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Abstract 

The main goal of the current study is to develop a reliable instrument to measure programming anxiety in 
university students. A pool of 33 items based on extensive literature review and experts' opinions were created by 
researchers. The draft scale comprised three factors applied to 392 university students from two different 
universities in Turkey for exploratory factor analysis. The number and character of the underlying components in 
the scale were determined using exploratory factor analysis. After exploratory factor analysis, confirmatory 
factor analysis was conducted on the draft scale using a sample of 295 university students. Confirmatory factor 
analysis was carried out to ensure that the data fit the retrieved factor structure. The internal consistency 
coefficient (Cronbach's alpha) was calculated for the full scale and each dimension for reliability analysis. For 
convergent validity, the factor loading of the indicator, the average variance extracted, composite reliability, and 
maximum share variance values were calculated. Additionally, convergent validity was tested through (1) 
comparison of mean values of factors and total programming anxiety depending on gender and (2) correlation 
analysis of factors, total programming anxiety, and course grade of students. The Fornell & Larcker criterion and 
the Heterotrait-Monotrait correlation ratio were utilized to assess discriminant validity. According to analysis 
results, the Programing Anxiety Scale (PAS) comprised 11 items in two factors: classmates and self-confidence. 
Similarly, results revealed that The PAS has good psychometric properties and can be used to assess the 
programming anxiety of university students. 

Keywords: computer programming, programming anxiety, scale development, scale validation 

1. Introduction 

With the development of the internet and mobile technologies in the last two decades, breakthroughs have been 
experienced in many fields of computer science such as big data, artificial intelligence, blockchain, 
bioinformatics, wearable technologies, cloud computing, 3D printers, robotics, and virtual reality. 
Responsibilities of computer science such as automating the processes, facilitating communication, providing 
better products and services, assisting the world to be more productive have caused human beings to be more 
dependent on software (Santos, Tedesco, Borba, & Brito, 2020). As a result, all developed and developing 
countries are required to raise qualified individuals who can maintain the software used and produce practical 
solutions to new problems encountered in the future (Demirer & Sak, 2016). One of the conditions for the 
success of this task is to provide students with programming skills, which is considered one of the requirements 
of being a well-educated and knowledgeable citizen (Al-Makhzoomy, 2018; Kert & Uğraş, 2009). However, 
according to several studies, most computer science students regard programming courses as complicated and 
intimidating (Bennedsen & Caspersen, 2007; Connolly, Murphy, & Moore, 2009; Jenkins, 2002; Owolabi, 
Olanipekun, & Iwerima, 2014; Robins, Rountree, & Rountree, 2003; Wiedenbeck, Labelle, & Kain, 2004). 
Moreover, studies show that programming courses have high dropout and failure rates (Bennedsen & Caspersen, 
2007; Luxton-Reilly et al., 2019). 
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Over the last decade, numerous research has been undertaken on the factors affecting learner success in 
programming courses. Previous studies indicate that programming background (Bunderson & Christensen, 1995; 
Byrne & Lyons, 2001), mathematical knowledge (Butcher & Muth, 1985; Wilson & Shrock, 2001), 
problem-solving skills (Gibbs, 2000; Hostetler, 1983), learning styles (Byrne & Lyons, 2001; Tan, Ting, & Ling, 
2009), expectations of students for course outcome (Rountree, Rountree, & Robins 2002), comfort level (Bergin 
& Reilly, 2005) and self-efficacy (Ramalingam & Wiedenbeck, 1998) impact achievement of students in 
programming courses. Similarly, programming anxiety is also a significant predictor of achievement in 
programming (Connolly et al., 2009; Maguire, Maguire, & Kelly, 2017).  

1.1 Related Work 

Connolly, Murphy, and Moore (2007) define programming anxiety as a situation-specific psychological state 
caused by negative experiences or expectations in a computer programming situation. Connolly et al. (2007) also 
claim that programming anxiety is caused by the incorrect self-assessment of students' abilities when learning to 
program. According to Scott (2015), students often encounter programming anxiety at the initial stages of 
programming courses because programming courses involve concepts and materials that are "radically novel" 
(Dijkstra, 1989). Moreover, as beginning programming courses have become more abstract over the last few 
decades, programming anxiety has increased (Connolly et al., 2009). This particular content can evoke intense 
negative feelings (Huggard, 2004) such as confusion, frustration, and boredom (Bosch, D'Mello, and Mills, 2013) 
which is described as a phenomenon called "programming trauma" (Huggard, 2004).  

Since learners' self-belief plays a fundamental role in intellectual development (Berland & Lee, 2011; Pajares, 
1992), Jiang, Zhao, Wang, and Hu (2020) believe that this trauma happens when students lose their self-efficacy 
in programming, which negatively affects learning outcomes. Connolly et al. (2007) propose a cognitive model 
to explain how programming anxiety influences students' emotional, behavioral and physiological reactions (see 
Figure 1). The mental model asserts that students' automatic thoughts are activated in programming situations, 
directly influenced by their core and intermediate beliefs. Eventually, automatic thoughts affect their emotional, 
behavioral, and physiological reactions. According to Connolly et al. (2007), a fear of programming may 
commence caused by core beliefs for a student sensitive to programming anxiety. Then, intermediate thoughts of 
students could emerge as a fear of what other students might think about their performance and ability. Finally, 
automatic thoughts arise in programming situations and trigger negative thoughts and reactions.  

In addition to the cognitive model for programming anxiety, Rogerson and Scott (2010) also depict an iceberg 
model to explain factors affecting fear of programming. According to the iceberg model, the fear of 
programming is induced due to the nature of programming. Rogerson and Scott (2010) cite those internal factors 
such as motivation, attitude, self-efficacy, and attribution often have a part in building negative perceptions of 
programming. At the same time, peers, teaching methodology, timing, lectures, and tutors constitute external 
factors. 

 

Figure 1. Proposed Cognitive Model for Programming Anxiety (Connolly et al., 2007) 
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The number of studies on programming anxiety has risen dramatically in the last decade. Some of these studies 
examined factors associated with programming anxiety, while others investigated the impact of programming 
anxiety on student performance and motivation. According to S Sinožić and Orehovaki (2018), the absence of 
programming experience, fear of programming, and a misperception of programming languages as very complex 
are all powerful determinants of programming anxiety among novices. Similarly, unfamiliar subjects in 
programming courses make students avoid programming, and programming makes them feel uncomfortable 
(Olipas, Leona, Villegas, Cunanan & Javate, 2021). According to studies, learners' programming anxiety levels 
aggregated as they were presented to programming concepts and principles. (Campbell, 2018; Dasuki & Quaye, 
2016).  

Several studies have also connected programming anxiety to academic performance, perceived self-efficacy, 
encountering errors when developing programs, gender, peers, test anxiety, mathematics, and computer anxiety. 
For example, Olipas et al. (2021) found a negative association between participants' academic performance and 
programming anxiety in a study of 348 students. Hsu and Gainsburg (2021) and Wilfong (2006) explain that 
self-efficacy plays a vital role in performance in programming courses, and self-efficacy has a mediating effect 
on the relationship between anxiety and performance. Results of a systematic review of the literature conducted 
by Nolan and Bergin (2016) illustrate correlates of programming anxiety as programming as a subject, test 
anxiety, computer anxiety (volume of computer usage), and using mathematics frequently in coding. Additionally, 
the students' incapacity to debug their programs increase their programming anxiety (Dasuki & Quaye, 2016; 
Nolan & Bergin, 2016).  

Some researchers mention the effects of peers on programming anxiety. According to Nolan and Bergin (2016), 
when programming students learn to program in a laboratory with many peers, this circumstance can be stressful. 
Falkner, Falkner, and Vivian (2013) explored how collaborative practices in programming courses can cause fear 
and tension in learners. They concluded that working in groups prevented students from feeling comfortable in 
classes. There are also studies in the programming literature on the effects of gender on programming anxiety. 
According to Olipas and Luciano's (2020) study, female students show more programming anxiety than male 
students. Chang (2005) also explored a possible association between the perceived complexity of programming 
tasks and programming anxiety with 307 participants. According to the findings, there was a strong association 
between these two variables, indicating that as the perceived complexity of programming assignments increased, 
so did students' perceived programming anxiety levels. 

Many studies in the literature state that programming anxiety is one of the factors that cause students to fail and 
lose interest in programming courses. It is reported that programming anxiety is critical in determining students' 
success in a programming course (Connolly et al., 2007; Figueroa & Amoloza, 2015; Kinnunen & Malmi, 2006; 
Nolan, Bergin & Mooney, 2019; Owolabi et al., 2014; Scott, 2015). With self-beliefs being the case, Kinnunen 
and Simon (2012) assert that learners' self-beliefs are developed due to the experiences students have while they 
engage in programming activities rather than the resulting quality of the programs they write. As a consequence 
of negative experiences and self-appraisals, learners lack the time or have no motivation to program (Kinnunen 
& Malmi, 2006; Scott, 2015). Similarly, Maguire et al. (2017) assert that programming anxiety causes a lack of 
confidence and plays a crucial role in discouraging students from carrying out programming independently. 
Results of the study of Özmen and Altun (2014) show that while students with a low level of programming 
anxiety spend extra time on programming and code more qualified programs, students with a high level of 
anxiety devote limited time on programming practices and avoid learning programming. Similar results have 
been cited by Scott (2015), concluding that programming anxiety inhibits time spent practicing programming 
and decreases course participation (Bergin & Reilly, 2005). Scott and Ghinea (2014) investigated the possible 
adverse effects of programming anxiety on students' programming practice. Participants of the study were 239 
university students. The findings revealed that students are frequently concerned when undertaking debugging 
activities.  

In the light of all these studies in the literature, it is essential to measure the programming anxiety levels of 
students with reliable and valid instruments to determine students' anxiety levels and help learners overcome 
their anxiety and frustration in programming courses. However, despite anxiety's critical role in programming, 
research on anxiety scale development has been deficient. Information about these measurement instruments is 
summarized in Table 1. 
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Table 1. A Summary of the Relevant Scales 

Name of the Scale/Survey Factors 
The Total 

Number of Items 
Programming Anxiety Survey  
(Figueroa & Amoloza, 2015) 

- Not Applicable 6 

The Computer Programming Anxiety 
Questionnaire (Connolly et al., 2009) 

- Gaining Initial Computing Skills 
- Sense of Control 
- Computer Self Concept 
- State of Anxiety in Computer Situations 

15 

The Computer Programming Anxiety Scale  
(Choo & Cheung, 1991) 

- Errors 
- Significant Others 
- Confidence 

19 

 

As presented in Table 1, three scales are prepared to measure primarily programming anxiety. All of the scales 
are based on self-reported data. In addition to these scales, it was noted that computer anxiety or information 
technology (IT) anxiety scales were adapted for measuring programming anxiety in several studies (see Olipas & 
Luciano, 2020; Scott & Ghinea, 2014, and Orehovacki, Radosevic & Konecki, 2012). Furhermore, Demir (2021) 
recently adapted Choo and Cheung's (1991) programming anxiety scale into Turkish.  

1.2 Purpose of the Study 

Studies show that reducing anxiety can enhance academic performance and achievement (Hattie, 2008). The 
same is true when it comes to improving the efficiency of programming courses. It is vital to identify learners' 
programming anxiety and work closely with students with high anxiety to develop the learning outcomes of 
programming courses at the highest level. In this sense, there is a need for reliable measurement tools designed 
to measure programming anxiety to make meaningful conclusions from the analysis. As a result, the current 
research aims to create a proper and reliable tool to measure programming anxiety in university students. 

2. Method 

The Computer Programming Anxiety Scale was developed and validated in three phases, illustrated in Figure 2. 
In summary, dimensions of the draft scale were identified, and the item pool was generated in the first phase. In 
the second phase, content and phase validity were assessed. In the last stage, exploratory and confirmatory factor 
analysis was conducted, and construct validity was evaluated.  

2.1 Phase 1: Identifying dimensions & item generation 

Clark and Watson (1995) recommend beginning scale development by clearly conceptualizing the target 
construct and clarifying its breadth and scope. The researchers conducted a comprehensive literature review and 
content analysis to identify different dimensions of programming anxiety. With this respect, models and 
explanations related to programming anxiety were examined to develop a clear conceptualization. Furthermore, 
related constructs including computer anxiety, math anxiety, and test anxiety were investigated. The Computer 
Programming Anxiety Scale (Choo & Cheung, 1991) was used to identify programming anxiety dimensions. At 
the same time, scales developed to measure students' anxiety, such as programming anxiety, computer anxiety, 
test anxiety, math anxiety, and foreign language learning anxiety, were investigated. Depending on the studies on 
programming anxiety, three dimensions were proposed: (1) classmates, (2) self-confidence, and (3) errors. The 
"Classmates" subscale measures students' anxiety in the presence of more proficient students. The "Programming 
confidence" subscale measures students' feelings of inadequacy while programming. "Errors" subscale measures 
students' anxiety when confronted with errors during programming.  

Next, a pool of 33 items was constructed to capture negative emotions during program development and 
debugging. The rationale underpinning including as many items as possible in the draft scale was that the 
number of items at the start should be twice as numerous as the final scale (Nunnally, 1994). To obtain precise 
and unambiguous items that reflect the specified conceptual definitions, item wording rules suggested by 



International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3  
ISSN 2513-8359 

 

 5 

Carpenter (2018) were applied. This cyclical item development procedure yielded a total of 33 items, each rated 
on a 5-point scale from 1 ("never true") to 5 ("always true"). In this regard, "seldom true" was scored as 2, 
"sometimes true" was 3, and "often true" was 4. 

2.2 Phase 2: Development of the scale 

2.2.1 Content validity 

Content validity of the draft scale was tested by interviewing five experts, three of whom were from the field of 
instructional technology, one from the field of Turkish language, and one from the field of psychological 
counseling and guidance. An expert opinion form was created in this phase. The experts were requested to rate 
each scale item using this form on a four-point rating scale (1 = not relevant; 2 = item requires so much revision 
that it is no longer relevant; 3 = item is suitable but needs minor changes; 4 = highly relevant). Data gathered 
from the expert opinion was used to quantify the content validity process and calculate Content Validity Index 
(I-CVI; Polit, Beck, & Owen, 2007). The I-CVI was calculated by dividing the experts who provided a 3 or 4 by 
the total number of experts for each item (Lynn, 1986). Nine items with an I-CVI-score of less than one were 
excluded from the draft scale using Lynn's (1986) criteria. In addition, based on the experts' recommendations, 
two of the retained items were revised to simplify the language. This operation yielded 24 items in the final pool 
(classmates: 8 items; self-confidence: 9 items; errors: 7 items). Table 2 depicts the item pool on the draft scale. 

2.2.2 Face validity 

The questionnaire's face validity was assessed quantitatively. To evaluate the qualitative face validity, nine 
college students enrolled in a programming course were interviewed face to face and participants rated the items 
based on clarity and relevancy. Despite some minor errors, all of the interviewees concurred on the clarity and 
comprehensibility of all of the items. 

2.2.3 Translation of the Scale 

The Programming Anxiety Scale items were created and written in Turkish at first. The data were collected 
utilizing this original scale. The translation of the original scale to English was carried out after the data 
collection process. A mixed translation strategy utilizing the back-translation method and the committee 
approach that was distinct from Jones, Lee, Phillips, Zhang & Jaceldo (2001) was used in the translation process. 
The researchers initially translated each item in the original version into English. Next, three Turkish/English 
bilingual professors thoroughly inspected each translated item. With the help of the multilingual teacher group, 
any necessary modifications to problematic items were performed. The bilingual experts agreed on the translated 
and original versions of the scale. 
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Figure 2. An overview of phases of the PAS development. (Adapted from Zarouali, Boerman & de Vreese, 2021) 
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Table 2. Item Pool of the Draft Scale 

Factor Items Code Item 

Classmates 

Item1 
I am concerned about not being able to stay calm like my 
classmates while coding a program. 

Item2 
I feel humiliated if a classmate easily debugs an error on which I 
worked so hard. 

Item3 
Believing that I cannot reach the level of my friends who have 
taken programming lessons before makes me anxious. 

Item4 
The presence of my classmates who have previously taken 
programming courses makes me nervous. 

Item5 
It makes me anxious when many of my classmates can write the 
code that I cannot write. 

Item6 
I get worried if my classmates comprehend a programming topic 
and I don't. 

Item7 
I feel tense when my friends talk about programming topics that I 
don't understand. 

Item8 
I am concerned about not being able to write a program and 
being ridiculed by my classmates. 

Self-confidence 

 Item9 I think I do not understand programming well. 

  Item10 
It makes me anxious to feel that I memorize programming topics 
instead of learning the logic. 

  Item11 
It makes me anxious to feel that I quickly forget what I have 
learned in programming lessons. 

  Item12 
I have doubts about creating the steps (algorithm) necessary for 
the solution while coding the program. 

  Item13 I have concerns about my programming abilities. 

  Item14 I feel confused when the program lines become complicated. 

  Item15 I don't trust myself in writing programs. 

  Item16 I get nervous when we talk about programming. 

  Item17 
It scares me that there are too many topics to learn in the 
programming lesson. 

Errors 

  Item18 I get worried when I can not understand error messages. 

  Item19 The number of errors in my program makes me worried. 

  Item20 I am worried about encountering errors in my programs. 

  Item21 I feel worried when my program fails to run. 

  Item22 Debugging programs is a major worry for me. 

  Item23 I get worried about debugging my software over and over again. 

  Item24 It makes me worried to think that my codes will have bugs. 
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2.3 Phase 3: Validation of the scale 

2.3.1 Sample 

The draft scale was validated primarily in two phases. Since using the same data set for exploratory factor 
analysis (EFA) and confirmatory factor analysis (CFA) is not generally accepted as the correct method in the 
literature (Fokkema & Greiff, 2017), data were collected from two distinct sample groups of university students 
(first and second sample). While the data from the first sample was used to investigate the scale's underlying 
factor structure in the EFA phase, the data from the second sample was used in the CFA phase to cross-validate 
the EFA results. All subjects were recruited using a convenience sampling method. 

The first sample comprised 392 university students (29 females, 363 males) taking programming courses at two 
different universities in Turkey. The female and male participants' mean age was 20.30 and 19.46 years, 
respectively. The first sample consists of students from the Department of Electronics Technology (82.4), 
Computer Education and Instructional Technology (CEIT) (10.2%), and Computer Technology (7.4). While 
81.89% (n=321) of the students were experienced in a programming, 18.11% (n=71) were novices. 

The second sample consisted of 295 college students recruited voluntarily from different programs (32 females, 
263 males). The female and male participants' mean age was 21.12 and 19.89 years, respectively. The second 
sample consists of students from the Department of Electronics Technology (69.04), CEIT (16.01%), and 
Computer Technology (14.95). While 76.61% (n=226) of the students were experienced, 23.39% (n=69) had no 
prior programming experience. Data from both samples were collected using Google Forms.  

2.3.2 Analytical Strategy 

The PAS was validated using Boateng, Neilands, Frongillo, Melgar-Quiñonez, & Young's (2018) scale 
development recommendations. The number and character of the underlying components in the scale were 
determined using EFA, which CFA followed to ensure that the data fit the retrieved factor structure. The 
construct validity was then examined after a reliability analysis. The Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy (KMO) and Bartlett's test were implemented to assess the adequacy of the study group (Tabachnick & 
Fidell, 2001). The tests showed that the data was suitable for EFA. In addition, considering Hair, Black, Babin, & 
Anderson's (2010) suggestions on the cutoff value for factor loadings and commonalities, these values were 
determined as .50 and .30, respectively. Items that loaded only one factor without any cross-loadings were kept. 
The research employed SPSS 22 software for EFA. For CFA, Maximum likelihood estimation was adopted to 
calculate the structure parameters using AMOS 22 software. 

The internal consistency coefficient (Cronbach's alpha) was calculated for the full scale and each dimension for 
reliability analysis. For convergent validity, the factor loading of the indicator, the average variance extracted 
(AVE), composite reliability (CR), and maximum share variance (MSV) values were calculated (Hair, Hult, 
Ringle, & Sarstedt, 2014). These calculations were conducted using Gaskin's (2016) AMOS MasterValidity 
Plugin. Furthermore, convergent validity was assessed through (1) comparison of mean values of factors and 
total programming anxiety depending on gender and (2) correlation analysis of factors, total programming 
anxiety, and course grade of students. The Fornell & Larcker criterion and the Heterotrait-Monotrait (HTMT) 
correlation ratio were utilized to examine discriminant validity (Ab Hamid, Sami & Sidek, 2017). HTMT was 
calculated using Excel 2016 software. Results of EFA, CFA, reliability, and validity analysis were presented in 
the manuscript's results section. 

3. Results 

3.1 Exploratory Factor Analysis 

The data's appropriateness for factor analysis was assessed before doing EFA. For this reason, Mahalanobis 
distance values for probable multivariate outliers were determined. Thirty-nine instances were eliminated from 
the analysis because their Mahalanobis values were above the necessary chi-square value of 54.05 (df = 26, 
alpha=.001) (Pallant, 2007). In addition, KMO was used to determine the adequacy of the sample size, and 
Bartlett's Test of Sphericity was used to determine whether the datum was suitable for factor analysis. The KMO 
sampling adequacy metric was .951, higher than the acceptable value of .60. Barlett's Test of Sphericity was also 
statistically significant (x2=3790.593, p=.000), demonstrating that the data was considerably factorable (Pallant, 
2007). 

In the first stage of EFA, principal axis factoring was employed for 24 items with direct oblimin rotation. The 
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direct oblimin rotation approach was chosen because of the associated factors (Costello & Osborne, 2005; 
Gorsuch, 1983). After the EFA process, the correlation matrix was investigated for multicollinearity issues. 
Correlations in the .80's or .90's (Field, 2018) were examined, and six items (Item18, Item19, Item20, Item21, 
Item23, and Item24) in the "errors" factor with a correlation coefficient greater than .8 were excluded from the 
scale. Next, EFA was conducted again for the remaining 18 items. Four items (Item2 and Item6 in classmates 
and Item13 and Item16 in self-confidence) with high factor loadings in multiple factors were excluded (Burns & 
Machin, 2009; Howard, 2016). EFA was executed with the remaining 14 items. Based on the cutoffs for the 
eigenvalues and inspection of the scree plot, a two-factor model was identified that explained 69.4% of the 
variance in programming anxiety. The two-factor model was confirmed by a parallel analysis with 5000 
randomly generated data matrices through Parallel Analysis Web Application (Patil, Surendra, Sanjay, & 
Donavan, 2017). These factors were labeled: (1) Classmates and (2) Self-Confidence. Table 3 includes the 
complete list of factor loadings. Internal consistency reliabilities (i.e., Cronbach's alpha coefficient) for the full 
scale and the subscales were .95, .90, and .94, respectively. 

 

Table 3. Factor Loadings of the PAS 

Items 
Code 

Item Classmates Self-Confidence 

Item1 I am concerned about not being able to stay calm like my 
classmates while coding a program. 

.633  

Item3 Believing that I cannot reach the level of my friends who have 
taken programming lessons before makes me anxious. 

.806  

Item4 The presence of my classmates who have previously taken 
programming courses makes me nervous. 

.918  

Item5 It makes me anxious when many of my classmates can write 
the code that I cannot write. 

.643  

Item7 I feel tense when my friends talk about programming topics 
that I don't understand. 

.634  

Item8 I am concerned about not being able to write a program and 
being ridiculed by my classmates. 

.877  

Item9 I think I do not understand programming well.  .818 
Item10 It makes me anxious to feel that I memorize programming 

topics instead of learning the logic. 
 .726 

Item11 It makes me anxious to feel that I quickly forget what I have 
learned in programming lessons. 

 .851 

Item12 I have doubts about creating the steps (algorithm) necessary for 
the solution while coding the program. 

 .844 

Item14 I feel confused when the program lines become complicated.  .909 
Item15 I don't trust myself in writing programs.  .780 
Item17 It scares me that there are too many topics to learn in the 

programming lesson. 
 .852 

Item22 Debugging programs is a major worry for me.  .822 

3.2 Confirmatory Factor Analysis 

The 14-item Programming Anxiety Scale's two-factor model was subjected to CFA using second sample data. 
Before the analysis, data were screened for missing values and outliers. With this respect, 13 respondents were 
detected unengaged in the scale evidence by getting the same response for every item. Thus, 14 cases were 
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deleted from the sample. Next, CFA was conducted with 282 samples using maximum likelihood estimation. 
After CFA, three items (i.e., Item1, Item9, and Item11) had standardized parameter estimates smaller than the 
recommended value of .50 (Hair et al., 2010). 
Furthermore, AVE values for factors below .50 were calculated, indicating the absence of convergent validity. 
After removing these three items, 11 item structure of the PAS was re-subjected to CFA. The diagram regarding 
the factor structure of programming anxiety with new item codes (See Appendix) and the parameter estimates 
was given in Figure 2.  

 
Figure 2. Standardized Coefficients for the Two-Factor Model of PAS 

According to Hu and Bentler (1999), researchers employ numerous goodness-of-fit metrics to analyze a model. 
In this study, the Chi-square goodness of fit test, Root Mean Square of Error of Approximation (RMSEA), 
Standardized Root Mean Square Residuals (SRMR), Goodness of Fit Index (GFI), Normative Fit Index (NFI), 
and Comparative Fit Index (CFI) were employed to assess model fit (Brown, 2006; Browne & Cudeck, 1993; 
Hair et al., 2010; Kline, 1998). Table 4 presents the fit statistics for the confirmative factor analysis. 

  
Table 4. Values of the Goodness-of-Fit Test for Programming Anxiety 

X2 X2/df p-value RMSEA SRMR GFI NFI CFI 
114.226* 2.79 .000 .071 0.032 .93 .93 .95 

  * p<0.01 

When Table 4 was analyzed, the chi-square value (X2 = 114.226, X2/ df = 2.79, p = .000) was found to be 
significant. RMSEA value of .071 indicate good adaptation (Brown, 2006; Browne & Cudeck, 1993). GFI, CFI, 
and NFI values greater than .90 indicate a good fit (Hair et al., 2010; Kline, 1998). The CFA results indicate that 
the structural model is a good fit. As shown in Fig. 2., each item loaded significantly on its particular dimension 
and was relatively large (.50 and above).  

3.3 Assessment of Reliability and Validity 

To assess convergent validity, standardized factor loadings, CR, and AVE were calculated (Hair et al., 2010). 
Cronbach alpha values for factors and the whole scale were calculated for reliability analysis (Taber, 2018). The 
condition that factor loading values greater than .5, Cronbach alpha values greater than .7, and AVE and CR 
values greater than .5 and .7 were taken into account (Taber, 2018; Hair et al., 2010). Table 5 illustrates that all 
constructs are reliable since they fulfill the above criteria. Furthermore, each construct's Cronbach's alpha 
exceeds the recommended value. The Cronbach's alpha value of the whole scale was calculated as .901, which 
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fulfilled the reliability criterion.   
   
Table 5. Evaluation of the Measurement Model 

Factors CR AVE MSV Cronbach Alpha 
Classmates .835 .506 .498 .843 

Self-Confidence .881 .554 .498 .882 
 
Furthermore, convergent validity was assessed through (1) comparison of mean values of factors and total 
programming anxiety depending on gender (Table 6) and (2) correlation analysis of factors, total programming 
anxiety, and course grade of students (Table 7). As shown in Table 6, female students had more programming 
anxiety than male respondents. Gender differences in programming anxiety were also investigated using a t-test. 
The test results showed that while there was no significant difference between male and female students in 
self-confidence factor (t = .767, p>.05), there was a significant difference in classmates factor (t =4.058, p=.000) 
and total programming anxiety (t = 2.518, p=.012). Correlation analysis results (Table 7) revealed that classmates 
(r=-.194) and self-confidence (r=-.315) factors, as well as total programming anxiety (r=-.284), were negatively 
associated with course grade, p<.01. All of these correlations were found as weak (Schober, Boer & Schwarte, 
2018; Senthilnathan, 2019).      

 
Table 6. Gender differences in programming anxiety 

Gender 
 Factors Total Programming 

Anxiety Classmates Self-Confidence 
 N M SD M SD M SD 

Female 30 16.00 4.69 16.87 4.75 32.87 8.45 
Male 252 11.96 5.19 15.96 6.27 27.91 10.34 

 
Table 7. Correlation analysis results 

 Classmates Self-Confidence Total Programming 
Anxiety Course Grade 

Classmates —    
Self-Confidence .688** —   

Total Programming Anxiety .898** .938** —  
Course Grade -.194** -.315** -.284** — 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
The Fornell & Larcker and the HTMT criteria were used to test the scale's discriminant validity. Table 8 
summarizes the results of the Fornell & Larcker criteria. In Table 8, each AVE's square root was given on the 
diagonal, and the correlation coefficients (off-diagonal) for each construct were displayed in the corresponding 
rows and columns. Fornel and Larcker (1981) state that the AVE values' square root should be higher than the 
correlations between the components included in the analysis. As shown in Table 8, this condition was satisfied, 
and the model met the Fornell & Larcker criterion for discriminant validity. In addition to the Fornell & Larcker 
criterion, discriminant validity was assessed through the HTMT coefficient. The HTMT coefficient was 
calculated as .705 in this model. According to Henseler, Ringle, and Sarstedt (2015), the HTMT coefficient 
should be less than .90 if the components to be evaluated are hypothetically close to one other. The HTMT 
coefficient was found to be below the threshold levels. 
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Table 8. The square root of the average variance extracted (AVE) and correlations matrix 
 Factors 

Factors Classmates Self-Confidence 
Classmates .711  

Self-Confidence .705 .745 

 

4. Discussion and Conclusion 

In computing education research, accurate measurement is critical (Scott, 2015). On the other hand, few 
measurement tools are available to computer education researchers (Scott & Ghinea, 2014). The current research 
fills a gap in the literature by developing and validating a measurement tool to assess the computer programming 
anxiety of university students. The development and validation of the programming anxiety scale in the current 
study were carried out in harmony with the scale studies recently published in several fields (Nasir, Adil, & 
Kumar, 2021; Rosario-Hernández, Rovira-Millán, & Blanco-Rovira, 2022; Sun et al., 2022; Zarouali, Boerman, 
& de Vreese, 2021). EFA, DFA, reliability, and validity analysis resulted in a scale including 11 items, five items 
for classmates, and six for self-confidence. The minimum obtainable score from the Programming Anxiety Scale 
is 11, while the maximum score is 55. As the score obtained from the scale increases, programming anxiety also 
increases. Choo and Cheung's (1991) Computer Programming Anxiety Scale served as a guide to develop the 
present scale.  

In the current study, no factor related to errors was found, while there was a factor for error anxiety in the study 
of Choo & Cheung (1991) and Demir (2021), in which Choo & Cheung's (1991) scale was adapted into Turkish. 
Although seven items were included in the draft scale for this factor, six of these items showed high 
multicollinearity. They were removed from the draft scale due to the exploratory factor analysis, and one item 
was kept. Although the inclusion of an item about error anxiety shows that debugging is a source of anxiety for 
students (Dasuki & Quaye, 2016; Nolan & Bergin, 2016), it is worth examining why it is not included as a factor. 
Not having an "errors" factor may indicate that encountering errors is a source of anxiety regardless of the 
number of errors and the time spent for debugging, which was utilized as parameters in Choo & Cheung (1991) 
and Demir (2021). In other words, encountering errors in programs may exist as a single source of anxiety, 
regardless of the frequency of encountering errors, the number of errors, or the time it takes to debug. The fact 
that Demir's (2021) study does not contain any information about CFA makes it impossible to make inferences 
about whether the three-factor model shows a good fit in the Turkish version of the scale and make comparisons 
about the error factor. 

Within the scope of the current study, the only item related to error anxiety was included in the self-confidence 
factor. One of the reasons for this result may be the differences in perception of debugging as a process in 
programming activities between the novices and the relatively more experienced individuals. From this point of 
view, while debugging may be perceived as an independent process for novice programmers, debugging may be 
perceived as an integral process of programming and an element of self-efficacy perception. Considering a high 
degree of relationship between self-confidence and self-efficacy perception (Blanco et al., 2020; Malureanu, 
Panisoara & Lazar, 2021; Tsai, 2019), it is not surprising that an item in the error factor is included in the 
self-confidence factor. It is evident that enhanced debugging skills develop a programmer's confidence, and fear 
of making mistakes may be related to programming skills (Ahmadzadeh, Elliman, & Higgins, 2005; Connolly et 
al., 2009; Nolan & Bergin, 2016). From this point of view, the experience of the participant group of Choo & 
Cheung's (1991) study on programming was not explained in detail. The participant group was specified only as 
of grade 12 level. However, participants in both the EFA and CFA stages of the current study were relatively 
more experienced with programming than the participants in Choo & Cheung's (1991) study. They have 
developed at least one project and were familiar with the debugging process. This result may indicate that 
perceptions of debugging are related to programming experience. 

Another reason may be the attitudes of the participants towards programming. Choo & Cheung's (1991) 
participant group consisted of grade 12 junior high school students. In contrast, the current study participants 
comprised university students who perceived programming as a profession. The students' awareness that the 
programming profession will include debugging may have caused them to perceive debugging as a personal 
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competence and an aspect of their career. The last reason for this result may be the software development 
environments (Integrated Development Environments-IDEs) and the resources and materials that can be 
facilitated for debugging. Scratch was used in Demir (2021) as the program development environment. On the 
contrary, Visual Studio was used in the current study. The nature of the errors encountered in Scratch and Visual 
Studio shows differences. The IDE used by Choo & Cheung (1991) was not specified. However, the number of 
resources found on debugging in the 1990s and today's resources are very different. Today, the internet is used 
for interpretations of error messages, and previous experiences of other people are utilized for solutions. 
Nowadays, even IDEs that translate error messages into users' native language exist. Therefore, the 
characteristics of IDEs and the resources may alter the perception of debugging anxiety. 

The validity of the developed scale was tested by comparing the results of studies examining the relationship 
between programming anxiety and theoretically related variables in the literature. In the current study, female 
students had more programming anxiety than male respondents. The t-test result also revealed that while there 
was no significant difference between male and female students in self-confidence, there was a substantial 
difference in classmates factor and total programming anxiety. This result is consistent with Olipas and Luciano's 
(2020) study. Similarly, consistent with the former findings ((Connolly et al., 2007; Figueroa & Amoloza, 2015; 
Kinnunen & Malmi, 2006; Nolan et al., 2019; Owolabi et al., 2014; Scott, 2015), factors of the PAS and total 
programming anxiety was correlated with course grades of students. These results indicate that the developed 
scale is valid and reliable. 

Another issue is related to the fact that this scale was developed specifically for programming anxiety. Since this 
scale was designed specifically to measure programming anxiety, it differs from scales adapted to programming 
anxiety, such as computer anxiety, computer attitude, and IT anxiety (Chang, 2005; Olipas & Luciano, 2020; 
Owolabi et al., 2014). There were insufficient instruments to assess programming anxiety in the literature, and 
the current study offered a psychometrically reliable scale. With the help of the present scale, programming 
anxiety levels in students can be measured, methods and techniques that can reduce students' anxiety can be 
developed, and special attention can be paid to students with high programming anxiety. In addition, situations 
that increase programming anxiety in students can be investigated. The PAS developed in the current study is 
recommended for study groups that have somewhat experience in creating, coding, and debugging programming 
projects. Future research may concentrate on a different group of college students from various cultures and 
countries. 
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Appendix   

The Programming Anxiety Scale in its Original and Translated Form 

Original Items (in Turkish) Translated Items (in English) 

CA_1 Daha önce programlama dersi alan 
arkadaşlarımın seviyesine yetişemeyeceğime 
inanmak beni kaygılandırır. 

Believing that I cannot reach the level of my friends 
who have taken programming lessons before makes 
me anxious. 

CA_2 Daha önce programlama dersi alan sınıf 
arkadaşlarımın varlığı beni tedirgin eder. 

The presence of my classmates who have previously 
taken programming courses makes me nervous. 

CA_3 Benim yazamadığım bir kodu çoğu sınıf 
arkadaşım yazabilmesi beni kaygılandırır. 

It makes me anxious when many of my classmates 
can write the code that I cannot write. 

CA_4 Arkadaşlarım benim anlamadığım 
programlama konularında konuştuğunda gergin 
hissederim. 

I feel tense when my friends talk about programming 
topics that I don't understand. 

CA_5 Program yazamayıp sınıf arkadaşlarımın 
önünde gülünç duruma düşeceğimden endişelenirim. 

I am concerned about not being able to write a 
program and being ridiculed by my classmates. 

SC_1 Programlamayı iyi anlayamadığımı 
düşünürüm. 

I think I do not understand programming well. 

SC_2 Program yazarken çözüm için gerekli olan 
basamakları (algoritmayı) doğru oluşturabileceğim 
konusunda şüphelerim var. 

I have doubts about creating the steps (algorithm) 
necessary for the solution while coding the program. 

SC_3 Program satırları karmaşık olmaya 
başladığında aklımın karıştığını hissederim. 

I feel confused when the program lines become 
complicated. 

SC_4 Program yazma konusunda kendime 
güvenmem. 

I don't trust myself in writing programs. 

SC_5 Programlama dersinde öğrenilecek çok fazla 
konunun olması beni korkutur. 

It scares me that there are too many topics to learn in 
the programming lesson. 

SC_6 Programlarımda hatalarla karşılaşmak benim 
için büyük bir endişe kaynağıdır. 

Debugging programs is a major worry for me. 

 


