
International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Analyzing Computational Thinking Studies in Scratch Programming:

A Review of Elementary Education Literature

William H. STEWART1

Kwanwoo BAEK2

1Hankuk University of Foreign Studies, Korea
2University of Southern California, USA

DOI: 10.21585/ijcses.v6i1.156

Abstract

Computational Thinking (CT) has become popular in recent years and has been recognized as an essential skill for

everyone in the digital age. CT literature, however, is at an early stage of development, and there is no consensus

among researchers/scholars in the field. To date, many have been unable to concretely explain what CT is, or how

to teach and assess this broad skill set. This is particularly evident in different educational contexts and settings

such as higher education versus elementary education. The purpose of this cumulative literature review is to

examine papers that focus on CT in terms of elementary education, elementary-aged learners, and related

issues/considerations in order to provide a better understanding of the CT in an elementary context. An inductive

qualitative content analysis was conducted on 58 papers set in elementary school settings about CT from 2010-

2020. Five main themes emerged from the review: exploiting tangible blocks in a physical coding environment,

integrating Scratch into various disciplines through programming, Scratch gaming for computational thinking,

evaluating computational thinking skills through Scratch projects, and teaching and learning methods/factors

affecting CT in children. Implications for practice and directions for future research are discussed.

Keywords: Scratch, Computational thinking, Programming, Coding, Elementary Education

1. Introduction

The world has become saturated with digital and computer technology in the 21st century, which in turn has made

effective computational tool use a necessary professional and economic skill set (Angeli et al., 2016; Bers, 2010;

English, 2016; Miaoulis, 2010; Yadav et al., 2011). Further obfuscating this issue is the simple fact that the logic

or principles behind computational tool use, which is known as Computational Thinking (CT), manifest differently

in practice depending on the subject matter (Weintrop et al., 2015; Wing, 2017; Yang et al., 2018). In recent years,

the discussion on CT has evolved into one not just focused on how CT manifests itself, but also a discussion with

a growing call to view CT anew from additional participatory, community, and maker perspectives (Kafai, 2016;

Rode et al., 2015), a universal metaphor for reasoning (Henderson et al., 2007), as well as one that envisions CT

as an all-encompassing 21st century literacy rather than just a discrete set of skills (diSessa, 2018; Jacob &

Warschauer, 2018).

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

1.1 What is Computational Thinking?

While computational tools (e.g., robotics, programming, simulations, computers, music, maker spaces, etc.) are

diverse (perhaps seemingly disparate), underlying the effective use of such tools is CT. CT, however, is an

umbrella term for a problem-solving process that encompasses numerous sub skills such as abstraction,

decomposition, and simulation (Brennan & Resnick, 2012; Henderson et al., 2007; Wing, 2017). While CT is

recognized in broad terms, no consensus exists on exactly how it should be defined, or what skills ultimately

constitute CT (Barr & Stephenson, 2011; Barr et al., 2011; Bocconi et al., 2016; Grover & Pea, 2013; Kalelioglu

et al., 2016; Lammi et al., 2018; Selby & Woollard, 2013; Weintrop et al., 2015, Yadav et al., 2016). Although CT

has been brought to the foreground of the discussion in STEM fields and STEM integration over the last 15 years

(see Wing, 2017), CT itself is not new; the origins of CT can be traced back much further to the 1970s and the

work of Seymour Papert’s LOGO programming and procedural thinking (Bers, 2010; Grover & Pea, 2013; Lye &

Koh, 2014; Sengupta et al., 2013; Weintrop et al., 2015; Yadav et al., 2011). Nevertheless, while an effort has been

made to promote CT in high school by the computer science community, no analogous effort exists in primary or

middle schools (Angeli et al., 2016; Jacob & Warschauer, 2018). Barr and Stephenson (2011) suggested that there

may be difficulties transferring CT from a development context situated in higher education, to a K-12 context

where CT is applied differently. For example, Lee et al. (2011) noted that there are multiple possible domains

(e.g., web design, mobile app development, robotics) that can be used to help develop CT processes/skills in

students but these domains may not be widely available in K-12 whereas they are far more common in higher

education.

Barr and Stephenson (2011) suggested that any definition of CT should be accessible and framed in terms of the

classrooms in which it will take place (versus an overly technical definition). Barr et al. (2011) proposed that CT

is a unique combination of cognitive skills that enable a novel form of problem-solving. This process is also closely

tied to various tools (e.g., computers) and can make aspects of problem-solving (i.e., testing, iteration) far more

accessible to learners since they can be automated or enacted at a wide scale. Grover and Pea (2013) discussed an

overview of the commonalities of various definitions which included abstraction, systematic information

processing, symbol systems and representation, and algorithmic concepts such as flow and control. Selby and

Woollard (2013) synthesized a definition of CT based on whether or not there was consensus in the literature

regarding a specific skill. They suggested that CT can be defined in terms of thinking abstractly, algorithmically,

and in terms of decomposition, generalizations, and evaluations. Rode et al. (2015) included aesthetics, creativity

constructing, visualizing, and understanding, whereas Jacob and Warschauer (2018) suggested that CT can be re-

defined as a new literacy built on programmatic logic. Voogt et al. (2015) elaborated on this definition, describing

computational thinking as a universal attitude and skill set that includes decomposition, abstraction, algorithmic

thinking and pattern matching and many more. Consequently, computational thinking is considered as a thought

process critical for solving problems in a technology-driven society (Kale et al., 2018). Modern digital technology,

which is reliant upon programming and coding, is a domain where CT is thought to be necessary. One popular

way to explore CT through programming/coding has been through MIT’s visual block-based coding platform,

Scratch.

1.2 What is Scratch Programming/Coding?

Scratch is a block-based visual coding language created by MIT. Although Scratch has primarily been associated

with a young learning audience (e.g., Chou, 2020; Rose et al., 2020), it’s a user-friendly visual interface where

students stack and fit blocks together, rather than write code via complex and technical syntax. This block-building

metaphor for programming and coding, however, can encourage CT for beginners in the domain regardless of age

(e.g., Dolgopolovas et al., 2015; Korkmaz, 2016; Romero et al., 2017). With Scratch, users can learn the

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

fundamental principles of programming (e.g., sequences, loops, conditional statements, etc.) by creating their own

projects, such as games or animated videos. By providing an accessible learning environment where young learners

can think about such concepts and engage in various cognitive processes, Scratch is particularly impactful for

developing problem-solving skills (Berikan & Özdemir, 2019; Donley, 2012; Korkmaz, 2016; Topallia &

Cagiltayb, 2018). The cognitive benefits of Scratch include the development of logical, analytical, mathematical,

and creative thinking skills as a means to approach complex problems in computer programming (Korkmaz, 2016).

As a problem-solving process by extension, these skills not only overlap with CT, but are critical in practice such

as abstraction, algorithmic thinking, problem solving, pattern recognition, and design-based thinking (Kalelioglu

et al., 2016). As these skills are logical and mathematical in nature, they are heavily implemented in programming

environments, and Scratch is no exception–it is rather a question of how and why Scratch affects computational

thinking.

1.3 Why and How Scratch Affects Computational Thinking?

Scratch facilitates the process of thinking through higher mathematical understanding, problem-solving strategies,

and analytical thinking skills (Korkmaz, 2016). Calao et al. (2015) found that an experimental group of 6th grade

students (who have received training in Scratch) had shown statistically significant improvement in mathematical

knowledge with respect to modeling, reasoning, and problem-solving. Given that the observed skills in the

experiment coincided with some of the skills in the domain of computational thinking, it is appropriate to conclude

that the improvement of mathematical processes with the assistance of a visual programming environment

(Scratch) can also help facilitate the development of computational thinking. Other research, however, has noted

no such relationship. Kalelioglu et al. (2016), for example, concluded that the effects of Scratch on the problem

solving-skills of 5th grade students did not yield conclusive results. Merely providing a learning environment was

insufficient with regards to teaching effectively and observing students’ performance gains. Nevertheless, many

students in this study enjoyed and wanted to learn more programming since they were able to utilize their creativity

to create games. Thus, while there were no discernable effects in terms of statistically significant results, Scratch

did have a noticeable effect on the desire of the students to improve on their programming skills. The increase in

motivation or desire, however, can still promote computational thinking.

Although computational thinking is not equivalent to programming, computational thinking can be seen as a

problem-solving method utilized by a computer scientist or programmer. As Wing (2010) elaborated,

computational thinking is “the thought process involved in formulating problems and their solutions so that the

solutions are represented in a form that can be effectively carried out by an information-processing agent” (p. 1).

In other words, computational thinking is a way of figuring out how to solve a problem and processing information

in a method that is concerned with the realm of computer science. However, what this looks like in practice and in

certain contexts is poorly described or conflated in the literature (Weintrop et al., 2015; Wing, 2017; Yang et al.,

2018) and the impetus for this review Thus, to comprehensively contextualize CT in Scratch for teaching and

learning, as well as explore the assessment of CT, in primary school (i.e., K-9) classrooms, we performed a

cumulative literature review (see Templier & Paré, 2015) in order to answer the following research questions:

RQ1: How is CT defined/conceptualized in the context of Scratch in elementary education?

RQ2: How is CT taught and assessed in Scratch in the context of elementary education?

2. Method

Since CT literature is at an early stage of development, there is no consensus among researchers/scholars in the

field and to date, many have been unable to concretely explain what CT is, or how to teach and assess this broad

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

skill set. Therefore, the manner of this review was cumulative in nature where the goal is to “compile empirical

evidence to map bodies of literature and draw overall conclusions regarding particular topics of interest” (Templier

& Paré, 2015, p. 120). Further, we also employed a semi-scoping approach in which the review is not only one

that accumulates a body of evidence, but one that also can “examine and clarify definitions that are used in the

literature” (Munn et al., 2018, p. 3). We also followed various systematic procedures based on several other

reviews (see Baek et al., 2020; Hamari et al., 2014; Levy & Ellis, 2006; Nakano & Muniz, 2018; Ramdhani et al.,

2014). A summary of the overall process is illustrated in Figure 1. Rather than being linear, it is a recursive

approach to examining and synthesizing various literature sources.

Figure 1. Review Procedure

2.1 Step 1: Search Terms and Databases

Since our investigative target was the use of Scratch in elementary educational settings in regards to computational

thinking, we used the following keywords, Scratch, computational thinking, and education. We searched

Ebscohost, ScienceDirect, Web of Science, Springer, IEEE Digital Library, ACM Digital Library, Google Scholar,

and ProQuest for relevant literature displaying these keywords in their titles or abstracts. This initial search yielded

551 articles.

2.2 Step 2: Inclusion and Exclusion Criteria

To focus the scope of this review, we required that articles be written in English, be published from 2010-2020,

and be conducted in elementary education. Studies that involved pre- or in-service elementary teacher training

were excluded to refine the results to elementary school student performance. This resulted in 125 papers.

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

2.3 Step 3: Assessing the Literature

Papers were screened again by sorting them into two categories: conceptual articles and empirical studies.

Conceptual papers discussed the general features of Scratch, provided a theoretical framework or suggested

instructional practices for Scratch programming into education. Empirical studies tended to test and justify specific

interventions and measure(s) of computational thinking via qualitative, quantitative research, or mixed-methods

research designs. This reduced the number of articles to 79.

We further refined the dataset to papers that specifically looked at CT skills (e.g., characteristics and processes,

models, assessments, interventions), in addition to including experimental and non-experimental study designs.

The research was further scrutinized for the quality of the research designs such as excessive statements or

assumptions, tangential CT focus, outcomes other than measures of CT skills, pilot studies, or studies with samples

of 10 or less that could not produce valid statistical outcomes. In regards to excluding studies with small sample

sizes, scholarship does suggest that the outcomes reported in small studies are more variable than large-study

counterparts, ultimately making the results of larger studies more reliable and where the greatest emphasis should

be placed (Slavin & Smith, 2009). Therefore, the exclusion of these studies in this review is not to state (or even

imply) that such studies are inferior (they are not), rather simply that for the purpose of summarizing evidence for

a literature review where broader generalizability of the findings was the goal (Templier & Paré, 2015), the larger

studies were preferred for drawing conclusions from (see Slavin & Smith, 2009). Additional assessment of the

literature included examining the papers’ topical, historical, and methodological relevance, as well as gap analyses.

This ultimately produced 58 papers, an overview of which is presented in Figure 2 and 3.

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Figure 2. Overview of Review Articles by Type

Figure 3. Overview of Review-articles by Year

2.4 Analyzing and Organization

We performed an inductive qualitative content analysis whereby the content discussed in papers (i.e., topics,

findings, issues) were assigned keywords or phrases (i.e., codes). These were then aggregated into larger categories

where vertical and horizontal relationships appeared (Braun & Clarke, 2006). The researchers discussed areas

where thoughts diverged and ultimately, this process produced five core themes which are used to structure the

findings section of the review: exploiting tangible blocks in a physical coding environment, integrating Scratch

into various disciplines through programming, Scratch gaming for computational thinking, evaluating

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

computational thinking skills through Scratch projects, and teaching and learning methods/factors affecting CT in

children.

3. Results

3.1 Exploiting Blocks in A Coding Environment

Various studies compared Scratch with other programming environments, particularly with their relationship to

developing computational thinking skills. Smith (2019) compared Scratch with Cozmo, a robotics-based coding

environment While both of these coding and robotics based programming environments shared the same content

and instructional features, curriculum with Scratch was often more computer-based whereas the Cozmo curriculum

was made of animated emotional-educational robotic activities. Smith (2019) similarly found that students were

more engaged when using Cozmo over Scratch, though both programming environments were equivalent in

developing CT skills. When Scratch was compared to Lego Mindstorms or C++ environments, Scratch was more

effective at developing logical thinking skills (Korkmaz, 2016). Other studies (i.e., da Cruz Alves et al., 2019;

Park & Shin, 2019; Quitério Figueiredo, 2017) compared Scratch and App Inventor and found that Scratch projects

scored higher when being evaluated on parallelism, synchronization, and flow control whereas App Inventor

projects displayed higher scores on user interactivity and data representation. This implies that Scratch, as a tool

for coding and enhancing computational thinking skills, has been established, however its efficacy in facilitating

other CT skills/knowledge domains is less certain. da Cruz Alves et al. (2019) not only supported this point but

cautioned that the evaluation of CT skills is heterogeneous; there is no consensus on exactly what criteria should

be used or how to evaluate them. Thus, the comparisons between Scratch, App Inventor, Cozmo, and other coding

environments may not be so useful; multiple tools can develop and improve computational thinking (Quitério

Figueiredo, 2017; Turchi & Malizia, 2016). Nevertheless, research has shown that visual block-based coding

environments do reduce the difficulty of abstract programming concepts and complex syntax by converting them

into tangible (metaphorically and physically) and accessible elements for students to manipulate and interact with

(Rose et al., 2017). This makes it a valuable tool when integrated into other subject areas and learning

environments.

3.2 Integrating Scratch into Various Disciplines Through Programming

Scratch has been shown to be an effective way of developing computational thinking skills when integrated in

other disciplines (Moreno-León & Robles, 2016; Olabe et al., 2011; Ruthmann et al., 2010; Scullard et al., 2019).

Ruthmann et al. (2010) discussed the potential for developing CT through live musical coding in Scratch by

approaching programming as music notation. Olable et al. (2011) noted how Scratch was useful when applied to

robotics as the interface between digital code and the real world manifestation of it via a robot, which can provide

immediate feedback to learners. Even when Scratch is used by students who are not pursuing conventional

computer science or STEM related fields, the use of Scratch can influence the development of computational

thinking skills such as abstraction or logical thinking (Harimurti et al., 2018). In short, there are numerous (even

unexpected) benefits to integrating Scratch into other disciplines across K-12 such as math, writing, science, or

English (Moreno-León & Robles, 2016).

3.2.1 Coding with Scratch for CT enhancement

There is no doubt that coding with Scratch is effective at developing CT. The implementation of Scratch for this

has even been refined to include specific sequences of programming projects that progressively challenge learners

to think computationally. This kind of curricular structure then requires learners to compose problems, recognize

patterns, collect and represent data, and ultimately develop code to solve a particular task or challenge (Swaid &

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Suid, 2019). Progress design scenarios such as this help students to learn not only core programming concepts

such as sequences, loops, and events, but also computational concepts such as abstracting, modularizing, and

debugging (Zhang & Nouri, 2019). Chou (2020) even found that third-grade students improved their CT

competence when engaged in weekly Scratch activities. Moreover, parents’ active involvement in take-home

assignments influenced students’ long-term CT competence retention. Fagerlund et al. (2020)’s evaluation of

Scratch projects found that students’ work indicated CT skills and knowledge in diverse ways, and that nearly all

students’ projects showed knowledge of patterns, abstraction, collaboration, and logical operators, though less than

half of the projects used algorithmic procedure, automation, synchronized parallel scripts, recursive solutions, and

boolean logic. Thus, simpler programming and computational thinking tend to be far more prevalent in Scratch

projects than more advanced ones; developmental levels need to be considered carefully when implementing

Scratch for the purpose of CT development.

Similarly, since computational thinking is a skill related to coding, teaching a subject with coding can also show

increased achievement in a subject matter (Calao et al., 2015). Calao et al. (2015) utilized Scratch to see whether

it could enhance mathematical understanding among sixth grade students. The results showed that students who

received Scratch training gained an increase in the understanding of mathematical processes in modeling process

and reality phenomena, reasoning, problem formulation and problem solving, and comparison and execution of

procedures and algorithms. Thus, coding in mathematics class is assumed to help develop computational thinking

skills. This assumption was later supported by Rodríguez-Martínez et al. (2020) where coding and math

performance significantly improved. However, some activities in math could be infused with Scratch coding. For

example, Vinayakumar et al. (2018) developed computational exercises facilitating the learning of both fractal

geometry and computational thinking through tree drawings, which stimulated learners to think computationally

about iteration and size change, leading to the concept of ’parallelism, conditionals, and operators. Nevertheless,

while mathematics and programming are perhaps logical and obvious areas to use Scratch in to develop CT, there

are other creative ways that Scratch is being used such as storytelling.

3.2.2 Storytelling with Scratch

Storytelling involves both reading and writing, and Scratch has been documented in literature as a novel way to

promote computational thinking skills, especially with younger/early grade students (Burke, 2012; Lowe &

Brophy, 2019; Smith & Burrow, 2016; Von Gillern, 2017).

Smith and Burrow (2017) analyzed five and seven-year old children’s use of CT skills and observed looping

actions, debugging, remixing, and expression as the students generated ideas and content for their story, which are

all examples of concrete CT skills. Similarly, Lowe and Brophy (2019) concluded that computational thinking

seems to be most valuable in young learners when it is grounded in concrete activities such as storytelling. They

also argued that students can benefit from spending time in abstract story planning since this bears connection to

decomposition and algorithm design. Burke (2012) also noted the potential benefits of storytelling in Scratch which

could contribute to enhancing computational thinking skills, arguing that the creative functionality of algorithms

accentuates the connection between coding and writing. For this reason, digital stories in Scratch embody the

technical and the creative elements of composition (Von Gillern, 2017).

3.3 Scratch Gaming for CT

3.3.1 Playing Scratch games for CT

Rose et al. (2017) designed a computer application, Pirate Plunder, which is a block-based programming game

that teaches its players how to use Scratch’s coding blocks. It does so by focusing on helping children learn

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

decomposition and abstraction skills. This is primarily done under the assumption that practicing loops and

procedures in Scratch can promote students’ abstraction and decomposition skills, thereby improving

computational thinking as a result.

Rose et al. (2019) found that Pirate Plunder was effective in using custom blocks, procedures, and clones in Scratch

with children aged 10-11. On Scratch abstraction/decomposition and computational thinking tests, students who

played Pirate Plunder showed significantly higher scores than other groups’ students. In related studies, Rose et

al. (2018) ultimately concluded that Scratch game-based learning can increase children’s procedural abstraction in

Scratch projects as well as their computational thinking skills, in addition to the development of procedural

abstraction skills as a result of controllable success conditions and difficulty levels (Rose et al., 2020).

3.3.2 Creating Scratch Games for CT

Computational thinking development for elementary aged children though the creation of games in Scratch is

frequently discussed in the literature (e.g., Fadjo, 2012; Serbec et al., 2018; Ternik et al., 2017; Topallia &

Cagiltayb, 2018). Nančovska Šerbec et al. (2018) performed a study that compared how primary school students

aged eight to 12 thought versus prospective teachers of computer science. They compared two groups’ projects

and found the differences in the category of logic, synchronization, and parallelism which were explained by the

differences in reasoning, complexity, and understanding of simultaneous events. No differences were found in the

conceptual categories of flow control, data representation, abstraction, and user interactivity. These results implied,

however, that computational thinking skills of elementary students can be promoted with game programming

making activities through guided instruction.

Ternik et al. (2017) analyzed a maze game developed by 17 primary students aged between eight and 10 years-

old. Their primary goal was to improve students’ basic computational thinking skills by making a maze-game in

Scratch. After teaching concepts such as sequences, loops, events, and conditionals, the participants developed

their own maze-game. According to the neo-Piagetian theory of cognitive development, four students (out of 17)

reached a concrete operational stage in their programming abilities. The participants displayed different rates of

progress from the sensorimotor to preoperational to concrete operational stages of reasoning within Scratch. Even

if they could determine different levels of understanding and abstract thinking, most students reached the

developmental level. When using Scratch programming, educators should consider students’ level of cognitive

development. More specifically in the context of computational thinking skills, instructional methods are also

important. For example, step by step practical exercises with the concepts of parallelism and synchronization in

tandem with other advanced concepts should be done (Fadjo, 2012; Serbec et al., 2018; Ternik et al., 2017; Topallia

& Cagiltayb, 2018).

Fadjo (2012) found that sixth and seventh grade students who received pre-written Scratch code analogues (i.e.,

visual novel form) created in Scratch when compared to students who were instructed with only code in a virtual

environment developed more computational thinking skills and concept knowledge (such as conditional logics and

operator patterns). Rose (2019) also tested the assumption that the earlier children begin to develop expertise in

computer science, the faster they will be able to develop a holistic understanding of code, including more abstract

programming principles like selection, repetition, debugging, variables and procedures. She found that primary

school children can understand abstract computer science concepts if the instructional method utilized a structured

level progression, ultimately highlighting the importance of synergy between instructional method, learner

characteristics, and certain Scratch-based tools. Such tools have been developed over the last 10 years to support

educators’ assessment of student programming and development of computational thinking skills. While Scratch,

the platform, is often the most visible component of programming education, tailored programming tools have

been developed to further unlock its learning and educational potential; one example of such a tool is Dr. Scratch.

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

3.4 Evaluating Computational Thinking Skills through Scratch projects

3.4.1 Using Dr. Scratch

Dr. Scratch is a tool that automates analysis of Scratch programs, detecting the presence/absence of certain target

characteristics (e.g., conditional statements) of students’ work. In addition to identifying these traits, Dr. Scratch

then extrapolates and assigns a CT score to projects, thus providing feedback to both educators and learners about

the CT skills present in their work (Moreno-León et al., 2015, Moreno-León et al., 2017). What makes Dr. Scratch

a powerful tool, however, is the general consensus on its effectiveness (Browning, 2017; Lawanto, 2016; Oluk &

Korkmaz, 2016).

Lawanto (2016), for example, concluded that Dr. Scratch was well suited to assess computational skills, which in

turn helped teachers understand students’ strengths and weaknesses in programming. Browning (2017) conducted

a pre/posttest study in which two groups of 5th-6th graders had a treatment group assessed by Dr. Scratch for the

presence of CT skills, and where the control group was assessed by other CT tests. They found that the

development in students’ programming skills in Scratch would relate to similar increases in their computational

thinking skills or improvements in their computational thinking levels. Nevertheless, Dr. Scratch, as a tool, is not

without its own limitations which both Lawanto (2016) and Browning (2017) noted, chiefly in the area of formative

assessment. That is, Dr. Scratch is a summative assessment by nature and not one that provides feedback during

the learning process. While this may be an accurate description of the intent behind how Dr. Scratch was designed,

other scholars such as Moreno-León et al. (2015) have, in fact, used Dr. Scratch for formative assessment purposes.

For example, Moreno-León et al. (2015) used Dr. Scratch’s analysis output on students’ projects as a stimulus to

encourage students to keep improving their programming skills. They asked students aged 10 to 14 years-old to

read Dr. Scratch output (displayed as feedback) and then try to improve their projects using the guidelines and tips

offered by the tool. As a result, the students’ computational thinking scores increased and students displayed

improved coding skills. This was especially noticeable for students with an initial medium (i.e., developing) CT

score rather than for students with a high one. Browning (2017), however, took a somewhat different approach to

utilizing Dr. Scratch for formative assessment purposes. The difference was in taking certain components of

programming into account (i.e., easier versus more difficult tasks or skills). Browning reported that there was a

significant increase in abstraction, which they also suggested could be significant in flow control with a larger

sample. In terms of other CT skills, there were no significant differences in logic scores, and little variation in data

representation scores. Differences in the purpose of assessment aside, other limitations have been noted in the

literature.

Brennan and Resnick (2012), for example, discussed the fact that the use/presence of a particular Scratch block

(or group of blocks) was not necessarily a strong indicator of any particular mastery or fluency in a CT concept.

In other words, students may not really understand why they need to use one block over another, or what a more

efficient and/or effective sequence of blocks might be when compared to their own code. Further, the use of a

single project (i.e., a single data point) to extrapolate CT scores may be skewed; multiple projects from a single

student would need to be evaluated for validity in the assessment results. Moreover, certain key CT skills cannot

be measured or assessed by examining the source code of the project alone -for example- debugging code in a

project would not necessarily be evident in the final version of the code. Similarly, the creativity involved in

remixing an existing project would not necessarily be obvious without comparing/contrasting it with the original.

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

3.4.2 Other Assessment Tools

In addition to the use of Dr. Scratch, other studies have documented the use of other tools to assess computational

thinking skills in other ways. For example, Chou (2020) used a test developed by Strawhacker et al. (2018) to

measure CT skills, which focused on debugging and fixing a program, circling the blocks, matching the program,

and reverse engineering (reverse engineering is a battery of video-based programming tests). This assessment

requires students to view programming questions via video clips and then asks students to provide

solutions/answers on a structured answer sheet. Another example is from Saez-Lopez et al. (2016) who developed

and used a visual block creative computing test to assess elementary students’ CT competence after receiving

instruction in Scratch. Zhang and Nouri (2019) examined the computational thinking skills that can be learned by

K-9 students through Scratch, based on Brennan and Resnick's (2012) framework. Brennan and Resnick’s (2012)

framework consists of the three key dimensions of CT: computational concepts, computational practices, and

computational perspective, which is one that ultimately Brennan and Resnick’s (2012) framework places students

as designers of interactive stories, games, and simulations in a holistic assessment approach.

Fagerlund et al. (2020) created a framework using three formative assessment processes to identify areas of CT in

Scratch projects: what to teach and learn (i.e., clarifying learning objectives), estimating students’ current level of

understanding, and analyzing their conceptual encounters with CT. This framework made it possible to perform

formative assessments by integrating coding patterns, code constructs, and the extent to which students had

conceptual encounters with CT through Scratch projects in elementary classrooms. Fagerlund et al. (2020) is also

an example of in-depth insight of students’ experiences with diverse areas in CT. It is also one that sets future

directions of CT assessment in facilitating students’ learning CT through students’ Scratch projects when

compared with earlier approaches.

3.5 Teaching & Learning Methods /Factors affecting CT of Children

The type of instruction and the context of the instructional materials play a significant role in students’

development of CT skills and concept knowledge. In a relatively large study across six schools in the United States

(222 K-2 students), Strawhacker et al. (2018) found that educators who demonstrated flexibility in lesson planning

and who were responsive to students' needs had a positive effect on students. Further, educators that made a

positive impact were also skilled in their use of technology, and were concerned about developing students’

independent thinking skills. This highlights the importance of sound pedagogy and teaching in addition to the use

of proper tools when developing CT skills and the use of technology. Quality teaching practices aside, more

specific pedagogical approaches have been noted in the literature in terms of efficacy.

Fadjo (2012) used a grounded embodied pedagogy called “instructional embodiment” when teaching abstract

concepts through the use of direct and imagined embodiments (embodiment refers to physical motion or activity).

Fadjo (2012) found statistically significant effects for students who physically embodied (or acted out) predefined

instructional materials such as speech and motion blocks. In addition to physical embodiment, imagined

embodiment, is another technique found to be useful for teaching and developing CT. With imagined embodiment,

students mentally simulate and construct imaginary worlds. The benefits of this approach were students’

implementation of more computational structures in their projects. Similarly, using familiar contexts had a

significant effect on identifying and implementing the CT skill pattern recognition, although learning CT concepts

from an unfamiliar context had a significant positive effect on the implementation of both broadcast/receive

couplings and conditional logic and operator patterns. Pérez et al. (2020) used metaphors to teach Scratch

programming to children aged nine to 12 and concluded that using metaphors improved knowledge of

programming concepts. For example, when teaching loops, they used the metaphor of a hand mixer, and for

conditionals, they used an intelligent fridge. One limitation that was noted, however, was that using metaphors

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

could not be definitively correlated with enhanced students’ CT since the CT test was not applicable to students

who are younger than 10 (Pérez et al., 2020).

Student collaboration in Scratch was also found to improve CT skills. Hamelburg (2019) found that when sixth

graders designed games with help from peers during collaborative coding, their knowledge of CT improved. While

some students experience difficulty in collaborating, students often assisted their peers by making them feel more

comfortable during the challenge. The results of this study corroborate the findings of Chowdhury (2017) where

collaborative coding was similarly found to improve computational thinking skills. Other studies, however, did

not find any positive effect from collaboration on Scratch programming or on CT skills from (Donley, 2012).

Marcelino et al. (2018) also obtained similar results as Donley (2012) with adult (teacher trainees) learners of

Scratch.

4. Discussion

4.1 A Variety of CT Definitions

There is a general consensus that programming skills are closely related to CT skills, but more importantly the

distinction that programming skills are a subset of CT. The literature consistently describes that CT includes all

concepts that computer scientists use to solve computational skills. While this conceptual hierarchy is clear,

numerous issues arise when considering which concepts are more appropriate to learn at the elementary school

level. For example, pedagogical approaches, content/skill scope and sequence, etc. For this reason, some studies

emphasize CT concepts differently in the context of elementary school children. Thus, in regards to our first

research question regarding how CT is defined and/or conceptualized, we had difficulty in interpreting previous

studies and making generalizations from their results given the extant variety. Thus, the interpretation of results

from CT studies needs careful and well-reasoned considerations as the variables being manipulated and/or

outcomes being measured/assessed are not necessarily the same. To this point, Rose et al. (2017) proposed that

future research in this area should focus on the individual concepts involved in computational thinking to get a

deeper understanding of CT for elementary students.

4.2 Assessment & Evaluation

To assess CT skills in Scratch programming, research to date has predominantly relied on code analysis of

students’ projects. While this approach can provide CT competency feedback in the form of a score (Alves et al.,

2019), automated calculation in the CT assessment lacks context that observations or interviews can provide. In

other words, more comprehensive evaluation and assessment strategies are needed. Further, automated and

performance-based approaches also lack explicit suggestions or tips on how to improve code such as in its

efficiency or complexity. In Scratch assessment, the use of formative assessment, such as students’ explaining

parts of their projects and finding mistakes in their code, would be beneficial for developing their CT skills (Ternik

et al., 2017). At present, assessment is varied; we suspect that the diversity in assessment and evaluation is strongly

correlated with the variety of operational definitions of CT. While this pedagogical/curricular relationship is not

novel or unique to CT, it does highlight an ongoing challenge and obstacle for practitioners and researchers. Some

variables that are connected to how CT is taught and consequently assessed A number of variables were noted in

the literature that affected Scratch performance.

4.3 Variables Affecting CT

Current key CT variables ranged from pedagogical approaches (see Strawhacker et al., 2018), learner gender (e.g.,

Chou, 2018), previous programming experience, and math skills. However, findings from Longi (2016) regarding

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

college students’ competence in learning programming may provide insight regarding the potential factors

influencing CT competence for elementary school aged learners. In Longi’s (2016) systematic literature review,

two major factors surfaced: namely students’ background information and psychological characteristics in terms

of performance in programming courses. These two variables may be related to age or a proxy for age, thus, there

is a gap in the literature in terms of sampling that warrants additional research with elementary aged learners. In

terms of gender, some studies (i.e., Oluk & Korkmaz, 2016) have assessed both Scratch programming (via Dr.

Scratch) and CS skills (via the Computational Thinking Levels Scale which includes 5 factors: a) creativity, b)

problem solving, c) algorithmic thinking, d) collaboration, and e) critical thinking). Dr Scratch has a gender

parameter in its evaluation process however results showed no difference in gender or time online, although there

was a significant relationship between programming skill and computational thinking. Further research regarding

the effects of gender on CT and/or programming skills, especially across various related knowledge domains, is

warranted.

5. Conclusion

CT is developing practice, field, and area of study that has emerged over the last 20 years. In addition to the

inevitable growing pains of a nascent topic, discussion and debate has also emerged regarding the principles that

ultimately constitute CT and how to develop CT skills. Similarly, how to assess or measure CT has evolved over

time from more rudimentary and limited constructs to more holistic approaches. Equally important, however, is

the ongoing inquiry into how CT skill teaching, learning, and development manifests for learners of different ages

and in different contexts. The findings from this review highlight how exploiting tangible blocks in a physical

coding environment can be particularly beneficial for young/novice learners, and that integrating Scratch into

various disciplines through programming (not just programming alone) demonstrates increased learning gains and

CT skill development. Additionally, more pedagogically sound ways of teaching CT skills and Scratch have

emerged with demonstrated learning effectiveness, and in tandem how CT and programming skills are assessed is

starting to evolve in more holistic and sophisticated ways than in years prior. Similarly, more discrete variables

affecting CT skill development in children have been identified and are starting to be researched. However, given

the emergent or nascent character of CT as a field of practice and inquiry, ongoing research is warranted in several

areas.

Current literature has only begun looking into how students interact with the Scratch interface. While the visual

block-building metaphor has been effective since Scratch’s inception for young learners when compared to

learning syntax, some research has shown that younger learners interact differently with programming interfaces

such as Scratch, Scratch Jr., and Lightbot. While research findings have generally been in line with the pedagogical

underpinnings of Scratch and Scratch Jr., future research can investigate the different approaches that students,

particularly young ones, take to programming through visual interfaces.

In this review we found only limited literature that looked at how elementary school teachers are learning about

Scratch and CT, and particularly the most effective ways of teaching it as subject matter as well as a critical

thinking skill. There is burgeoning discussion about teaching methods that moved beyond just the pedagogical

foundations of Scratch as a platform (i.e., constructivism) and into best practices with the platform (e.g., teaching

metaphors, generative strategies [instructional embodiment], robust assessment methods, etc.). As current

literature is only beginning to investigate and describe more deliberate uses of formative assessment with Scratch

and CT, in addition to holistic approaches, research is warranted in this area in general, and specifically with

elementary aged learners.

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

References

Alves, N. D. C., Von Wangenheim, C. G., & Hauck, J. C. (2019). Approaches to assess computational thinking

competences based on code analysis in K-12 education: A systematic mapping study. Informatics in

Education, 18, 17–39. http://doi.org/10.15388/infedu.2019.02

Angeli, C., Voogt, J., Fluck, A. E., Webb, M., Cox, M. J., Malyn-Smith, J., & Zagami, J. (2016). A K-6

computational thinking curriculum framework - Implications for teacher knowledge. Educational

Technology & Society, 19, 47–57. https://www.jstor.org/stable/pdf/jeductechsoci.19.3.47.pdf

Baek, Y., Min, E., & Yun, S. (2020) Mining educational implications of Minecraft. Computers in the Schools, 37,

1–16. http://doi.org/10.1080/07380569.2020.1719802

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for everyone. Learning &

Leading with Technology, 38, 20–23. https://files.eric.ed.gov/fulltext/EJ918910.pdf

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2, 48–13.

http://doi.org/10.1145/1929887.1929905

Berikan, B., & Özdemir, S. (2019). Investigating “problem-solving with datasets” as an implementation of

computational thinking: A literature review. Journal of Educational Computing Research, 58, 502–534.

https://doi.org/10.1177/0735633119845694

Bers, M. U. (2010). The TangibleK Robotics program: Applied computational thinking for young children. Early

Childhood Research & Practice, 12, 1–20. https://files.eric.ed.gov/fulltext/EJ910910.pdf

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., & Engelhardt, K. (2016). Developing computational

thinking in compulsory education: Implication for policy and practice. Joint Research Center (JRC) Science

for Policy Report. https://ec.europa.eu/jrc

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3,

77–101. https://doi.org/10.1191/1478088706qp063oa

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of

computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research

Association (pp. 1–25). AERA. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Browning, S. F. (2017). Using Dr. Scratch as a formative feedback tool to assess computational thinking. [Master’s

thesis, Brigham Young University]. https://scholarsarchive.byu.edu/etd/6659

Burke, W. Q. (2012). Coding & composition: Youth storytelling with Scratch programming (Publication No.

3510989) [Doctoral dissertation, University of Pennsylvania]. ProQuest Dissertations Publishing.

Calao, L. A., Moreno-León, J., Correa, H. E., & Robles, G. (2015). Developing mathematical thinking with

Scratch. In G. Conole, T. Klobučar, C. Rensing, J. Konert, & É. Lavoué (Eds.) Design for teaching and

learning in a networked world (pp. 17–27). Springer International Publishing. http://doi.org/10.1007/978-3-

319-24258-3 2

Chou, P.-N. (2018). Smart technology for sustainable curriculum: Using drone to support young students’ learning.

Sustainability, 10, 3819. https://doi.org/10.3390/su10103819

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Chou, P.-N. (2020). Using ScratchJr to foster young children’s computational thinking competence: A case study

in a third-grade computer class. Journal of Educational Computing Research, 58, 570–595.

https://doi.org/10.1177/0735633119872908

Chowdhury, B. T. (2017). Collaboratively learning computational thinking. Unpublished doctoral dissertation, of

Virginia Polytechnic Institute and State University, USA.

da Cruz Alves, N., Gresse Von Wangenheim, C., & Hauck, J. C. (2019). Approaches to assess computational

thinking competences based on code analysis in K-12 education: A systematic mapping study. Informatics

in Education, 18, 17–39. https://doi.org/10.15388/infedu.2019.02

diSessa, A. A. (2018). Computational literacy and “The Big Picture” concerning computers in mathematics

education. Mathematical thinking and learning, 20, 3–31. https://doi.org/10.1080/10986065.2018.1403544

Dolgopolovas, V., Jevsikova, T., Savulionienė, L., & Dagienė, V. (2015). On evaluation of computational thinking

of software engineering novice students. In Proceedings of the IFIP TC3 Working Conference “A New

Culture of Learning: Computing and next Generations (pp. 90–99).

https://core.ac.uk/download/pdf/42583209.pdf#page=98

Donley, K. S. (2012). Coding in the curriculum: learning computational practices and concepts, creative problem

solving skills, and academic content in ten to fourteen-year-old children (Publication No. 10842428)

[Doctoral dissertation, Temple University]. ProQuest Dissertations Publishing.

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM

Education, 3, 1–8. http://doi.org/10.1186/s40594-016-0036-1

Fadjo, C. L. (2012). Developing computational thinking through grounded embodied cognition (Publication No.

3506300) [Doctoral dissertation, Columbia University]. ProQuest Dissertations Publishing.

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2020). Assessing 4th grade students’ computational

thinking through scratch programming projects. Informatics in Education, 19, 611–640.

https://doi.org/10.15388/infedu.2020.27

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational

Researcher, 42, 38–43. https://doi.org/10.3102/0013189X12463051

Hamari, J., Koivisto, J., & Sarsa, H. (2014, January). Does gamification work? – A litera-

ture review of empirical studies on gamification. Proceedings of the 47th Hawaii International Conference on

System Sciences (pp. 3025–3034). Waikoloa, Hawaii, USA. http://doi.org/10.1109/HIS.2014.377

Hamelburg, N. (2019). Coding, collaboration, and computational thinking (Publication No. 10183306) [Master’s

thesis, Hofstra University]. ProQuest Dissertations Publishing.

Harimurti, R., Qoiriah, A., Ekohariadi, E., & Munoto, M. (2018, July). Implementation of computational thinking

concepts in ICT learning using Scratch programming. In International Conference on Indonesian Technical

Vocational Education and Association (APTEKINDO 2018) (pp. 105–109). Atlantis Press.

https://doi.org/10.2991/aptekindo-18.2018.23

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). Computational thinking. In Proceedings of the 38th SIGCSE

Technical Symposium (pp. 195–3). ACM Press. http://doi.org/10.1145/1227310.1227378

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Jacob, S. R., Warschauer, M. (2018). Computational thinking and literacy. Journal of Computer Science

Integration, 1, 1–21. http://doi.org/10.26716/jcsi.2018.01.1.1

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education.

Communications of the ACM, 59, 26–27. http://doi.org/10.1145/2955114

Kale, U., Akcaoglu, M., Cullen, T., Goh, D., Devine, L., Calvert, N., & Grise, K. (2018). Computational what?

Relating computational thinking to teaching. TechTrends, 62, 574–584. https://doi.org/10.1007/s11528-018-

0290-9

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking Based on a systematic

research review. Baltic Journal of Modern Computing, 4, 583–596.

http://acikerisim.baskent.edu.tr/handle/11727/3831

Korkmaz, Ö. (2016). The effect of Scratch- and Lego Mindstorms Ev3-based programming activities in academic

achievement, problem-solving skills and logical-mathematical thinking skills of students. Malaysian Online

Journal of Educational Sciences, 4, 73–88.

https://ajap.um.edu.my/index.php/MOJES/article/download/12658/8149

Lammi, M., Denson, C., & Asunda, P. (2018). Search and review of the literature on engineering design challenges

in secondary school settings. Journal of Pre-College Engineering Education Research, 8, 1–19.

http://doi.org/10.7771/2157-9288.1172

Lawanto, K. N. (2016). Exploring trends in middle school students’ computational thinking in the online scratch

community: A pilot study (Publication No. 10183306) [Master’s thesis, Utah State University]. ProQuest

Dissertations Publishing.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al. (2011). Computational thinking for youth

in practice. ACM Inroads, 2, 32–7. http://doi.org/10.1145/1929887.1929902

Levy, Y., & Ellis, T. (2006). A systems approach to conduct an effective literature review in support of information

systems research. Informing Science: The International Journal of an Emerging Transdiscipline, 9, 181–212.

http://doi.org/10.28945/479

Longi, K. (2016). Exploring factors that affect performance on introductory programming courses (Unpublished

master’s thesis). Department of Computer Science, University of Helsinki, Finland.

Lowe, T. A., & Brophy, S. P. (2019, June). Identifying computational thinking in storytelling literacy activities

with Scratch Jr. In 2019 ASEE Annual Conference & Exposition. https://peer.asee.org/32913

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

http://doi.org/10.1016/j.chb.2014.09.012

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., & Mendes, A. J. (2018). Learning computational thinking

and Scratch at distance. Computers in Human Behavior, 80, 470–477.

https://doi.org/10.1016/j.chb.2017.09.025

Miaoulis, I. (2010). K-12 engineering – The missing core discipline. In Holistic engineering education (pp. 37–

51). Springer New York. http://doi.org/10.1007/978-1-4419-1393-7_4

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Moreno-León, J., & Robles, G. (2016, April). Code to learn with Scratch? A systematic literature review. In 2016

IEEE Global Engineering Education Conference (EDUCON) (pp. 150–156). IEEE.

https://doi.org/10.1109/EDUCON.2016.7474546

Moreno-León, J., Robles, G., & Román-González. (2015). Dr. Scratch: Automatic analysis of Scratch projects to

assess and foster computational thinking. RED. Revista de Educación a Distancia, 15, 1–23

https://www.um.es/ead/red/46/moreno_robles.pdf

Moreno-León, J., Robles, G., & Román-González, M. (2017). Towards data-driven learning paths to develop

computational thinking with Scratch. IEEE Transactions on Emerging Topics in Computing, 8, 193–205.

https://doi.org/10.1109/TETC.2017.2734818

Munn, Z., Peters, M. D., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or

scoping review? Guidance for authors when choosing between a systematic or scoping review approach.

BMC Medical Research Methodology, 18, 1–7. https://doi.org/10.1186/s12874-018-0611-x

Nakano, D., & Muniz, J. Jr., (2018). Writing the literature review for an empirical paper. Production, 28,

e20170086. http://doi.org/10.1590/0103-6513.20170086

Nančovska Šerbec, I., Cerar, Š., & Žerovnik, A. (2018). Developing computational thinking through games in

Scratch. XI Национална конференция Образованието и изследванията в информационното общество

2018 [XI National Conference "Education and Research in the Information Society 2018].

http://pefprints.pef.uni-lj.si/5141/1/Serbec_Developing.pdf

Olabe, M., Basogain, X., Maíz, I., & Castano, C. H. (2011). Programming and robotics with Scratch in primary

education. In A. Méndez-Vilas (Ed.), Education in a technological world: Communicating current and

emerging research and technological efforts (pp. 355-363). Formatex Research Centre.

Oluk, A., & Korkmaz, Ö. (2016). Comparing students' Scratch skills with their computational thinking skills in

terms of different variables. Online Submission, 8, 1–7. http://doi.org/10.5815/ijmecs.2016.11.01

Park, Y., & Shin, Y. (2019). Comparing the effectiveness of Scratch and App Inventor with regard to learning

computational thinking concepts. Electronics, 8, 1269. https://doi.org/10.3390/electronics8111269

Pérez, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be improved by using a

methodology based on metaphors and scratch to teach computer programming to children? Computers in

Human Behavior, 105, 105849. https://doi.org/10.1016/j.chb.2018.12.027

Quitério Figueiredo, J. A. Q. (2017). How to improve computational thinking: A case study. Education in the

Knowledge Society, 18, 35–51. https://doi.org/10.14201/eks20171843551

Ramdhani, A., Ramdhani, M. A., & Amin, A. S. (2014). Writing a literature review research paper: A step-by-step

approach. International Journal of Basic and Applied Science, 3,47–56.

http://digilib.uinsgd.ac.id/5129/1/08IJBAS%283%29%281%29.pdf

Rode, J. A., Booker, J., Marshall, A., Weibert, A., Aal, K., Rekowski, von, T., et al. (2015). From computational

thinking to computational making. In 2015 ACM International Joint Conference (pp. 401–402). ACM Press.

http://doi.org/10.1145/2800835.2800926

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Rodríguez-Martínez, J. A., González-Calero, J. A., & Sáez-López, J. M. (2020) Computational thinking and

mathematics using Scratch: an experiment with sixth-grade students. Interactive Learning Environments, 28,

316–327. https://doi.org/10.1080/10494820.2019.1612448

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through creative programming

in higher education. International Journal of Educational Technology in Higher Education, 14, 1–15.

https://doi.org/10.1186/s41239-017-0080-z

Rose, S. P. (2019). Developing children’s computational thinking using programming games (Publication No.

27771989) [Doctoral dissertation, Sheffield Hallam University]. ProQuest Dissertations Publishing.

Rose, S. P., Habgood, M. P. J., & Jay, T. (2017). An exploration of the role of visual programming tools in the

development of young children’s computational thinking. The Electronic Journal of e-Learning, 15, 297–

309. https://doi.org/10.34190/ejel.15.4.2368

Rose, S., Habgood, J., & Jay, T. (2018). Pirate Plunder: Game-based computational thinking using Scratch blocks.

In Proceedings of the 12th European Conference on Games Based Learning (pp. 556–564). Academic

Conferences and Publishing International Limited. https://core.ac.uk/download/pdf/160276026.pdf

Rose, S. P., Habgood, M. J., & Jay, T. (2019, May). Using Pirate Plunder to develop children's abstraction skills

in Scratch. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems (pp.

1–6). https://core.ac.uk/download/pdf/189171289.pdf

Rose, S., Habgood, J., & Jay, T. (2020). Designing a programming game to improve children’s procedural

abstraction skills in Scratch. Journal of Educational Computing Research, 58, 1372–1411.

https://journals.sagepub.com/doi/pdf/10.1177/0735633120932871

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., & Saulters, C. (2010, March). Teaching computational

thinking through musical live coding in scratch. In Proceedings of the 41st ACM Technical Symposium on

Computer Science Education (pp. 351–355). https://dl.acm.org/doi/abs/10.1145/1734263.1734384

Saez-Lopez, J., Roman-Gonzalez, M., & Vazquez-Cano, E. (2016). Visual programming languages integrated

across the curriculum in elementary school: A two year case study using Scratch in five schools. Computers

& Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003

Scullard, S., Tsibolane, P., & Garbutt, M. (2019). The role of Scratch visual programming in the development of

computational thinking of non-is majors. In Proceedings 2019 Pacific Asia Conference on Information

Systems (PACIS) (pp. 79). https://aisel.aisnet.org/pacis2019/79

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. Corwin Press.

http://doi.org/10.4135/9781506313214

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with

K-12 science education using agent-based computation: A theoretical framework. Education and Information

Technologies, 18, 351–380. http://doi.org/10.1007/s10639-012-9240-x

Serbec, I. N., Cerar, Š., & Zerovnik, A. (2018). Developing computational thinking through games in scratch. In

Proceedings at 11th National Conference with International Participation, Education and Research in the

Information Society (pp. 21–30). Plovdiv, Bulgaria

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Slavin, R., & Smith, D. (2009). The relationship between sample sizes and effect sizes in systematic reviews in

education. Educational Evaluation and Policy Analysis, 31, 500–506.

https://doi.org/10.3102/0162373709352369

Smith, S. M. (2019). A comparison of computer-based and robotic programming instruction:Impact of scratch

versus cozmo on middle school students’ computational thinking, spatial skills, competency beliefs, and

engagement (Publication No. 27602977) [Doctoral dissertation, Kent State University]. ProQuest

Dissertations Publishing.

Smith, S., & Burrow, L. E. (2016). Programming multimedia stories in Scratch to integrate computational thinking

and writing with elementary students. Journal of Mathematics Education, 9, 119–131.

https://educationforatoz.com/images/2016_Commentary_6.pdf

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teacher’s rules: Exploring the impact of teaching

styles on young children’s programming knowledge in Scratch Jr..International Journal of Technology and

Design Education, 28, 347–376. https://doi.org/10.1007/s10798-017-9400-9

Swaid, S., & Suid, T. (2019, December). Computational thinking education: Who let the dog out?. In 2019

International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 788–792).

IEEE. http://doi.org/10.1109/CSCI49370.2019.00150

Templier, M., & Paré, G. (2015). A framework for guiding and evaluating literature reviews. Communications of

the Association for Information Systems, 37, 112–137. https://doi.org/10.17705/1CAIS.03706

Ternik, Ž., Koron, A., Koron, T., & Šerbec, I. N. (2017). Learning programming concepts through maze game in

Scratch. In Proceedings at 11th European Conference on Games Based Learning (pp. 661–670). Academic

Conferences International Limited.

Topallia, D., & Cagiltayb, N. E. (2018). Improving programming skills in engineering education through problem-

based game projects with Scratch. Computers and Education, 120, 64–74.

https://doi.org/10.1016/j.compedu.2018.01.011

Turchi, T., & Malizia, A. (2016). Fostering computational thinking skills with a tangible blocks programming

environment. 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp.

232–233). IEEE. https://doi.org/10.1109/VLHCC.2016.7739692

Vinayakumar, R., Soman, K. P., & Menon, P. (2018, July). Fractal geometry: Enhancing computational thinking

with MIT Scratch. In 2018 9th International Conference on Computing, Communication and Networking

Technologies (ICCCNT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCCNT.2018.8494172

Von Gillern, S. (2017). Young children, computer coding, and story creation: An examination of first- and second-

grade children’s multimodal stories and literacy practices when engaged with a multimedia coding

application (Publication No. 10269304) [Doctoral dissertation, Iowa State University]. ProQuest

Dissertations Publishing.

Voogt, J., Fisser, P., & Good, J. (2015). Computational thinking in compulsory education: Towards an agenda for

research and practice. Education and Information Technologies, 20, 715–728.

https://doi.org/10.1007/s10639-015-9412-6

International Journal of Computer Science Education in Schools, March 2023, Vol. 6, No. 1

ISSN 2513-8359

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining

computational thinking for mathematics and science classrooms. Journal of Science Education and

Technology, 25, 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2010, November 17). Computational thinking: What and why. The Link.

http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

Wing, J. M. (2017). Computational thinking’s influence on research and education for all.Italian Journal of

Educational Technology, 25, 7–14. https://doi.org/10.17471/2499-4324/922

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to

embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 565–568.

http://doi.org/10.1007/s11528-016-0087-7

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S. E., & Korb, J. T. (2011). Introducing computational thinking

in education courses. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education

(pp. 465–470). ACM Press. http://doi.org/10.1145/1953163.1953297

Yang, D., Swanson, S., Chittoori, B., & Baek, Y. (2018). Integrating computational thinking in stem education

through project-based learning. In Proceedings of the 5th STEM in Education Conference. ASEE.

https://par.nsf.gov/biblio/10106769

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9.

Computers & Education, 141, 103607. https://doi.org/10.1016/j.compedu.2019.103607

	William H. STEWART1
	Kwanwoo BAEK2
	Abstract
	1. Introduction
	1.1 What is Computational Thinking?
	1.2 What is Scratch Programming/Coding?
	1.3 Why and How Scratch Affects Computational Thinking?

	2. Method
	2.1 Step 1: Search Terms and Databases
	2.2 Step 2: Inclusion and Exclusion Criteria
	2.3 Step 3: Assessing the Literature
	2.4 Analyzing and Organization

	3. Results
	3.1 Exploiting Blocks in A Coding Environment
	3.2 Integrating Scratch into Various Disciplines Through Programming
	3.2.1 Coding with Scratch for CT enhancement
	3.2.2 Storytelling with Scratch

	3.3 Scratch Gaming for CT
	3.3.1 Playing Scratch games for CT
	3.3.2 Creating Scratch Games for CT

	3.4 Evaluating Computational Thinking Skills through Scratch projects
	3.4.1 Using Dr. Scratch
	3.4.2 Other Assessment Tools

	3.5 Teaching & Learning Methods /Factors affecting CT of Children

	4. Discussion
	4.1 A Variety of CT Definitions
	4.2 Assessment & Evaluation
	4.3 Variables Affecting CT

	5. Conclusion
	References

