
International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

An Investigation of In-service Teachers’ Perceptions and Development

of Computational Thinking Skills in a Graduate Emerging Technologies

Course

Yi JIN1

Jason R. HARRON1

1Kennesaw State University, United States of America

DOI: https://doi.org/10.21585/ijcses.v6i2.165

Abstract

Computer science (CS) has become a critical part of K–12 education worldwide. Computational thinking (CT) skills

are a key set of competencies in CS education that can solve problems and use computational design to create useful

solutions. However, preservice and in-service teachers are not fully prepared to integrate CS and CT into their

curricula. Furthermore, there are limited special topic courses and educational research on how to facilitate in-service

teachers’ professional learning of CS and CT, as well as their content-specific integration. Therefore, this study

investigated in-service teachers’ perceptions and development of CT skills in an online graduate emerging

technologies course. Theoretically framed by the four cornerstones of CT (i.e., abstraction, algorithms, decomposition,

and pattern recognition), participants perceived that they increased their CT problem-solving and creativity skills but

decreased their collaborative learning and critical thinking skills. Additionally, teachers increased their CT test scores

after taking the course. Most teachers used CT terminology correctly (i.e., algorithms and decomposition). However,

only 59% correctly described abstraction and pattern recognition, while most teachers did not mention debugging.

The authors call on teacher educators to address in-service teachers’ CS knowledge gaps, increase their CT skills, and

select appropriate strategies for CT professional learning.

Keywords: computational thinking, creative computing, online learning, perceptions, teacher education

1. Introduction

Computational Thinking (CT) skills are a key set of competencies that combine problem-solving and computational

design to create useful solutions (Grover & Pea, 2018). Students and teachers with CT skills can collect and analyze

data, decompose problems, recognize patterns, and filter out variables to find novel and elegant solutions. CT helps

people to think like computer scientists and transform complex problems into ones that can be easily understood across

a wide range of subjects. In combination, CT and coding have immense potential to transform K–12 education by

integrating core computational concepts and principles across the curriculum.

In recent years, movements at the national and state levels in the U.S. have aimed to introduce students to computer

science (CS) education by establishing frameworks, standards, and curricula with the goal of expanding CS

opportunities to all. Nationally, this push includes the development of the K–12 Computer Science Framework (2016),

which highlights CT as one of four significant themes that are interwoven throughout. This framework aligns with the

International Society for Technology in Education (ISTE) Standards for Educators and Students by sharing the vision

that CT is important for all teachers and students (ISTE, 2016a, 2016b). Based on these efforts, the Computer Science

Teachers Association (CSTA) has proposed a comprehensive set of K–12 standards in collaboration with multiple

national and international associations to guide how CS education is implemented in practice (CSTA, 2017). Similarly,

many countries have incorporated CS education into their curriculum (Dufva & Dufva, 2016).

https://doi.org/10.21585/ijcses.v6i2.165

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Due to these collective endeavors, CSforALL movements have been fruitful in the U.S. According to the 2022 State

of Computer Science Education report, 37 states have adopted at least five of nine recommended policies to make CS

part of the education system while 27 states require all high schools to offer at least one CS course (Code.org, CSTA,

& ECEP Alliance, 2022). Across the U.S., 53% of public high schools (13,865) offer fundamental CS, up from 35%

in 2018. Moreover, 76% of students attend a high school that offers a foundational CS course. All 50 states and

Washington D.C. allow CS courses to be counted toward the graduation requirement. Furthermore, Arkansas,

Nebraska, Nevada, South Carolina, and Tennessee require high school students to take CS courses for graduation.

Although there are great advances in offering CS courses at the high school level, only 3.9% of middle school and

7.3% of elementary school students from the 19 states who reported middle and elementary school data offered

foundational CS in grades K-8, highlighting the need to integrate CS into all content areas at the K-8 level to broaden

participation (Code.org, CSTA, & ECEP Alliance, 2022; Kennedy et al., 2021).

Despite the growth in CS offerings, there continue to be access issues in K–12. First, access disparities persist in rural

schools, urban schools, and schools with high percentages of economically disadvantaged students. These disparities

also exist across gender boundaries, with fewer female students enrolled in CS courses across the elementary (49%),

middle (44%), and high school (32%) grade bands (Code.org, CSTA, & ECEP Alliance, 2022). Furthermore, students

from underrepresented populations, such as African American, Hispanic/Latino/Latina/Latinx, and Native

American/Alaskan, are less likely to have CS courses offered at their schools. Compared to their white and Asian

peers, Hispanic/Latino/Latina/Latinx high school students are 1.4 times less likely to take a CS course. Similarly,

English language learners, students with disabilities, and economically disadvantaged students are underrepresented

in CS courses. These data emphasize that besides learning about CS and CT, preservice and in-service teachers also

need to proactively seek strategies to teach these underrepresented students.

Although there are strong pleas to integrate CS and CT into all K–12 content areas (Grover & Pea, 2018; Kennedy et

al., 2021), most teachers have not been able to achieve this goal in practice. One significant barrier causing the stagnant

CT implementation includes a lack of preparation from teacher education programs and minimum professional

development from schools and districts. For example, research shows that few teacher education programs provide

CT training to preservice teachers (Yadav et al., 2017a). In addition, many K–12 in-service teachers had little

knowledge about CT and did not know how to implement CT in their classrooms (Sands et al., 2018). In-service

teachers also lack strategies for teaching CS and CT to underrepresented students (Gretter et al., 2019). Teachers even

expressed that they were anxious about developing new learning resources and using novel technologies (Meerbaum-

Salant et al., 2013), especially when teaching CT concepts and computing-related subjects (Grover & Pea, 2013). All

these shortcomings underline the need for teacher educators to provide support and professional learning to both

preservice and in-service teachers in integrating CS and CT into their subject areas and curricula (Voogt et al., 2015;

Yadav et al., 2017b).

For in-service teachers, research has shown that targeted professional learning helps teachers improve their CT

understanding and skills (Bower et al., 2017; Jaipal-Jamani & Angeli, 2017; Ketelhut et al., 2020). However,

professional learning in literature occurred mostly in professional development programs, not courses in teacher

education. Therefore, educational researchers need to design specific courses that facilitate teachers’ professional

learning in CS and CT, especially for elementary and middle school in-service teachers to design content-specific

integration (Kennedy et al., 2021). In turn, this need warrants more studies examining the effectiveness of such

courses. There is a limited number of this type of research in literature, especially those focusing on using the creative

coding concept (Brennan, 2015; Yurkofsky et al., 2019). Thus, this study aims to investigate in-service teachers’

perceptions and development of CT skills in a required emerging technologies course as part of an online instructional

technology graduate program. The details of the design of this professional learning course and its effectiveness shed

light on how to prepare in-service teachers to integrate CS and CT into their content areas. Moreover, the findings add

to the literature on CT integration using the creative coding concept. Therefore, the current research intends to answer

the following research questions:

(1) What are in-service teachers’ perceptions about their CT skills before and after taking the graduate

emerging technologies course?

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

(2) Is there a difference in in-service teachers’ CT test scores after taking the course?

(3) How frequently and accurately do in-service teachers apply CT terminology in their final reports?

2. Literature Review

To better understand what researchers currently know about how teachers develop their CT skills, a review of the

literature is provided below. This review includes a brief overview of the skills, practices, and pedagogy associated

with CT, and summarizes how CT has been studied in K–12 and teacher education programs.

2.1 Computational Thinking Skills, Practices, and Pedagogy

Computational thinking (CT) has its origins in the 1980s, stemming from research about using personal computers

and computing environments to support the social processes of learning while aiding in the development of higher-

order cognitive skills (Papert, 1980; Pea & Kurland, 1984; Solomon, 1988). Wing (2006) brought CT to the

mainstream discussion with her seminal and influential Communications of the ACM article, where she argues that

CT is not only for computer scientists but serves as a set of attitudes and skills that are universally applicable to

everyone. In particular, CT provides its users with various mental tools to solve problems, design systems, and

understand human behaviors using a broad range of CS concepts.

Since the publication of Wing’s article over 15 years ago, there have been more than 31,000 publications about CT

indexed by Google Scholar. Expanding upon Wing’s foundational definition, Barr and Stephenson (2011) provided

educators with an operational definition, which defined CT as a problem-solving process involving the following

steps: (a) formulating a problem in such a way that the use of computer technology can help us solve it; (b) analyzing

data and representing that data through models or simulations; (c) identifying possible solutions to the problem posed;

(d) generalizing this process to a wide variety of situations and issues.

However, despite the popularity of CT within the educational research community, there is still no consensus about

how CT should be universally defined (Cansu & Cansu, 2019; Grover & Pea, 2018). The early definitions, which

centered around the four cornerstones of abstraction, algorithms, decomposition, and pattern recognition, have been

expanded upon to include a wide variety of CT skills/concepts and practices. For example, Mills et al. (2021) recently

published a report that places CT at the intersection of computing, computer science, and programming. Their report

proposes that CT consists of a set of skills and practices that can be applied to solve problems. CT skills include

abstraction, algorithmic thinking, debugging, decomposition, pattern recognition, and selecting tools. CT practices

combine these skills to solve problems through the creation of computer programs (i.e., automation), data

visualizations, or computational models. Lastly, these CT skills and practices are centered around the use of inclusive

pedagogies which includes strategies “for engaging all learners in computing, connecting applications to students’

interests and experiences, and providing opportunities to acknowledge and combat biases and stereotypes within the

computing field” (Mills et al., 2021, p. 10).

Similarly, Yaşar et al. (2015) considered computational pedagogy an inherent outcome of computing, math, science,

and technology integration. They firmly believe that computational modeling and simulation technology (CMST) can

be used to improve teachers’ technological pedagogical content knowledge (TPACK) (Mishra & Koehler, 2006; Yaşar

et al., 2015). Thus, Yaşar et al. (2015) extended TPACK into Computational Pedagogical Content Knowledge to

highlight computational pedagogy.

For this particular study, the researchers decided to use the operational definitions from the BBC Bitesize courses,

which were also used as instructional materials in the course. The website defines that “computational thinking allows

us to take a complex problem, understand what the problem is and develop possible solutions. We can then present

these solutions in a way that a computer, a human, or both, can understand” (BBC Bitesize, n.d., What is computational

thinking section, para. 2). Furthermore, they define the four cornerstones of CT as

● Decomposition - Breaking down a complex problem or system into smaller, more manageable parts.

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

● Pattern recognition - Looking for similarities among and within problems.

● Abstraction - Focusing on the important information only, ignoring irrelevant detail.

● Algorithms - Developing a step-by-step solution to the problem, or the rules to follow to solve the problem

(BBC Bitesize, n.d., What is computational thinking section, para. 3).

2.2 Computational Thinking in K–12 Education

Traditionally, CS has been introduced at the high school level, focusing on teaching the computer programming skills

needed to pass the AP CS exam (Goode, 2008). CT breaks this mold by acknowledging that students in younger grades

(K–3) have the cognitive capabilities to apply computational skills to relevant problems (Papdakis, 2021; 2022). These

skills can be introduced through “unplugged” activities that do not require digital devices (Mills et al., 2021), such as

having students give each other step-by-step instructions on how to brush their teeth (Hello Ruby, 2019). Other

developmentally appropriate devices, such as Beebots or Codeapillar, allow students to manually program algorithms

by giving step-by-step instructions at the push of a button (Papadakis et al., 2021). Besides these physical computing

tools and activities, coding apps are used widely by younger learners, such as ScratchJr, Lightbot, Kodable, and Daisy

the Dinosaur (Papdakis, 2021). In particular, Papadakis (2022) conducted a literature review on ScratchJr and found

that it helped young learners understand CT concepts, practice coding skills, develop social-emotional skills, introduce

students to STEM learning, especially numeracy concepts, and help them develop problem-solving strategies,

planning methods, and thinking skills. Therefore, CT can be taught to young students and should be taught as early as

possible (Kotsopoulos et al., 2017; Papadakis, 2021; 2022; Yadav et al., 2011).

In upper-grade levels (4–12), students can continue to develop their CT skills through the use of block-based

programming languages, such as Scratch, or through the exploration of devices that utilize the Blockly programming

library (Weintrop, 2021). Some of these devices include BBC micro:bit, Circuit Playground Express, Lego

Mindstorms, Ozobots, Raspberry Pi, and Sphero. The user-friendly nature of these block-based programming

languages allows for an entry point to computer science not only for students but also for teachers who are learning to

code for the first time. Kalogiannakis et al. (2021) conducted a systematic review of the use of BBC micro:bit in

elementary schools. They found that students and teachers show a positive attitude towards the tool. Moreover,

students believe that micro:bit encourages creativity and facilitates their learning of the conceptual and procedural

knowledge of CT and problem-solving. However, the findings also indicate teachers’ lack of confidence in designing

their own activities and instructions.

There is a trend to integrate CT into K–12 content areas. For example, CT has become a core scientific practice in

STEM (NGSS, 2013; Weintrop et al., 2016). To facilitate empirical research, Weintrop et al. (2016) proposed a

Computational Thinking in Mathematics and Science Taxonomy with four categories to ground CT in STEM. These

categories include (a) data practices, (b) modeling and simulation practices, (c) computational problem-solving

practices, and (d) systems thinking practices. Furthermore, CT integration into the science classrooms is well-

researched on topics such as adding coding activities with little support for science learning (Grover et al., 2015),

integrating CT into the science content knowledge of science textbooks (Wilkerson & Fenwick, 2017), and integrating

computation as used by STEM professionals (Orton et al., 2016).

Empirical research about CT integration in math is expanding as well. In a scoping review, Hicknott et al. (2017)

found that most CT integration in K–12 mathematics classrooms mainly concentrated on teaching programming skills

and rarely focused on mathematical concepts in probability, statistics, and measurement of functions. Likewise,

Barcelos et al. (2018) conducted a systematic review and found 42 studies. Fourteen programming languages were

used in 22 studies, with Scratch being the most popular one. These studies also covered a wide range of math skills

and contents, which were developed in conjunction with CT. The researchers suggested that interest in investigating

the relationship between CT and math was growing.

Concerning CT instructions in K–12 settings, two main approaches are used, unplugged and programming activities.

Huang and Looi (2021) conducted a critical review of the unplugged pedagogies used in K–12. They found that most

unplugged activities were designed for younger students and non-specialist teachers and they were popular across age

groups and learner characteristics. They summarized that unplugged pedagogy supports CT development,

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

complements programming to develop CT, integrates with other subjects to develop CT, and facilitates teacher

learning about CT and CS.

For teaching coding in K–12, Hsu et al. (2018) found that teachers mostly used visual programming languages in their

CT instruction. Teachers’ top strategies for CT instruction are project-based learning, problem-based learning,

cooperative learning, and game-based learning. In contrast, other activities involving aesthetic experience, design-

based learning, and storytelling are rarely adopted. To determine the general effectiveness of using programming for

developing K–12 students’ CT skills, Sun et al. (2021) conducted a meta-analysis. They found 86 empirical studies

with 114 effect sizes. According to their results, programming activities could improve K–12 students’ CT skills. They

also found some instructional design factors that were more conducive to the goal, which were interdisciplinary

integration of programming, setting the duration to be within one week to one month, having a class size of fewer than

50 students, and a practical selection of programming instrument and CT assessment types. Because of the popularity

of Scratch as a programming language in K–12 CT instruction, numerous scholars have conducted research to analyze

the impact of Scratch on fostering CT. Montiel and Gomez-Zermeño (2021) conducted a systematic review and found

30 articles. They suggested that Scratch is suitable for teaching CT in K–12 education. Although research investigating

CT skills in K–12 is prolific, studies investigating how preservice and in-service teachers are prepared for learning

and teaching CT skills are relatively scarce, underscoring a need to conduct more empirical research on the teacher

population.

2.3 Coding and Computational Thinking in Teacher Education

While the topic of teaching CS in K–12 schools has recently received widespread interest, issues related to teaching

coding and CT as part of teacher education have existed for over 40 years (Bull et al., 2020; Schmidt-Crawford et al.,

2019). Most notably, the debate in favor of introducing programming to children in K–12 environments stems from

Seymour Papert and the publication of Mindstorms (Papert, 1980). In his book, Papert argues that by learning

computer programming children teach the computer how to think, which can serve as a catalyst for children to embark

on the epistemological journey of thinking about their own thinking. Designed as a tool for learning, Papert and a

team of researchers at MIT developed the Logo Programming Language (Logo Foundation, 2014). Early versions of

the Logo allowed people to control a robotic turtle, which Papert (1980) described as a “computational object-to-

think-with” (p. 11). The turtle eventually migrated to the computer screen as a controllable graphic called a “sprite,”

which could be used to draw shapes, graphics, and patterns.

In the early 1980s, Logo and other programming languages (e.g., BASIC and Pascal) were starting to find their way

into the K–12 classrooms. For example, by January 1983, the state of California had established 15 Teacher Education

and Computing Centers with the goal of providing training to teachers in mathematics and CS (Gray, 1983). A few

months later, Apple announced their Kids Can’t Wait program, which aimed to place 9,250 Apple IIe computers in

California elementary and secondary schools (Uston, 1983). Each computer included a copy of the Apple Logo, and

representatives from Apple dealers were trained to assist teachers in how to use the programming language.

While Logo had an initial uptake by enthusiastic progressive educators in the US and UK, by the mid-to-late 1980s

the majority of teachers dreaded the Logo training sessions out of a fear of being embarrassed in front of their

colleagues, or by being “shown up” by students in the classroom who had more expertise at debugging code (Agalianos

et al., 2001). Although Logo was initially seen as a promising way to transform curriculum, cognitive and

metacognitive studies from the mid-1980s found little to no difference between Logo and non-Logo users (Ames,

2018). Despite these failures in the K–12 setting, researchers at MIT continue to develop new platforms, such as

LEGO/logo, which allowed people to build programmable machines with LEGO bricks (Resnick & Ocko, 1990). As

part of the LEGO/logo project, a new version of the Logo was created called Logo Blocks (Logo Foundation, 2014).

This innovation allowed users to create programs by snapping together jigsaw-like puzzle pieces instead of writing

text-based lines of code. This block-based coding innovation was incorporated into a new Logo programming

environment called Scratch, which was officially launched to the public in 2007 (Resnick et al., 2009).

While the timing of Wing’s 2006 article on CT and the 2007 release of Scratch are not directly correlated, they both

serve as a catalyst for the reintroduction of CS into teacher education programs. One of the challenges with introducing

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

these concepts into teacher education is addressing misconceptions about what delineates CS, CT, and coding. As

Yadav et al. (2017a) point out, while CS unplugged activities and block-based programming languages like Scratch

are an approachable way to introduce preservice and in-service teachers to CT, care must be taken in teacher education

programs to ensure that CT is not mistakenly equated with programming or instructional technology. Their survey

study, which examined 134 preservice teachers’ conceptions of CT and classroom implementation, found that

participants defined CT in terms of problem-solving and logical thinking, and often associated the concept with the

use of a computer. They recommend that teacher educators should embed CT within educational technology and

content-specific method courses. By doing so, preservice teachers will have more opportunities to think

computationally and gain experience with CT as a generic set of skills that do not require a computer.

While CT does not require a computer, robotics and other physical computing tools have been used to introduce

preservice and in-service teachers to CT. Jaipal-Jamani and Angeli (2017) studied how 21 preservice teachers learned

about CT as part of an elementary science methods course. Their study found that throughout the semester-long course,

preservice teachers’ interest and self-efficacy toward robotics increased and that participants showed gains in CT skills

such as learning how to write algorithms and debug programs. Additionally, Mason and Rich (2019) performed a

literature review that synthesized 21 studies on elementary preservice and in-service teachers’ attitudes, self-efficacy,

or knowledge to teach computing, coding, or computational thinking. As part of their review, six of the studies focused

on both CT and robotics. They found that although most interventions were relatively short in duration, training and

professional development led to gains in preservice and in-service teachers’ computing content knowledge and self-

efficacy.

In addition, Bower et al. (2017) have also shown that in-service K–8 teachers can improve their CT pedagogical

capabilities through a combination of “unplugged” and block-based coding activities. They conducted a series of CT

workshops which found that teachers developed their CT understanding, pedagogical capacities, technological

knowledge, and confidence through these targeted professional learning opportunities. While research has shown that

teachers can be successful in learning how to code as part of their in-service training, these coding and CT skills do

not automatically transfer to their teaching practices (Guven & Kozcu Cakir, 2020). Instead, teachers need to be

introduced to CT within the context of the subject area in which they teach (Yadav et al., 2017c).

2.4 The Impact of the COVID-19 Pandemic on Teachers’ Professional Learning of CS and CT

The COVID-19 pandemic has also been posing challenges in providing in-service teachers with needed professional

learning opportunities on CS and CT. Virtual professional development (PD) programs have become a popular way

to solve participation problems. For example, Jocius et al. (2021) transformed their summer PD workshops into a

virtual conference format, including emerging technology tools, pre-PD training, synchronous and asynchronous

sessions, Snap! Pair programming, live support, and live networking. They found that the digital tools, formats, and

support for teacher engagement and collaboration were the most effective changes they made that increased

participants’ self-efficacy in teaching CT, supporting collaboration, enabling participants to design CT-infused

content-area lessons, and learning about strategies for virtual, hybrid, and face-to-face classroom teaching. Based on

the overall success, this group of researchers commented that they plan to continue to develop and use virtual PD.

Similarly, Mouza et al. (2022) decided to utilize a virtual PD institute for K–12 in-service teachers, which includes

both synchronous and asynchronous sessions. Participants reported higher scores in knowledge and skills after the

virtual PD program, as well as a higher level of confidence and preparation to teach CS in practice. Both Jocius et al.

(2021) and Mouza et al. (2022) pointed out the importance of teachers’ collaboration and sharing officially and

unofficially during virtual PD programs. Jocius et al. (2021) cautioned the researchers to increase the number of

facilitators, provide more extensive pre-workshop training, and carefully select virtual tools. Comparably, Mouza et

al. (2022) especially recommend diversifying and broadening teacher participation, providing differentiated

instruction, increasing hands-on activities, and prioritizing teachers’ engagement.

To address the need for content-specific integration of CS and CT and broadened participation, the authors of this

study introduced in-service teachers to CT and coding as part of a graduate-level online course. These teachers

developed their own content-specific CT lessons and implemented those lessons in their K–12 classrooms,

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

makerspaces, or as part of after-school programs. In particular, this study aims to investigate in-service teachers’

perceptions and development of CT skills in this required emerging technologies course as part of an online

instructional technology graduate program.

3. Methods

In this section, the researchers describe the implementation of a case study methodology to study in-service teachers’

perceptions and development of CT skills (Yin, 2017). Using a holistic single-case design, the unit of analysis is

bounded to 29 participants who were enrolled in a graduate emerging technologies course during the Fall of 2021.

3.1 Research Context and Module Design

Creating with Emerging Technologies is an asynchronous online graduate-level course that is designed to introduce

in-service teachers to trends and issues related to instructional technology and design. This course was launched in

the Fall of 2021 with four class sections that averaged 20 students per section. The course consists of eight modules,

including (1) Introduction to Constructionism, (2) Computational Thinking, (3) Algorithms in Education, (4) Machine

Learning and Artificial Intelligence, (5) Learning Spaces (i.e., makerspaces, Fab Labs, and active learning spaces),

(6) eXtended Reality (i.e., virtual, augmented, and mixed reality), (7) Open Educational Resources (OER), and (8)

The Creative Classroom. As part of a 15-week course, the first seven modules are designed to take two weeks each,

with the last module serving as a one-week final reflection. Each module consists of required reading, online videos,

a written reflection, and either a coding, electronics, or 3D modeling project. During the first week of each module,

students complete the readings, watch the videos, and post a 300-500 word summary as part of a Google Slide design

journal. During the second week, students reply to at least two of their peers, and complete a weekly project (e.g.,

creating a digital story in Scratch). The required materials for the course include the SparkFun Inventor’s Kit for

micro:bit, which includes a micro:bit, breadboard, and various electrical components such as LEDs, resistors, wires,

potentiometer, servomotor, and switches (see Figure 1). While the course is designed for the micro:bit V2 (which

includes a built-in speaker, microphone, and capacitive touch), this research study used the micro:bit V1 due to supply

chain shortages. Kits for the study were purchased with internal grant funds and two of the four class sections were

picked via a random number generator to participate in the study.

Figure 1. BBC micro:bit with a breadboard, wires, and electronic components.

As part of the course modules, participants are introduced to block-based coding using Scratch (Scratch, n.d.) and

Microsoft Makecode for micro:bit (Microsoft Makecode, 2022). Activities with these platforms include creating a

digital story in Scratch (Module 1), programming two inputs and outputs with the BBC micro:bit (Module 2),

programming and wiring two inputs on outputs with the breadboard (Module 3), and creating an interactive robotic

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

pet (Module 4). These activities are part of the first four modules in the course and are supported by prerecorded video

tutorials, plus two weekly synchronous “Hour of Code” sessions for live troubleshooting. Additionally, as part of the

second module, students are introduced to CT through required readings (Grover & Pea, 2018; Wing, 2006) and

complete an online quiz based on the BBC Bitesize CT learning modules (BBC Bitesize, n.d.). While CT is the focus

of the second module, the concepts and terminology are reinforced throughout the entire course. As part of the fifth

module, participants developed a lesson proposal for a Creative Computing Project, which involved teaching CT and

a design process (e.g., creative play, design thinking, or engineering design process) in an alternative setting (e.g., a

non-traditional classroom, makerspace, or after-school program.) Suggested Creative Computing Projects included

hands-on CS Unplugged activities, digital storytelling in Scratch, or breadboarding with Makecode and the BBC

micro:bit. After implementing their project, participants wrote a Creative Computing Project final report, which

documented the design and implementation of their project and was due by the end of the seventh module. The final

report includes a section on CT, where participants are encouraged to use CT terminology as part of their open-ended

responses.

3.2 Participants

Overall, 29 in-service teachers voluntarily participated in this study. Among them, 24 teachers completed both the pre

and post-surveys while one teacher only filled out the presurvey. Four teachers did not respond to the survey requests.

Based on the 25 responses to the demographic questions, six teachers identified as men and 19 as women. Five

participants were 23-26 years old, two were 27-32 years old, six were 32-40 years old, nine were 40-50 years old, and

three were more than 50 years old. Fourteen teachers are white, seven are African Americans, three are Asians, and

one is in the other category. Nine participants had Bachelor’s degrees while 16 had Master’s degrees. The years of

teaching experience ranged from 2 to 28 years. These participants also taught in a variety of content areas and some

of them taught in several categories: science (8), all subject areas (6), social studies (6), English Language Arts (4),

math and science/STEM (3), health and physical education (2), food science and nutrition (1), video production (1),

and one participant did not report their content area. Seven teachers worked in elementary schools, ten in middle

schools, six in high schools, and two in the K–12 levels.

Twenty-four in-service teachers filled out the survey with questions about their competencies in programming

languages. Three teachers said that they had some background in coding such as a Bachelor’s degree in Computer

Information Systems, coursework in computing languages, and teaching experiences with coding and robotics in their

classrooms. However, 21 teachers reported that they did not have any coding background prior to the course. One

teacher did not answer the questions. Teachers also reported their competencies with various coding languages (see

Table 1). Overall, in-service teachers did not have extensive experience in programming languages. Furthermore, the

majority of the teachers never programmed anything. Compared to other programming languages, teachers had

relatively more experience in using educational coding languages, such as Scratch and OzoBlockly.

Table 1. In-Service teachers’ self-reported competencies in programming languages (n = 24).

Programming

languages

Never

programmed in

this language.

Minimal

experience.

Maybe

compiled a

test program.

Some

experience.

Wrote several

small to

medium-sized

programs.

Substantial

experience.

Wrote several

small to medium-

sized programs.

Extensive

experience.

Wrote many

programs.

C++ 21 2 / 1 /

JAVA 18 4 2 / /

Visual Basic 22 1 / 1 /

Python, Perl, or

other scripting-

21 3 / / /

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

based languages

JavaScript, HTML,

ASP, or other web-

based languages

17 6 1 / /

Scratch,

OzoBlockly, or

another block-

based coding

5 11 7 / 1

3.3 Data Collection and Analysis

The researchers used a validated survey instrument called the CTS scale to collect data on in-service teachers’

perceptions of CT skills. The researcher who designed the survey instrument computed Cronbach’s Alpha of the

overall scale and reported an internal consistency coefficient of .969 (Yağci, 2019). The survey used in the current

study has ten demographic questions and 42 Likert-scale questions on four variables: (a) problem solving (20

questions), (b) collaborative learning & critical thinking (8 questions), (c) creativity (9 questions), and (d) algorithmic

thinking (5 questions). A pre and post-survey design was used. An informed consent form was sent to students in the

course. Once the participants signed the consent form, a link to the presurvey was sent to them. It took students around

15 minutes to complete the survey. At the end of the coding instructions, a link to the post-survey was sent to the

participants and it took them around 15 minutes to finish the post-survey. Cronbach's Alpha ranges from .45 to .89

(presurvey: .81, .74, .80, .53; post-survey: .89, .62, .79, .45). Cronbach’s Alphas of the first three variables indicate

they are very reliable, which demonstrates a high level of internal consistency for the scales with this specific sample.

Cronbach’s Alphas of the last scale, algorithm thinking, show it is a moderately reliable scale with the current sample

(Hinton et al., 2004). Pair-sample t-tests were used to examine whether there were statistically significant differences

in teachers’ perceptions of CT.

A test of CT skills was also used in this study. This test has 12 multiple-choice questions and four open-ended

questions. Participants took a pretest before learning the modules and afterward, they took the post-test. Paired-sample

t-tests were conducted to investigate whether there were statistically significant differences in teachers’ pre and post-

test scores. These test scores are a way of measuring teachers’ CT skills, which provides triangulation to the self-

reported data on teachers’ CT perceptions.

Qualitative data consisted of the participants’ Creative Computing Project final report. This report included eight

open-ended sections, one of which was devoted to CT. The prompt for the CT section stated, “Using language such

as abstraction, decomposition, pattern recognition, and algorithms, describe the computational thinking that you

observed as part of your Creative Computing Project. If you could redesign your lesson, what would you do to

encourage more computational thinking?” Based on the themes of abstraction, decomposition, pattern recognition,

algorithms, and debugging the researchers used deductive coding (Miles et al., 2019) to identify whether the CT

terminology was used correctly, incorrectly, or was absent based on the definitions of the BBC Bitesize CT learning

modules (BBC Bitesize, n.d.). The researchers calibrated their coding criteria by analyzing two of the participants’

CT sections together and then coded the other 27 participants separately. Once coding was complete, the researchers

initially agreed on the use of 93% of participants’ use of terminology. Based on a Cohen Kappa, interrater reliability

(IRR) was found to be 0.86, or a “near-perfect agreement” (Cohen, 1960; Ranganathan et al., 2017). The data was

then reanalyzed to resolve any disagreements until 100% IRR was achieved.

4. Results

The researchers analyzed both quantitative and qualitative data to answer the three research questions, focusing on in-

service teachers’ perceptions and development of CT skills. Findings were triangulated using three types of data from

the self-reported survey, CT pre and post-test, and the CT section of participants’ final written report on their CT

implementation. In the following section, results are written to answer each research question.

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

4.1. RQ 1: What were in-service teachers’ perceptions about their CT skills before and after taking the graduate

emerging technologies course?

In-service teachers’ CT perceptions changed after taking the modules on coding and creative computing (see Table

2). There was a statistically significant improvement in their perceptions of problem-solving, t(24) = -3.99, p < .001,

from 80.16 ± 6.81 to 86.44 ± 7.43, an improvement of 6.28 ± 7.88. A statistically significant decrease was found in

teachers’ perceptions of collaborative learning and critical thinking, t(24) = 1.99, p = .03, from 19.16 ± 5.23 to 17.36

± 4.12, a decrease of 1.80 ± 4.52. Last, the researchers discovered a statistically significant increase in teachers’

perceptions of creativity, t(24) = -2.21, p = .02, from 35.28 ± 4.69 to 36.92 ± 3.82, an increase of 1.64 ± 3.71. Changes

in problem-solving had a large effect size of .88, while differences in collaborative learning & critical thinking and

creativity had small effect sizes of .38. Algorithmic thinking had no statistically significant change.

Table 2. Results from the paired sample t-tests on in-service teachers’ CT perceptions (n=25).

CT perceptions

Pre Post Paired sample t-tests

M SD M SD t p Cohen’s d

Problem solving 80.16 6.81 86.44 7.43 -3.99 <.001*** .88

Collaborative

learning & critical

thinking

19.16 5.23 17.36 4.12 1.99 .03* .38

Creativity 35.28 4.69 36.92 3.82 -2.21 .02* .38

Algorithmic thinking 19.28 2.19 18.72 2.11 1.22 .12 .26

Note. * p < .05; ** p < .01; *** p < .001.

4.2 RQ 2: Was there a difference in in-service teachers’ CT test scores after taking the course?

In-service teachers took the same test focusing on CT skills before and after the coding and creative computing

modules. The test has a total of 100 points. Their pre and post-test scores of CT skills had a wide range, with pre-

scores ranging from 28 to 100 and post-scores ranging from 25 to 100. Their pre and post-test scores changed after

taking the coding and creative computing modules. There was a statistically significant improvement in their CT

scores, t(23) = -1.74, p < .05, from 65.17 ± 19.04 to 73.04 ± 18.52, an improvement of 7.88 ± 22.18. The effect size

is .42, a medium effect size.

The researchers conducted another paired sample t-test to further examine the difference in the test scores of the 12

multiple-choice questions. There was a statistically significant improvement in their scores on the multiple-choice

questions, t(23) = -3.57, p < .001, from 36.88 ± 11.96 to 45.63 ± 10.35, an improvement of 8.75 ± 12.00. The effect

size is .78, a large effect size. Overall, according to the CT test scores, in-service teachers developed their CT skills

after studying the modules.

4.3 RQ 3: How frequently and accurately did in-service teachers apply CT terminology in their final reports?

As described in the Data Analysis section, two researchers coded the qualitative data focusing on the frequency and

accuracy of the CT concepts, which were collected from participants’ final reports after implementing their course

projects. Table 3 illustrates a few examples of how in-service teachers wrote about the terminology of CT skills.

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Table 3. Examples of teachers’ writing on the terminology of CT skills.

CT

terminology

Examples from qualitative data

Used correctly Used incorrectly

Abstraction An example of pattern recognition used by the students

is knowing that an animal classified as a mammal has to

give live birth, have warm blood, have fur or hair, and

breathe with lungs. Students used the process of

abstraction to be able to filter out any unnecessary

information that is not needed in order to introduce their

newly discovered animal.

Abstraction: The students reread the

ending and we decided to ignore the

entirety of Chapter 23 which is the

last chapter of the novel. The

students had lots of debate about

whether or not the project should

start from the moment Jonas leaves

versus the last chapter. To help the

students, we watched the last ten

minutes of “The Giver” movie which

really appealed to all the students.

Due to some PG-13 thematic

elements, I could not show the entire

movie.

Algorithms To develop solutions to solving this problem, the

students will use algorithmic thinking. To gain an

understanding of this process, I will ask the students to

make a sandwich. In doing this, we will discuss the

sequence and order of making a sandwich using

algorithmic thinking. In using the Scratch program,

code blocks are called scripts. A script is an ordered list

of instructions that can also be called an algorithm. The

character in the program is called a sprite. The stage

refers to the background of the story or the game.

Algorithms: Students used the

tutorials for adding saved images as

sprites and backdrops in Scratch.

Decomposition This was followed by having students give verbal

directions in pairs to accomplish a simple task such as

writing “hello” with a pen. This introduces students to

some of the concepts of computational thinking by

asking students to engage in decomposition and

breaking the task down into smaller parts.

When coding using cups as a hands-

on manipulative, scholars were able

to recognize patterns to create the

codes and decomposition to solve

premade codes.

Pattern

recognition

Teacher reviewed patterns in strings of shapes to

remind students of the concept of patterns. The teacher

explained to students that pattern recognition can

make coding easier. The teacher asked students to open

their Scratch codes to look for patterns. The teacher

explained to students how to use code to make their

Sprites repeat actions. Students demonstrated using

Scratch code the concept of repeating an action in their

digital storyboard.

The students will use pattern

recognition to help with coding the

movements and speech for each

background to help make the coding

more organized and appropriate for

each scene.

Debugging To test their thinking, students had opportunities to try

out the command language created by other groups –

they worked collaboratively to debug any steps and

provided feedback to their peers for ways to make the

process more efficient for other users.

/

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Table 4 shows the numbers and percentages of the terms that were used correctly, incorrectly, or not mentioned at all.

It is noticeable that most teachers used two CT terms correctly, algorithms and decomposition. However, only 59%

of teachers used the terms abstraction and pattern recognition correctly. Furthermore, most teachers did not mention

debugging at all, possibly due to the term being absent from the final report’s question prompt. The finding highlights

the need to emphasize certain CT terms, specifically abstraction, pattern recognition, and debugging, in future

iterations.

Table 4. Usage of the CT terminology in teachers’ final reports (n = 29).

CT terminology Used correctly Used incorrectly Absent

n % n % n %

Abstraction 17 59% 4 14% 8 28%

Algorithms 25 86% 1 3% 3 10%

Decomposition 23 79% 3 10% 3 10%

Pattern recognition 17 59% 3 10% 9 31%

Debugging 4 14% / 0% 25 86%

Additionally, the researchers ran multiple Pearson’s correlation tests using the demographic variables and the data

from the survey, test, and final reports. However, no statistically significant correlation was found. This finding

revealed that no relationships were found between the demographic variables, survey results, tests, and usage scores.

Moreover, it means that the self-reported data from the CT perceptions survey did not correlate with the performance-

based data from the CT test and terminology usage scores.

5. Discussion

5.1 Impact on In-service Teachers’ CT Perceptions

The purpose of this study was to investigate in-service teachers’ perceptions and development of CT skills in an online

graduate emerging technologies course. Data analysis indicated that participants reported that they developed some

aspects of their CT skills, such as problem-solving and creativity. Moreover, the change in their perceptions of

problem-solving had a large effect size. These findings demonstrated that the online course had a positive impact on

teachers’ perceptions of CT skills, especially problem-solving and creativity. These results were also motivating since

the course modules were designed to focus on creative computing with ample opportunities for problem-solving.

Similar findings were found in other virtual PD programs (Jocius et al., 2021; Mouza et al., 2022).

Nevertheless, at the same time, teachers’ perceptions of collaborative learning and critical thinking skills decreased

after taking the course. One plausible reason might be the lack of peer coding opportunities. The authors recognized

the benefits of peer coding as evidenced by findings in the field (Campe et al., 2020; Hanks et al., 2011). Even so,

since this course was an online course, it was challenging to design peer coding activities that allowed multiple in-

service teachers to program the same project due to various reasons such as lack of time and lack of proper Web 2.0

tools for peer coding. Jocius et al. (2021) used Snap! Pair programming and live support methods in their virtual PD

program, which might be promising strategies to use. The authors also plan to explore live peer coding tools like

Glitch.com and Twitch.tv for future iterations. Furthermore, this finding warrants more research on peer coding in

online courses and the effectiveness of various tools and approaches for peer coding activities in various learning

modalities.

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

While the effect size is small, there is evidence that these creative computing activities have the potential for fostering

more creativity in the classroom. All computational projects in the course were designed to be open-ended with

inclusive pedagogies in mind, to ensure that all participants could be creative in how they express their ideas and

identities. Creative computing is an emerging branch of computer science that is gaining recognition through the

integration of coding, interactive art, and making (Blikstein, 2018). This approach is less used in research and practice,

but deserves more attention for it involves aesthetic experience, design-based learning, and storytelling (Hsu et al.,

2018). The computational tools and devices used in this study are just one feasible way of enabling teachers to engage

in creative computing while also making connections between CT and their subject areas. The authors recognize that

there are other creative computing curricula that are publicly available (Creative Computing Lab, n.d.) and encourage

teachers and teacher educators to explore how CT can be used to foster creativity in the classroom.

5.2 Impact on In-service Teachers’ Development of CT Skills

Besides examining in-service teachers’ perceptions of CT skills, the authors also analyzed the pre and post-test scores

on CT skills. Findings revealed that overall in-service teachers improved their test scores after the modules, which

demonstrated the development of CT skills. These results infer that the modules are effective in developing in-service

teachers’ CT skills. Several design factors might contribute to the modules’ effectiveness. First, the course content

was chunked to build on knowledge from previous modules. In-service teachers used Scratch, a block coding

programming language, to create their digital storytelling projects first. Once they developed foundational CT and

coding skills using block-based coding, they wrote codes on the Microsoft Makecode platform to program their BBC

micro:bit. Last, they transitioned to breadboarding and creating their robotic pet, which was more challenging due to

the need to troubleshoot both the digital code and the physical electrical components. To summarize, the projects were

purposefully designed to follow an easy-to-difficult progression in order to achieve maximal improvement

(Wisniewski et al., 2019).

Another design feature is the synchronous “Hour of Code” office hours, which were offered twice a week for in-

service teachers to create, discuss code, and hang out with the course instructor. Although these sessions were optional,

in-service teachers joined the sessions from time to time. Moreover, these sessions were recorded for in-service

teachers to watch anytime anywhere. This method offered in-service teachers more instructional time and

opportunities to ask questions, create, and troubleshoot in a synchronous group setting. Providing live support and

prioritizing teachers’ engagement have been justified as useful strategies for virtual professional learning in the

literature (Jocius et al., 2021; Mouza et al., 2022).

A third design feature is the open-ended course projects, which utilized a “low threshold, high ceiling” approach. This

strategy allows in-service teachers to engage in a variety of projects and provides room for them to consider their

contexts and subject areas. To facilitate this method, the course instructor curated and created ample course materials

that matched teachers’ different abilities and learning preferences. Future research should examine the design features

of such a course, propose instructional models, and design criteria to help teacher educators better design such courses.

Nonetheless, results from the descriptive data revealed that there was a big gap in the testing scores of these in-service

teachers. Some teachers earned full marks on the pre and/or post-tests while other teachers scored relatively low for

both tests. This result is somewhat alarming because it shows that some in-service teachers are not well-equipped with

enough CT skills and it will be challenging for them to design CT-related curricula. It also indicates that more

preparation on the knowledge and application of CT is needed.

Pedagogical approaches that might be helpful to facilitate further preparation or professional development efforts are

adaptive learning (Hooshyar et al., 2021), personalized learning (Moon et al., 2020), and instructional technology

coaching (Garvin et al., 2019; Israel et al., 2015). The authors recommend teacher educators pay attention to the gap

in teachers’ prior knowledge of CT and coding and design preparation and professional development accordingly.

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

5.3 Correlations between Self-reported and Performance-based Data

Pearson’s Correlation tests revealed no statistically significant correlations between the demographic variables, self-

reported data, and performance-based data. In other words, in-service teachers’ perceptions of their CT skills did not

correlate with their actual CT skills demonstrated in the performance-based data. Furthermore, there was no correlation

between the two types of performance-based data, the CT test scores and the CT terminology scores. These findings

have direct implications for future research, which could explore the correlation between other self-reported data, such

as CT attitudes and self-efficacy, and various types of performance-based data measuring CT skills and CT

implementation. In addition, more validated and standardized instruments are needed to measure teachers’ CT

implementation.

5.4 Beyond the Four Cornerstones of Computational Thinking

As demonstrated by the findings of the qualitative data, terminology related to the four cornerstones of computational

thinking (i.e., abstraction, decomposition, pattern recognition, and algorithms) were used by the majority of

participants. While these cornerstones were established early in the development of CT frameworks, the concepts

related to CT skills and practices have expanded to include numerous other concepts such as debugging, selecting

tools, automation, computational modeling, and data practices (Mills et al., 2021). As teacher educators expand the

learning of CT in teacher preparation and professional development programs, it is crucial to look beyond the four

cornerstones to ensure teachers and students receive a solid foundation in the concepts and practices that will prepare

them for later engagement in CS. For example, professionals in CS engage in an iterative process of testing, debugging,

and evaluating to ensure their programs function as designed. Similar to learning how to play a musical instrument,

both CT and CS require practice and repetition in order to improve skills, develop fluency, and accomplish larger

goals.

The authors recommend that those developing professional development and courses related to CT should investigate

frameworks that move beyond the four cornerstones and include a broader range of CT skills and practices (e.g.,

Grover & Pea, 2018; Mills et al., 2021). While the four cornerstones initially serve as a good introduction to short-

term professional development, the concepts associated with CT have widely expanded over the past 15 years.

Additionally, more emphasis should be placed on developing a conceptual understanding of abstraction, which

Jeanette Wing (2010) considers to be the most high-level thought process in CT. Teacher educators should provide

ongoing professional development that seeks to cultivate a deeper understanding of CT and CS concepts with the goal

of achieving a higher degree of K–12 integration.

6. Limitations

Limitations of this study include a relatively small sample size of 29 participants, of which 24 completed both surveys.

Despite the small sample, researchers were able to produce meaningful results from the data across various statistical

tests. Another limiting factor includes the use of a self-reported survey instrument to measure in-service teachers’ CT

perceptions before and after taking the course. All participants were enrolled in an emerging technology course as part

of an Instructional Technology graduate program. As a result, participants likely identified as advocates for technology

in the classroom and may have more experience with CT than teachers enrolled in other graduate programs. While

CT was included as the focus of the second module, the concepts and terminology are reinforced throughout the entire

course. This includes a CT section in the final written Creative Computing Project report. This study design focused

on the change in CT perceptions and skills before and after the course, further studies are needed to measure the impact

of individual modules or topics. Furthermore, this study took place as part of an asynchronous online course, thus

findings may not be generalizable to synchronous, in-person, or hybrid settings.

7. Conclusion

This study found that in-service teachers enrolled in an online asynchronous graduate emerging technologies course

were able to improve their CT problem-solving and creativity skills through a series of learning modules and activities

with large effect sizes, which indicates the effectiveness of a virtual course. Despite these gains, participants reported

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

a decrease in their collaborative learning and critical thinking skills, however, with a small effect size. Most teachers

were able to correctly apply the terms algorithms and decomposition in their final reports. However, only 59% of

teachers correctly used the term abstraction and pattern recognition, and most teachers did not mention debugging at

all.

In general, more needs to be done to help in-service teachers develop their CT skills. As this study has demonstrated,

it is possible for in-service teachers to develop these skills asynchronously and online with a certain degree of success.

However, more research is needed to better understand how to facilitate the development of CT collaborative learning

and critical thinking skills in different teaching and learning formats, such as face-to-face, hybrid, and especially

virtual. Those teaching CT skills should model and practice the correct use of terminologies, such as abstraction and

pattern recognition, which were the most frequently misused terms in this study. In addition, greater emphasis should

be placed on testing and debugging in order to move beyond the four cornerstones of CT. More empirical research is

needed that addresses how in-service teachers develop and implement their CT skills. In addition, course developers

should engage in design-based research to help the academic community better understand how teachers can develop

a deeper understanding of CT, implement CT skills in their subject areas, and cultivate a sustained interest in CS.

References

Agalianos, A., Noss, R., & Whitty, G. (2001). Logo in mainstream schools: The struggle over the soul of an

educational innovation. British Journal of Sociology of Education, 22(4), 479–500.

https://doi.org/10.1080/01425690120094449

Ames, M. G. (2018). Hackers, computers, and cooperation: A critical history of Logo and constructionist learning. In

Proceedings of the ACM on Human-Computer Interaction, 2(18), 1–19. https://doi.org/10.1145/3274287

Barcelos, T. S., Muñoz-Soto, R., Villarroel, R., Merino, E., & Silveira, I. F. (2018). Mathematics learning through

computational thinking activities: A systematic literature review. Journal of Universal Computer Science,

24(7), 815–845.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K–12: What is involved and what is the role

of the computer science education community? ACM Inroads, 2(1), 48–54.

https://doi.org/10.1145/1929887.1929905

BBC Bitesize. (n.d.). Introduction to computational thinking.

https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1

Blikstein, P. (2018). Pre-college computer science education: A survey of the field [Report]. Google LLC.

https://goo.gl/gmS1Vm

Bower, M., Wood, L. N., Lai, J. W., Highfield, K., Veal, J., Howe, C., Lister, R., & Mason, R. (2017). Improving the

computational thinking pedagogical capabilities of school teachers. Australian Journal of Teacher

Education, 42(3), 53–72. https://doi.org/10.14221/ajte.2017v42n3.4

Bull, G., Garofalo, J., & Hguyen, N. R. (2020). Thinking about computational thinking: Origins of computational

thinking in educational computing. Journal of Digital Learning in Teacher Education, 36(1), 6–18.

https://doi.org/10.1080/21532974.2019.1694381

Brennan, K. (2015). Beyond technocentrism. Constructivist Foundations, 10(3), 289–296.

https://constructivist.info/10/3/289.brennan

Campe, S., Denner, J., Green, E., & Torres, D. (2020). Pair programming in middle school: variations in interactions

and behaviors. Computer Science Education, 30(1), 22–46. https://doi.org/10.1080/08993408.2019.1648119

https://doi.org/10.1080/01425690120094449
https://doi.org/10.1145/3274287
https://doi.org/10.1145/1929887.1929905
https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1
https://goo.gl/gmS1Vm
https://doi.org/10.14221/ajte.2017v42n3.4
https://doi.org/10.1080/21532974.2019.1694381
https://constructivist.info/10/3/289.brennan
https://doi.org/10.1080/08993408.2019.1648119

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Cansu, S. K., & Cansu, F. K. (2019). An overview of computational thinking. International Journal of Computer

Science Education in Schools, 3(1), 1–11. https://doi.org/10.21585/ijcses.v3i1.53

Code.org, CSTA, & ECEP Alliance. (2022). 2022 State of computer science education: Accelerating action through

advocacy. https://advocacy.code.org/stateofcs

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20,

37–46. https://doi.org/10.1177/001316446002000104

Creative Computing Lab. (n.d.). Creative computing curriculum. Harvard Graduate School of Education.

https://creativecomputing.gse.harvard.edu/guide/

CSTA (2017). K–12 Computer science standards. Retrieved from https://drive.google.com/file/d/1-

dPTAI1yk2HYPKUWZ6DqaM6aVUDa9iby/view

Dufva, T., & Dufva, M. (2016). Metaphors of code—structuring and broadening the discussion on teaching children

to code. Thinking Skills and Creativity, 22, 97–110. https://doi.org/10.1016/j.tsc.2016.09.004

Garvin, M., Killen, H., Plane, J., & Weintrop, D. (2019, February). Primary school teachers' conceptions of

computational thinking. In Proceedings of the 50th ACM Technical Symposium on Computer Science

Education (pp. 899–905). https://doi.org/10.1145/3287324.3287376

Goode, J. (2008, March). Increasing diversity in K–12 computer science: Strategies from the field. In Proceedings of

the 39th SIGCSE Technical Symposium on Computer Science Education (pp. 362–366).

https://doi.org/10.1145/1352322.1352259

Gretter, S., Yadav, A., Sands, P., & Hambrusch, S. (2019). Equitable learning environments in K–12 computing:

Teachers’ views on barriers to diversity. ACM Transactions on Computing Education (TOCE), 19(3), 1–16.

https://doi.org/10.1145/3282939

Gray, L. E. (1983). TECC/8: A Teacher Education and Computing Center. Teacher Education Quarterly, 10(4). 8–

21.

Grover, S., & Pea, R. (2013). Computational thinking in K–12. A review of the state of the field. Educational

Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. In S. Sentance, E.

Barendsen, & C. Schulte (Eds.) Computer science education: Perspectives on teaching and learning in school

(pp. 19–38). Bloomsbury.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for

middle school students. Computer Science Education, 25(2), 199–237.

https://doi.org/10.1080/08993408.2015.1033142

Guven, G., & Kozcu Cakir, N. (2020). Investigation of the opinions of teachers who received in-service training for

Arduino-assisted robotic coding applications. Educational Policy Analysis and Strategic Research, 15(1),

253–274. https://doi.org/10.29329/epasr.2020.236.14

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in education: A literature

review. Computer Science Education, 21(2), 135–173. https://doi.org/10.1080/08993408.2011.579808

https://doi.org/10.21585/ijcses.v3i1.53
https://advocacy.code.org/stateofcs
https://doi.org/10.1177/001316446002000104
https://creativecomputing.gse.harvard.edu/guide/
https://drive.google.com/file/d/1-dPTAI1yk2HYPKUWZ6DqaM6aVUDa9iby/view
https://drive.google.com/file/d/1-dPTAI1yk2HYPKUWZ6DqaM6aVUDa9iby/view
https://doi.org/10.1016/j.tsc.2016.09.004
https://doi.org/10.1145/3287324.3287376
https://doi.org/10.1145/1352322.1352259
https://doi.org/10.1145/3282939
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.29329/epasr.2020.236.14
https://doi.org/10.1080/08993408.2011.579808

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Hello Ruby. (2019, September 2). Episode 02: computational thinking [Video]. YouTube.

https://www.youtube.com/watch?v=K3vwRQCfTHc

Hickmott, D., Prieto-Rodriguez, E., & Holmes, K. (2018). A scoping review of studies on computational thinking in

K–12 mathematics classrooms. Digital Experiences in Mathematics Education, 4(1), 48–69.

https://doi.org/10.1007/s40751-017-0038-8

Hinton, P. R., Brownlow, C., McMurray, I., & Cozens, B. (2004). SPSS Explained. Routledge Inc. East Sussex,

England.

Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G. J., Wang, M., Lim, H., & Delev, D. (2021). From gaming

to computational thinking: An adaptive educational computer game-based learning approach. Journal of

Educational Computing Research, 59(3), 383–409. https://doi.org/10.1177/0735633120965919

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions

based on a review of the literature. Computers & Education, 126, 296–310.

https://doi.org/10.1016/j.compedu.2018.07.004

Huang, W., & Looi, C. K. (2021). A critical review of literature on “unplugged” pedagogies in K–12 computer science

and computational thinking education. Computer Science Education, 31(1), 83–111.

https://doi.org/10.1080/08993408.2020.1789411

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide

computational thinking: A cross-case qualitative analysis. Computers & Education, 82, 263–279.

https://doi.org/10.1016/j.compedu.2014.11.022

ISTE (2016a). ISTE standards for educators. https://www.iste.org/standards/for-educators

ISTE (2016b). ISTE standards for students. https://www.iste.org/standards/iste-standards-for-students

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on elementary preservice teachers’ self-efficacy, science

learning, and computational thinking. Journal of Science Education and Technology, 26(2), 175–192.

https://doi.org/10.1007/s10956-016-9663-z

Jocius, R., Joshi, D., Albert, J., Barnes, T., Robinson, R., Cateté, V., Dong, Y., Blanton, M., O’Byrne, I., & Andrews,

A. (2021, March). The virtual pivot: Transitioning computational thinking PD for middle and high school

content area teachers. In Proceedings of the 52nd ACM Technical Symposium on Computer Science

Education (pp. 1198–1204). https://doi.org/10.1145/3408877.3432558

K–12 Computer Science Framework. (2016). https://k12cs.org

Kalogiannakis, Μ., Tzagkaraki, E., & Papadakis, St. (2021, March 18-19). A systematic review of the use of BBC

micro:bit in primary school. In Proceedings of the 10th Virtual Edition of the International Conference New

Perspectives in Science Education, 379–384, Florence, Italy. https://doi.org/10.26352/F318_2384-9509

Kennedy, C., Kraemer, E. T., & Benson, L. C. (2021). Active learning techniques for computing education. In C.

Mouza, A. Yadav, & A. Ottenbreit-Leftwich (Eds.) Preparing pre-service teachers to teach computer

science: Models, practices, and policies (pp. 3–28). Information Age Publishing, Inc.

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J., & McGinnis, J. R. (2020). Teacher change following a

professional development experience in integrating computational thinking into elementary science. Journal

of Science Education and Technology, 29(1), 174–188. https://doi.org/10.1007/s10956-019-09798-4

https://www.youtube.com/watch?v=K3vwRQCfTHc
https://doi.org/10.1007/s40751-017-0038-8
https://doi.org/10.1177/0735633120965919
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1080/08993408.2020.1789411
https://doi.org/10.1016/j.compedu.2014.11.022
https://www.iste.org/standards/for-educators
https://www.iste.org/standards/iste-standards-for-students
https://doi.org/10.1007/s10956-016-9663-z
https://doi.org/10.1145/3408877.3432558
https://k12cs.org/
https://doi.org/10.26352/F318_2384-9509
https://doi.org/10.1007/s10956-019-09798-4

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A pedagogical

framework for computational thinking. Digital Experiences in Mathematics Education, 3(2), 154–171.

https://doi.org/10.1007/s40751-017-0031-2

Logo Foundation. (2014). Logo history. https://el.media.mit.edu/logo-foundation/what_is_logo/history.html

Mason, S. L., & Rich, P. J. (2019). Preparing elementary school teachers to teach computing, coding, and

computational thinking. Contemporary Issues in Technology and Teacher Education, 19(4), 790–824.

https://citejournal.org/volume-19/issue-4-19/general/preparing-elementary-school-teachers-to-teach-

computing-coding-and-computational-thinking

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with Scratch.

Computer Science Education, 23(3), 239–264. https://doi.org/10.1080/08993408.2013.832022

Microsoft Makecode. (2022) Microsoft Makecode for micro:bit (Version 4.0.18) [Computer software]. Microsoft.

https://makecode.microbit.org/

Miles, M. B., Humberman, A. M., & Saldaña, J. (2019). Qualitative data analysis: A methods sourcebook (4th ed.).

Sage Publishing.

Mills, K., Coenraad, M., Ruiz, P., Burke, Q., & Weisgrau, J. (2021, December). Computational thinking for an

inclusive world: A resource for educators to learn and lead. Digital Promise.

https://doi.org/20.500.12265/138

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher

knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-

9620.2006.00684.x

Montiel, H., & Gomez-Zermeño, M. G. (2021). Educational challenges for computational thinking in K–12 education:

A systematic literature review of “Scratch” as an innovative programming tool. Computers, 10(6), 69.

https://doi.org/10.3390/computers10060069

Moon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching computational thinking in

personalized OERs. Smart Learning Environments, 7(1), 1–19. https://doi.org/10.1186/s40561-019-0108-z

Mouza, C., Mead, H., Alkhateeb, B., & Pollock, L. (2022). A Virtual Professional Development Program for

Computer Science Education During COVID-19. TechTrends, 66(3), 436–449.

https://doi.org/10.1007/s11528-022-00731-y

NGSS Lead States (2013). Next generation science standards: For states, by states. The National Academies Press,

Washington, DC. https://nap.nationalacademies.org/catalog/18290/next-generation-science-standards-for-

states-by-states

Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., & Wilensky, U. (2016, July). Bringing computational

thinking into high school mathematics and science classrooms. In C. K. Looi, J. L. Polman, U. Cress & P.

Reimann (Eds.), Transforming Learning, Empowering Learners: The International Conference of the

Learning Sciences (ICLS) 2016 (pp. 705–712). Singapore: International Society of the Learning Sciences.

https://repository.isls.org/handle/1/183

Papadakis, S. (2021). The impact of coding apps on young children Computational Thinking and coding skills. A

literature review. Frontiers in Education, 6, 657895. https://doi.org/10.3389/feduc.2021.657895

https://doi.org/10.1007/s40751-017-0031-2
https://el.media.mit.edu/logo-foundation/what_is_logo/history.html
https://citejournal.org/volume-19/issue-4-19/general/preparing-elementary-school-teachers-to-teach-computing-coding-and-computational-thinking
https://citejournal.org/volume-19/issue-4-19/general/preparing-elementary-school-teachers-to-teach-computing-coding-and-computational-thinking
https://doi.org/10.1080/08993408.2013.832022
https://makecode.microbit.org/
https://doi.org/20.500.12265/138
https://doi.org/10.1111/j.1467-9620.2006.00684.x
https://doi.org/10.1111/j.1467-9620.2006.00684.x
https://doi.org/10.3390/computers10060069
https://doi.org/10.1186/s40561-019-0108-z
https://doi.org/10.1007/s11528-022-00731-y
https://nap.nationalacademies.org/catalog/18290/next-generation-science-standards-for-states-by-states
https://nap.nationalacademies.org/catalog/18290/next-generation-science-standards-for-states-by-states
https://repository.isls.org/handle/1/183
https://doi.org/10.3389/feduc.2021.657895

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Papadakis, S. (2022). Can preschoolers learn computational thinking and coding skills with ScratchJr? A systematic

literature review. International Journal of Educational Reform, 1–34.

https://doi.org/10.1177/10567879221076077

Papadakis, S., Vaiopoulou, J., Sifaki, E., Kalogiannakis, M., & Stamovlasis, D. (2021). Attitudes towards the use of

educational robotics: Exploring pre-service and in-service early childhood teacher profiles. Education

Sciences, 11(5), 204. https://doi.org/10.3390/educsci11050204

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in

Psychology, 2(2), 137–168. https://doi.org/10.1016/0732-118X(84)90018-7

Ranganathan, P., Pramesh, C. S., & Aggarwal, R. (2017). Common pitfalls in statistical analysis: Measures of

agreement. Perspectives in Clinical Research, 8(4), 187–191.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654219/

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM,

52(11), 60–67. https://doi.org/10.1145/1592761.1592779

Resnick, M., & Ocko, S. (1990). LEGO/logo--learning through and about design. Cambridge: Epistemology and

Learning Group, MIT Media Laboratory.

Sands, P., Yadav, A., & Good, J. (2018). Computational thinking in K–12: In-service teacher perceptions of

computational thinking. In M. S. Khine (Ed.), Computational thinking in the STEM disciplines (pp. 151–

164). Springer, Cham. https://doi.org/10.1007/978-3-319-93566-9_8

Schmidt-Crawford, D. A., Lindstrom, D. & Thompson, A. D. (2018). Coding for teacher education: A recurring theme

that requires our attention. Journal of Digital Learning in Teacher Education, 34(4), 198–200.

https://doi.org/10.1080/21532974.2018.1499992

Scratch. (n.d.). Scratch (Version 3.0) [Computer software]. Scratch Foundation. https://scratch.mit.edu/

Solomon, C. (1988). Computer environments for children: A reflection on theories of learning and education. MIT

Press.

Sun, L., Hu, L., & Zhou, D. (2021). Which way of design programming activities is more effective to promote K‐12

students' computational thinking skills? A meta-analysis. Journal of Computer Assisted Learning, 37(4),

1048–1062. https://doi.org/10.1111/jcal.12545

Uston, K. (1983, October). 9,250 Apples for the teacher. Creative Computing, 9(10), 178–183.

https://www.atarimagazines.com/creative/v9n10/178_9250_Apples_for_the_teac.php

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:

towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728.

https://doi.org/10.1007/s10639-015-9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational

thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–

147. https://doi.org/10.1007/s10956-015-9581-5

https://doi.org/10.1177/10567879221076077
https://doi.org/10.3390/educsci11050204
https://doi.org/10.1016/0732-118X(84)90018-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654219/
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/978-3-319-93566-9_8
https://doi.org/10.1080/21532974.2018.1499992
https://scratch.mit.edu/
https://doi.org/10.1111/jcal.12545
https://www.atarimagazines.com/creative/v9n10/178_9250_Apples_for_the_teac.php
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10956-015-9581-5

International Journal of Computer Science Education in Schools, October 2023, Vol. 6, No. 2, 1ISSN 2513-8359

Weintrop, D. (2021). The role of block-based programming in computer science education. In Understanding

computing education (Vol 1). Proceedings of the Raspberry Pi Foundation Research Seminar series.

https://rpf.io/seminar-proceedings-2020

Wilkerson, M. H., & Fenwick, M. (2017). Using mathematics and computational thinking. In C. V. Schwarz, C.

Passmore, & B. J. Reiser (Eds.), Helping students make sense of the world using next generation science and

engineering practices (pp. 181–204). Arlington, VA: National Science Teachers’ Association Press.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2010). Computational thinking: What and why? [Unpublished manuscript]. Computer Science

Department, Carnegie Mellon University.

https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Wisniewski, M. G., Church, B. A., Mercado, E., Radell, M. L., & Zakrzewski, A. C. (2019). Easy-to-hard effects in

perceptual learning depend upon the degree to which initial trials are “easy.” Psychonomic Bulletin & Review,

26(6), 1889–1895. https://doi.org/10.3758/s13423-019-01627-4

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017a). Computational thinking in teacher education. In P. Rich &

C. B. Hodges (Eds.), Emerging research, practice, and policy on computational thinking (pp. 205–220).

Springer, Cham. https://doi.org/10.1007/978-3-319-52691-1_13

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017b). Computational thinking as an emerging competence domain. In

M. Mulder (Ed.), Competence-based vocational and professional education (pp. 1051–1067). Cham:

Springer.

Yadav, A., Stephenson, C., & Hong, H. (2017c). Computational thinking for teacher education. Communications of

the ACM, 60(4), 55–62. https://doi.org/10.1145/2994591

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011, March). Introducing computational thinking

in education courses. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education

(pp. 465–470). https://doi.org/10.1145/1953163.1953297

Yağcı, M. (2019). A valid and reliable tool for examining computational thinking skills. Education and Information

Technologies, 24(1), 929–951. https://doi.org/10.1007/s10639-018-9801-8

Yaşar, O., Maliekal, J., Veronesi, P., Little, L., & Vattana, S. (2015, March). Computational pedagogical content

knowledge (CPACK): integrating modeling and simulation technology into STEM teacher education. In

Society for Information Technology & Teacher Education International Conference (pp. 3514–3521).

Association for the Advancement of Computing in Education (AACE).

https://www.learntechlib.org/primary/p/150489/

Yin, R. K. (2017). Case study research and application: Design and methods (6th ed.). Sage Publishing.

Yurkofsky, M. M., Blum-Smith, S., & Brennan, K. (2019). Expanding outcomes: Exploring varied conceptions of

teacher learning in an online professional development experience. Teaching and Teacher Education, 82, 1–

13. https://doi.org/10.1016/j.tate.2019.03.002

https://rpf.io/seminar-proceedings-2020
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://doi.org/10.3758/s13423-019-01627-4
https://doi.org/10.1007/978-3-319-52691-1_13
https://doi.org/10.1145/2994591
https://doi.org/10.1145/1953163.1953297
https://doi.org/10.1007/s10639-018-9801-8
https://www.learntechlib.org/primary/p/150489/
https://doi.org/10.1016/j.tate.2019.03.002

	Yi JIN1
	Jason R. HARRON1
	1. Introduction
	2. Literature Review
	2.1 Computational Thinking Skills, Practices, and Pedagogy
	2.2 Computational Thinking in K–12 Education
	2.3 Coding and Computational Thinking in Teacher Education
	2.4 The Impact of the COVID-19 Pandemic on Teachers’ Professional Learning of CS and CT

	3. Methods
	3.1 Research Context and Module Design
	3.2 Participants

	3.3 Data Collection and Analysis
	4. Results
	4.1. RQ 1: What were in-service teachers’ perceptions about their CT skills before and after taking the graduate emerging technologies course?
	4.2 RQ 2: Was there a difference in in-service teachers’ CT test scores after taking the course?
	4.3 RQ 3: How frequently and accurately did in-service teachers apply CT terminology in their final reports?

	5. Discussion
	5.1 Impact on In-service Teachers’ CT Perceptions
	5.2 Impact on In-service Teachers’ Development of CT Skills
	5.3 Correlations between Self-reported and Performance-based Data
	5.4 Beyond the Four Cornerstones of Computational Thinking

	6. Limitations
	7. Conclusion
	References

