-based programming. To situate our study, we first outline CT in general, highlight 
CT assessments, and then consider what it means in block-based programming and the challenges in CT instruction. 

2. Literature Review 

2.1 Definitions of Computational Thinking  

Alongside the growing recognition of CT as essential for students’ future success, several researchers have 
attempted to define CT and identify its components (e.g., Atmatzidou & Demetriadis, 2016; Barr, Harrison, & 
Conery, 2011; Berland & Wilensky, 2015; Google, 2016; Israel et al., 2015; Parpert, 1980; Pearson et al., 2015). 
The term CT was first coined by Seymour Papert (1980), who developed LOGO programming, and was later 
popularized in the CS community by Jeannette Wing (2006). She described CT as “the thought processes involved 
in formulating problems and their solutions so that the solutions are represented in a form that can be effectively 
carried out by an information-processing agent” (Wing, 2011, p. 1). The National Research Council (2010) 
expanded the nature and scope of CT with diverse applications for the definition. Barr and Stephenson (2011) 
provided an operational definition of CT for K-12 education, which they described as a problem-solving process 
and a series of dispositions and attitudes. Aho (2012) refined the term, saying that the solution should be 
represented as computational steps and algorithms. Román-González (2015) argued that the basic CT concepts—
computing and programming—were central to formulating and solving problems. Grover and Pea (2018) redefined 
CT as a “widely applicable thinking competency” (p. 22) of which problem formulation processes should be 
considered key in solving problems. Denning and Tedre (2021) advanced CT’s definition with a historically 
grounded view of professional disciplines and highlighted the aspects of “designing computations that get 
computers to do jobs for us, and for explaining and interpreting the world in terms of information processes” (p. 
365). As CT encompasses broad domains across disciplines, there is no standard definition of this term; hence, 
various components of CT have been differently proposed in line with study contexts, which has influenced the 
development of a variety of CT assessment tools.  

2.2 Assessments of Computational Thinking  

Given that an educational assessment contributes significantly to teaching and learning (Black & Wiliam, 1998; 
Shepard, 2000), a CT assessment is an integral piece that provides valuable information about student learning 
progress, as well as the effects of instruction. Although it is difficult to unify in a single assessment, it has been 
agreed that comprehensiveness of assessment is central to enable educators and researchers to evaluate the 
effectiveness of CT-incorporated instruction in discipline-specific or multi-disciplinary lessons. Without a 
comprehensive assessment framework, teachers and students cannot understand how they are teaching and 
learning in a classroom. Grover et al. (2014) suggested considering multiple complementary measures that can 
reflect deeper learning and contribute to a comprehensive picture of students’ learning in CT education. As the 
clarity of and discussion on the definitions of CT in education have advanced, several comprehensive frameworks 
for improving CT assessment have been proposed (e.g., Adams et al., 2018; Brennan & Resnick, 2012; Grover & 
Pea, 2013, 2018; Roman-Gonzalez, 2015; Shute et al., 2017; Zhong et al., 2016). Today, most frameworks of CT 
rely primarily on works from both the Computer Science Teachers Association (CSTA) and the International 
Society for Technology in Education Committee (ISTE; Barr & Stephenson, 2011) and the three-dimensional CT 
model (Brennan & Resnick, 2012). The CSTA and ISTE model includes CT concepts, capabilities, dispositions 
and predispositions, and classroom culture. Brennan and Resnick’s model consists of computational concepts, 
practices, and perspectives.  

2.3 Roles of Block-Based Programming 

Several studies have examined the effectiveness of CT intervention to facilitate CT teaching and learning. Some 
studies explored instructional approaches with diverse target populations in a variety of educational settings (e.g., 
Atmatzidou & Demetriadis, 2016; Czerkawski & Lyman, 2015; de Paula et al., 2018; Grover et al., 2015; Jenkins, 
2015; Román-González et al., 2015; Romero et al., 2017; Yadav et al., 2014). Shute et al. (2017) classified 
introductory CS/CT practices into four strategies: (a) programming, (b) robotics, (c) game design/play, and (d) 
unplugged activities. The National Research Council (2010) highlighted the role of programming in constructing 
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a series of steps for solving a computational problem. As an effort to help programming attract and engage students 
in computational problem-solving, various block-based programming languages where codes are represented as 
blocks (e.g., Scratch, Alice, Snap!, App Inventor, LEGO Mindstorms, and Blockly) were introduced as an aid to 
better understanding CT. Brennan and Resnick (2012) suggested suitable settings in the context of Scratch block-
based programming for developing CT capacities aligned with three CT dimensions. 

Also, although prior research has been conducted mainly on K-12 CS education, CS/CT should be expanded to 
college students and lifelong students in terms of providing unique and equal opportunities to develop 
computational problem-solving skills. This type of CS/CT course is designed for students who typically have no 
prior experience in programming and only have a general knowledge of computing. Hence, it is significant to 
identify CT components that are difficult for beginners in learning block-based programming. 

2.4 Instruction of Computational Thinking  

Although block-based programming provides an engaging introduction to programming, researchers have found 
that novice learners still have difficulties mastering specific programming concepts. The study conducted by 
Sentence and Csizmadia (2015) found that programming was effective in enhancing CT but recognized as one of 
the most challenging learning activities. Duncan and Bell (2015) argued that CT cannot be learned automatically 
simply by using tools that improve CT competencies in previous studies. In a smiliar study, learners found it 
difficult to learn programming, and the biggest limitation of CT education is that CT components are difficult to 
teach due to their abstract nature (Czerkawski & Lyman, 2015). This may be because teachers are rarely cognizant 
of how to approach computational problem-solving using the abstract concepts. Such lack of readiness for teaching 
computational concepts hinders teachers’ abilities to keep students engaged and on track with more in-depth 
learning. A few studies suggested instructional approaches for promoting the CT process (Czerkawski & Lyman, 
2015; Sentence & Csizmadia, 2015); however, these studies did not present which CT components are likely to be 
most challenging for learners to engage in learning programming. It is fundamental to identify which areas are 
most challenging to learn CT via programming. Moreover, CT instruction should be designed for students to attain 
deeper learning outcomes; thus, it gives rise to a need for studies that provide empirical data for CT leaning and 
explore practical instructional approaches. One way to advance this area of research is to identify which CT 
components are difficult for novices to learn. 

3. Purpose of the Study  

The purpose of this study was to examine computational concepts and practices that novice learners may 
experience challenges with learning in an online course intended to promote CT competencies as they apply to 
basic computer skills and programming. Two research questions guided this study:  

• RQ1: Which computational thinking concepts are difficult for undergraduate students in an online learning 
environment?  

• RQ2: Which computational thinking practices are difficult for undergraduate students in an online learning 
environment? 

The findings would provide empirical evidence associated with the difficulties in learning CT components for 
novice learners but also expand discussions about how instructions should be formed to support difficult 
computational concepts and practices.  

3.1 Dimensions of Computational Thinking  

When programming with Scratch to facilitate the development of CT, multiple dimensions have been considered. 
In the framework proposed by Brennan and Resnick (2012) along with the Scratch programming language and 
environment, three key dimensions involve (a) computational concepts commonly found in programming 
languages, (b) computational practices referred to as the process of building a solution with the concepts, and (c) 
computational perspectives as the understandings of relationships with oneself, others, and the world. Each 
dimension includes different subcomponents, such as seven concepts (i.e., sequences, loops, events, parallelism, 
conditionals, operators, and data); four practices (i.e., being incremental and iterating testing and debugging, 
reusing and remixing, abstracting and modularizing); and three perspectives (i.e., expressing, connecting, and 
questioning). 

3.2 Computational Concepts and Practices 

Among the three dimensions, this study focused on computational concepts and practices and excluded 



International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3  
ISSN 2513-8359 

 

 4 

perspectives due to the constraints on capturing changes in participants’ perspectives over a short time period. 
Table 1 provides a summary of the definitions of CT components targeted in the study. 
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Table 1. Definitions of CT target components  
Dimensions Definitions 

Computational 
Concepts 

Sequences: Executing a series of individual steps or instructions for an activity or task 
Loops: Repeating the same sequence multiple times 
Events: Triggering specific actions to happen 
Parallelism: Performing a sequence of actions in parallel 
Conditionals: Making a decision based on certain conditions 
Operators: Expressing mathematical, logical, and string operations 
Data: Storing, retrieving, and updating values in variables and lists 

Computational 
Practices 

Being incremental and iterative: Developing solutions step by step 
Testing and debugging: Finding strategies for solving problems 
Reuse and remix: Building new solutions on existing works or ideas 
Abstraction and modularity: Modeling complex systems with simple elements 

Note. Adapted from Brennan and Resnick’s framework (2012). 

4. Methods 

4.1 Participant Characteristics 

A total of 92 undergraduate students who were enrolled in an online course, Computing and Information 
Technology, at a large public university in the southwestern United States participated in this study. Participants 
were studying with varied majors, were of various ages and included both males and females (male: 59, female: 
33; age range: 19-49; average age = 25.21; SD = 11.32). The students learned a set of core knowledge and skills 
that shape the landscape of computer science, represent information digitally, and create block-based programs to 
solve problems. This study was approved by the University Institutional Review Board. 

4.2 Research Setting 

The course was delivered completely online via a web-based learning management system. The course aimed to 
deliver a set of core competencies that shape the background of computer science and essential career readiness 
skills such as critical thinking, problem-solving, and communication. The learning modules were designed to 
provide students with programming experiences using the Scratch block-based programming language. Scratch 
programming is intended to be adopted in an introductory CS/CT course for people of all ages and across 
disciplines (Resnick et al., 2009), and it offers editors both online and offline to make it easy for learners to create 
and share programming projects. Out of 15 online learning modules, a total of eight modules were related to 
Scratch programming projects aligned with learning objectives. In each module, programming activities related to 
computational concepts were provided along with clear instructions and requirements to to clarify the learning 
process and expectations. Student performance was assessed regularly to ensure students achieved the intended 
learning outcomes. The programming quizzes and assignments were graded with evaluation criteria, and 
constructive feedback was provided to foster active participation in the learning process. The research data was 
collected in the last programming project where learners demonstrated their problem-solving skills through block-
based programming. The programming tasks were to complete predesigned and semifinished Scratch 
programming projects with a set of requirements, but the final project was to program a game with Scratch by 
applying the CT concepts and skills learned in the previous module. 

4.3 Instruments 

The computational concepts and practices were assessed by (a) a computational thinking test (CTt; Roman-
Gonzalez, 2015) and (b) coding journals. All 92 participants completed the CTt and coding journals. The CTt scale 
(α = 0.79) had significant correlations with other standardized tests on problem-solving skills, and its validity was 
confirmed for block-based programming learners. The CTt scale includes 28 multiple-choice questions to measure 
the understanding level of computational concepts (i.e., basic direction and sequences, loops-repeat time, loops-
repeat until, if-simple conditional, if/else-complex conditional, while conditional, and simple function). The CTt 
was initially designed and has been used for research targeting secondary school students (e.g., Bati, 2018; Chan 
et al., 2021; Guggemos, 2021; Román -González et al., 2017, 2018, 2019; Wiebe et al., 2019) and a few studies 
have been conducted for undergraduate students (e.g., Cachero et al., 2020; Guggemos et al., 2019; Kousis, 2019). 
Also, the CTt aims to measure the developmental level of computational problem-solving (Román-González et 
al., 2017). As the target population was novices on the subject of computer science, we adapted this scale for the 
study to measure the core computational concepts according to the developmental level of beginner rather than the 
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age level, which may allow further insights. Six of the 11 CT components were covered by the CTt (see Table 2). 
Since five of the 11 CT components were covered by the CTt, the remaining components were measured through 
the coding journal.  

The coding journal questionnaire for Scratch programming project assignments was developed by the researchers. 
Open-ended questions are used in CT-related studies to provide insight into the participants’ understanding of 
computational practices (Cetin, 2016; Ozoran et al., 2012). Participants were asked to share their programming 
experiences with reflective writing in response to four open-ended questions as they performed programming tasks 
using Scratch: (a) overall programming process or steps to create your program, (b) what worked well during 
programming, (c) what issues you faced during programming, and (d) what needs to be improved in the next 
programming project. The coding journal questionnaires were designed to lead the students to validate and 
embellish on the findings from the CTt responses, which were also helpful in finding what interventions could 
help improve their learning experiences on computational concepts. Table 2 presents a summary of the 
measurements deployed to measure computational thinking components. 

Table 2. A summary of CT components and corresponding instruments 

Dimensions Components CTt Coding Journal 
Computational Concept  Sequences 

Loops 
Events 
Parallelism 
Conditional 
Operators 
Data 

O 
O 
O 
X 
O 
O 
X 

O 
O 
O 
O 
O 
O 
O 

Computational Practice Being incremental and iterative 
Testing and debugging 
Reuse and remixing 
Abstraction and modularity 

X 
X 
X 
X 

O 
O 
O 
O 

Note. Symbol “O” indicates measured; “X” indicates unmeasured. 

4.4 Data Collection and Analysis  

After completing all computational concept-related activities, an online form of CTt was linked in a module. 
Participants received an extra point for voluntary participation in the test. Their answers to the CTt items were 
stored in the database and statistically analyzed. Afterward, we conducted descriptive and repeated measures 
analysis of variance (ANOVA) analyses for the CTt scores to determine the changes in scores. 

In each module, participants used Scratch to perform programming tasks. Their experiences were gathered from 
the coding journals for the assignment where all computational concepts and practices needed to be applied. A 
total of 92 coding journals were analyzed by thematic analysis. The authors organized the data and then coded the 
Scratch coding journals following the three-step guidelines from Miles and Huberman (1994) for deductive 
thematic analysis: (a) data reduction, (b) data display, and (c) data drawing and conclusion. The qualitative data 
was coded for the frequencies of different types of CT components and then recoded using iteratively refined codes 
by two of the researchers with high levels of interrater secured. Their responses were reexamined and categorized 
into seven computational concepts and four computational practices based on Brennan and Resnick’s framework. 
Finally, tables were created based on the four categories aligned with the journal questions: (a) process, (b) success, 
(c) challenge, and (d) improvement (see Tables 4–6). 

5. Results 

5.1 CTt Analysis Results (RQ1: Which computational thinking concepts are difficult for undergraduate students?) 

For the first research question, CTt scores showed that the participants’ understanding of each CT concept differed 
considerably. Table 3 shows a summary of the CTt mean scores, of which each subscale ranges from 1 to 4. As 
shown in Table 3, while “basic direction and sequences” among the seven computational concepts had the highest 
mean score of 3.29 out of 4 (M = 3.29, SD =1.0); “while conditional” had the lowest mean score of 1.49 (M = 
1.49, SD =1.02); followed by “if-simple conditional” (M = 1.75, SD = 1.10); “if/else complex conditional” (M = 
2.03, SD = 1.31); “simple function” (M = 2.18, SD = 1.29); “loops-repeat until” (M = 2.68, SD = 1.05); and “loops-
repeat time” (M = 3.17, SD = .98). As demonstrated in Table 3, the values of the two computational concepts, 
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“while conditional” and “if conditional,” was relatively lower than those of the other concepts. Also, a one-way 
repeated measures ANOVA was computed to evaluate if there was any change in participants’ CT sub-concept 
scores when measured in the seven computational concepts. The results of the ANOVA indicated a significant 
effect for the CT concept (Wilks’ Lambda = .23, F (6,86) = 47.07, p < .01, η² = .77). Also, there was significant 
evidence that the mean score of each concept was different. Pairwise comparisons indicated that each pairwise 
difference in scores was significant, p < .05, suggesting that participation in the subscale decreased participants’ 
mean scores of CTt subscales. That is, the average score tended to decrease gradually as the difficulty of the CT 
concept increased. However, there was no statistically significant difference in mean test scores between “simple 
function” and “if/else complex conditional” (p = 0.87). 

Table 3. A summary of descriptive analysis results (RQ1)  

CTt Concepts  Mean SD 
Basic direction & sequences  3.29 1.15 
Loops-repeat time 3.17 .98 
Loops-repeat until 2.68 1.05 
Simple function 2.18 1.29 
If/else complex conditional  2.03 1.31 
If-simple conditional 1.75 1.10 
While conditional  1.49 1.20 

5.2 Coding Journal Analysis Results (RQ1 & RQ2: Which computational thinking concepts and practices are 
difficult for undergraduate students?) 

The results of the content analyses from the student coding journals showed the computational concepts and 
practices areas where participants had difficulties as they programmed with Scratch. The responses to the open-
ended questions of the coding journals (i.e., overall process, success, challenge, and improvement) produced a 
more diverse set of answers. After thoroughly validating the data analysis, a list of difficult computational concept 
and practice areas for beginners to learn block-based programming online was identified. As shown in Table 4, the 
most common responses to the open-ended question regarding issues faced during programming were the use of 
“conditionals” (e.g., if/else and nested conditionals) and “data” (e.g., variables and lists). When asked what needed 
to be improved in the next programming project, students described the uses of “if/else conditional,” “data,” and 
“operators” (e.g., numeric, logical, and string manipulation) when it comes to computational concepts. In contrast, 
the concepts considered successfully learned were “sequences,” “loops,” and “events.” In terms of “parallelism,” 
in the early simple programming, the codes were parallelized as intended, but as the number of sprites and the 
complexity of the programs increased, the parallelism tended to become more challenging. Table 4 summarizes 
the content analysis results for computational concepts. The responses to the first question in the coding journal, 
overall programming process, were categorized as codes for computational practices. 

Table 4. A summary of the content analysis results related to computational concepts (RQ1) 
 

Concepts  Frequencies Quotes 

Success 
(N=150) 

Sequences 46%  “Programming the correct sequences was easy.” 

Events 32% “What worked well was getting the character to move, look, 
sound, and event.” 

 Loops 22%  “Repeat background sound and pauses worked very well.” 

Challenge 
(N=182) 

Data 37%  “Creating a new variable and list caused me to re-write the 
code several times.” 

 Conditionals 33%  “I am facing a lot of simple mistakes when I initially use 
control blocks such as if/else and repeat until.” 

 Parallelism 30%  “I struggled to know how to run simultaneously with the 
multiple movements.” 
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Improvement 
(N=110) 

Conditionals 41% “I would like for my next programming project to flow better 
with no issues.” 

 Data 36%  “The only difficulty that I faced during the process was that 
it was hard for me to place the correct variable in order to 
keep the correct commands consistent.” 

 Operators 23%  “I want to be more comfortable with the operators and I think 
continuing to explore more operators and use more in depth.”  

Note. Values in percent indicate relative frequencies.  

In addition, concerning the computational practice in programming, a summary of the content analysis results is 
presented in Table 5. First, as a result of analyzing the responses to the overall process for the programming project, 
participants described the process as incremental and iterative by approaching and developing a solution in small 
steps. Second, although participants perceived that they were doing best in “reusing and remixing” (i.e., building 
on their own or others’ work), “testing and debugging” (i.e., trial and error, fixing an error) was reflected as the 
most difficult computational practice element even after they had attempted a number of trials and errors. For 
instance, participants most often expressed, “I cannot see where I’m making a mistake to fix it,” or “I know the 
problem, but I don’t know how to solve it,” or “I spent a lot of time and effort trying to solve the problem, but I 
can’t solve it.” Last, “abstracting and modularity” was the most frequent response as computational practice when 
participants were asked what they wanted to improve for the next Scratch project. Participants wanted to find more 
ways to efficiently abstract solutions by analyzing problem patterns to solve problems. They also wanted to 
improve in converting their solutions efficiently. Table 5 presents example quotes from the coding journal 
regarding computational practices.  

Table 5. A summary of the content analysis results related to computational practices (RQ2) 

 Practices  Frequencies Quotes 

Process 
(N=131) 

Being incremental & iterating 

Remixing & reusing 

Testing & debugging 

Abstracting & modularizing 

61% 

25% 

9% 

5%  

“The process I used to create my program was 
to first read through the blackboard 
instructions and understand the steps to create. 
After this, I began to create the project by 
developing a project in small steps.” 

Success 
(N=103) 

Remixing & reusing  

Being incremental & iterating 

Testing & debugging 

 

65%  

26% 

9% 

“What worked well during programming was 
remixing. I looked at our starter and example 
projects several times as well as looked at 
other students that have created Scratch 
projects similar.” 

Challenge 
(N=74) 

Testing & debugging  

Abstracting & modularizing 

72% 

28% 

“I attempted multiple different methods to 
complete this task but for some reason I was 
not able to successfully execute.” 

Improvement 
(N=114) 

Abstracting & modularizing  

Testing & debugging  

 

65% 

35% 

  

“The most used block was the if blocks. A new 
block that became very helpful for me were 
the created blocks. It saved a lot of room and 
time when building collections of codes.” 

Note. Values in percent indicate relative frequencies.  

6. Discussion and Implications 

This study aimed to identify the computational concept and practice components that learners may have difficulties 
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learning with online programming, to lay the groundwork for an effective teaching approach. Along with Brenan 
and Resnick’s dimensional framework (2012), the CTt scale provided meaningful results for the understanding of 
computational concepts. Through the coding journal analysis, information on achievements in computational 
concepts and practices were obtained. In particular, the differences in learning were revealed in some concepts and 
practices of computational thinking. The results from the two data analyses showed that the relatively easy CT 
concepts were “sequences,” “loops,” and “events,” and relatively easy CT practices were “being incremental and 
iterating” and “reusing and remixing.” Conversely, four concepts (i.e., parallelism, conditionals, data, and 
operators) and two practices (i.e., testing and debugging and abstracting and modularizing) were identified as 
difficult CT components to achieve in block-based programming. In particular, the problems of using “conditionals” 
were consistent with the results of the coding journal analysis in that all of the CTt scores on the “conditionals” 
(i.e., if-simple conditional, if/else complex conditional, and while conditional) were low.  

Findings suggest that educators should pay more attention to the levels of learning difficulty of the computational 
concepts—“parallelism” (e.g., complex sets of activities in parallel); “conditionals” (e.g., if-simple conditional, 
and if/else complex conditional, and while conditional); “data” (e.g., variables and lists); and “operators” (e.g., 
numeric and string manipulation). Also, to facilitate the process of CT development in practice, instructions should 
incorporate the elements of computational practices (e.g., testing and debugging and abstracting and modularizing). 
Instructional approaches can be suitable for the difficulty level of the computational concepts and practices. The 
following instructional approaches can be considered. 

Table 6. A summary of the key findings  

 CT Concepts from CTt and Coding Journals CT Practice from Coding Journals 

Process N/A #1 Being incremental and iterative 

#2 Remixing & reusing 

Success #1 Sequences  

#2 Events 

#3 Loops 

#1 Remixing & reusing 

#2 Being incremental and iterative 

Challenge #1 Data 

#2 Conditional  

#3 Parallelism 

#1 Testing and debugging 

#2 Abstracting & modularizing 

Improvement #1 Conditional 

#2 Data 

#3 Operators 

#1 Abstraction and modularity 

#2 Testing and debugging 

 

First, participants had difficulty as the complexity of concepts increased. Since the biggest limitation of CT 
instruction is that CT is difficult to teach due to its abstract concepts (e.g., parallelism, conditionals, data, and 
operators), unplugged activities can help novice learners gain a deeper conceptual understanding of abstract 
computation concepts and develop an algorithmic solution on paper. For example, storyboard, decomposition sheet, 
flowchart, pseudo code, and/or journal entry can aid in understanding challenging computational concepts (e.g., 
Looi et al., 2018). These unplugged activities are suitable for novice programming learners to build difficult 
computational concepts and develop difficult computational practices gradually. Unplugged activities build student 
insight into the meaning of blocks, rather than copying a set of blocks and running it (e.g., Brackmann et al., 2017; 
Caeli & Yadav, 2020).  

Second, explicit instruction can address challenges learners face when learning difficult computational concepts 
and practices. For example, direct instruction is a way to teach concepts and skills to novice students using direct 
and structured instruction that explains, demonstrates, and models what learners do. In particular, direct instruction 
is effective when background knowledge is low and the task is complex (Kroesbergen et al., 2004, Rupley et al., 
2009). When complex computational concepts and practices are broken down into adaptable chunks, instructors 
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can evaluate students’ understanding more precisely by teaching codes one line at a time. Students can practice the 
skills to increase their understanding of concepts by observing and experimenting with the assistance of the teacher. 
After guided practice, students need to apply it independently in their use of the concept and skills.  

Third, CT instructions should be differentiated for high- and low-achieving students when teaching complex 
concepts and practices. High-achieving learners are likely to have more prior knowledge and existing schemas for 
constructing new information. Low-achieving learners need support, repetition, and motivating activities, such as 
constructive feedback and gamification including choice, rewards, experience points, and level up (e.g., Standford 
et al., 2010). Besides, the scope and sequence of CT instruction should be presented depending on the difficulty 
level of domains and tasks (e.g., Tomlinson, 2012). Learners’ knowledge background and proficiency should be 
considered in designing CT instructions with technology. Even non-CS college students need help to understand 
complex concepts in order to solve computational problems. 

Fourth, novice learners should have opportunities to learn how to build computational practices. A complete 
understanding of computational concepts does not mean that computational practice can be acquired naturally. 
Since computational problem-solving requires an incremental and iterative process, novices need to learn relevant 
strategies (e.g., planning multiple phases of development, dividing functions or processes in a program). 
Debugging usually starts by looking into what should happen, but beginners may have a hard time locating the 
problem (McCauley et al., 2008). Debugging strategies (e.g., checking invalid values/operations, order of codes, 
time between blocks) help beginners troubleshoot the problems. Also, they should be encouraged to accept failures 
as part of their learning process and understand that such experiences help them find the right solution. As shown 
in Table 5, for students who have tried several different attempts to solve a problem but cannot successfully execute, 
debugging strategies and tips as a scaffolding should be in place in case they give up without solving the problem. 
Moreover, as novices advance their computational practices, the CT instructions should include exercises on 
abstraction and modularization strategies (e.g., simplifying a program, dividing code blocks).  

Last, learners should be encouraged to reflect on and share their CT learning experiences with other classmates. 
Collaboration was incredibly beneficial, particularly to students with minimal programming experience (Denner 
et al., 2014). In activities related to reuse and remixing (see Table 5), students responded that they benefited from 
seeing other students’ coding blocks or ideas when developing a solution. Collaborative experiences include 
brainstorming solutions, planning the uses of code blocks, developing algorithms, and fixing errors in pairs. The 
collaborative learning experience is advantageous not just for developing programming knowledge, but for 
building other skills critical to solving problems, especially considering that first programming experiences are 
not offered equally to all.  

7. Conclusion 

As CS/CT education has gained growing recognition in many disciplines, it is necessary to carefully prepare for 
its integration to make the leap from block-based programming to problem-solving. However, educators were 
neither confident in the subject matter nor differentiated it sufficiently for a mixed-ability group (Sentence & 
Csizmadia, 2015). The evidence from this study confirmed what computational concepts and practices novice 
learners might struggle with. We discussed how instructions need to be shaped to assist novices in improving CT 
learning in an online environment. The findings of this study underlined that CT-related learning activities should 
offer additional instructional support to enhance the understanding of challenging computational concepts and 
practices. It is hoped that educators will close instructional gaps in what their students struggle with to construct 
difficult computational concepts and fully practice new solutions with what they already know. Further studies are 
needed to investigate the effects of instructional approaches to these identified CT components. 

Limitations 

The empirical results reported herein should be treated with caution. First, the study is limited in that the 
programming task did not require a design-based activity and did not ask for differences in perceptions of CT 
perspectives. Future studies, therefore, should focus on deepening our understanding of how CT learning processes 
occur in creative programming tasks and how the computational perspective helps teachers and learners understand 
themselves and their communities. Second, the CTt scale used in this study was found to partially measure the 
components of Brennan and Resnick’s CT concept and practices. That is, the CTt did not contain or fit some 
computational concepts (e.g., parallelism, data, and operator) and computational practices (e.g, being incremental 
and iterating, reusing and remixing, abstracting and modularizing). Further research is needed to include these sub-
components on the scale. Third, to be more valid with a different population and other settings, the study may need 
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to be repeated to support the results. 
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