

1

Rubric for the qualitative assessment of student-designed

Snap! Projects

Nicole Marmé1, Jens-Peter Knemeyer1, Alexandra Švedkijs1

1University of Education Heidelberg

DOI: 10.21585/ijcses.v7i3.226

Abstract

An objective evaluation and assessment of individual student-designed projects are challenging. Appropriate

tools are currently lagging and have to be developed. Block-based programming languages, such as Snap!

are often used for teaching programming basics and the subsequent development of student-designed pro-

gramming projects. @e current research qualitatively developed a rating rubric for Snap! projects to investi-

gate how novices’ programming skills can be evaluated and assessed in a criterion-guided manner. For this

purpose, an evaluation was conducted on a baseline dataset of 36 student projects created over three school

years after a programming course for novices. Based on this database we designed an assessment rubric. A

team of experts reviewed and evaluated the assessment rubric. Following expert evaluation, the rubric was

improved and expanded. Finally, prospective teachers conducted a comparative evaluation of a test data set

consisting of ten Snap! projects of varying complexity, with and without the resulting rubric. @e results show

that the rating rubric significantly improves the comparability of assessments. In addition, a clear differenti-

ation of the projects by level is achieved for the test data set. Furthermore, the assessment rubric enables a

more precise achieved result evaluation in particular rubric category.

Keywords: Computer science, rubric, qualitative assessment, learning outcomes, teaching materials, coding,

programming languages, Snap!

1. Introduction

Global challenges and technological progress have brought about a heightened emphasis on information

technology skills over the last two decades. @e demand for e-learning offers is constantly growing, especially

for IT skills (mmb Institut, 2021). Digitization at all levels and global crises, such as the Covid-19 pandemic,

2

are intensifying discussions across Europe about which skills and abilities will be needed in the future to be

able to participate in social life (European Commission. Directorate General for Communication., 2020).

Regarding digital competences in particular, competence requirements and necessary action steps for the next

decades are being formulated nationally and internationally at various political levels (European Commis-

sion. Directorate General for Education, Youth, Sport and Culture., 2023). @e Council of the European Union

highlights digital literacy as one of the eight key competences for lifelong learning in the 21st century (Pub-

lications Office of the European Union, 2019). @e current framework on European Union digital citizenship

competence DigComp 2.2 lists programming competence as one of the key competences (European Com-

mission. Joint Research Centre., 2022). @e current approach to facing the challenges in Germany, for exam-

ple, is to expand computer science lessons across all grades from fifth grade onwards. For the required

strengthening of programming skills, the current educational plan for computer science recommends block-

based programming for the acquisition of basic knowledge and skills in programming, especially for begin-

ners (Ministerium für Kultus, Jugend und Sport Baden-Württemberg, 2016a, 2016b). @e use of block-based

programming languages often goes hand in hand with the development of individual creative projects (Krugel

& Ruf, 2020; Resnick, Silverman, et al., 2009; Resnick, 2014). To successfully implement block-based pro-

gramming languages in the classroom, a systematic approach is needed to evaluate such creative student

projects. @ere are already some approaches to evaluating block-based programmes as will be discussed in

section 2.2. However, most approaches deal with automated evaluation of the generated code. @is involves

solving pre-designed test tasks and evaluating them automatically. Such systems do not allow for the evalu-

ation of individual projects on open topics. @is paper therefore investigates whether a competency grid can

be used to evaluate open-ended Snap! projects and how such a grid must be structured to ensure valid and

consistent evaluation. To address this question, a multi-phase research design was applied, including the de-

velopment of the rubric, expert validation, and empirical testing with student projects. @e results demonstrate

that the rubric improves the comparability of evaluations and provides a practical, criterion-based tool for

assessing creative, block-based programming projects.

2. Background

2.1 Block-based programming for novices

Block-based programming languages are visual programming languages that use blocks to represent code,

rather than traditional text-based code. @is allows users to create programs by dragging and dropping these

blocks together, without having to write lines of code. A program code is put together like a puzzle by as-

sembling the already available instruction blocks. @ese environments operationalize Papert’s constructionist

principles by providing concrete, manipulable elements that support self-directed creation, experimentation,

and reflection (Papert, 1993). Learners actively construct knowledge, explore multiple solution paths, and

iteratively refine their projects, fostering discovery-based learning and reducing the abstraction barriers typ-

ical of traditional coding (Brennan & Resnick, 2012; Resnick et al., 2009). Platforms such as Snap! enable

3

students to design interactive projects-games, stories, or animations - promoting cognitive engagement, prob-

lem-solving, and creativity. @e visual, block-based interface simplifies syntax, while project sharing, remix-

ing, and collaborative exploration enhance social learning and knowledge co-construction, key aspects of

constructivist and constructionist pedagogy (Papavlasopoulou et al., 2019). Compared to common program-

ming languages that use textual syntax, block-based languages allow easier interaction with the programming

environment and learners can focus more on programming logic instead of dealing with syntactical errors

(Balouktsis, 2016). Block-based languages provide a low barrier to entry and a flexible, expressive environ-

ment. @is allows learners to focus on creative and meaningful projects, fostering computational thinking,

systematic reasoning and digital literacy (Resnick, Maloney, et al., 2009).

Block-based programming languages are characterised by their ability to eliminate syntax errors, reduce cog-

nitive load and shift the focus from memory recall to visual recognition through structured, visual program

construction. @ey are particularly valuable in lowering the entry barrier for novices and enabling intuitive,

interactive learning that fosters engagement and a deeper understanding of core programming concepts (Bau

et al., 2017). In particular, beginners are able to concentrate more on understanding programming concepts

rather than memorising text syntax due to the reduction in cognitive load (Weintrop & Wilensky, 2018)

Block-based programming languages, such as Snap! show significant advantages for introducing program-

ming to novices. @ese languages are considered "easier" than text-based programming languages (Weintrop

& Wilensky, 2015) and enable an introduction to programming for learners without any prior knowledge

(Maloney et al., 2010). For example, the use of block-based programming languages can provide a better

understanding of basic programming concepts, like loops (Mladenović et al., 2020). In addition, block-based

programming languages offer a more visual interface that can make programming concepts more accessible.

Features such as execution visibility, language extensibility and liveness in block-based languages create a

positive attitude towards learning and using them (Perera et al., 2021). @e use of block-based languages also

increases student motivation in introductory programming courses by promoting positive emotions about

performance, which in turn improves learning performance and engagement (Tsai, 2019; Wen et al., 2023).

With block-based programming languages, learners grasp the task more quickly and achieve significantly

more learning goals in the same amount of time compared to those using text-based languages (Price &

Barnes, 2015). Interest in further programming activities is also rated higher after a learning sequence with a

block-based programming language (Weintrop & Wilensky, 2017). @e integration of block-based program-

ming activities significantly improves pupils' computational thinking skills and their self-efficacy in problem

solving. Such activities actively engage learners, promote their independence and strengthen their confidence

in applying programming concepts (Koray & Bilgin, 2023).

Snap! is a further development of the Scratch programming environment, already established in many

schools. Snap! offers some advantages and additional functions compared to Scratch; for example, Snap!

enables comprehensive prototype-based programming by creating objects (Modrow, 2018). In addition, new

blocks can be created as subroutines with control structures, also called the Build Your Own Block principle.

4

@e programming toolbox for object-oriented programming is comprehensive, so that Snap!, in contrast to

Scratch, is a "fully developed programming language" (Modrow, 2018) and is thus in principle also suitable

for advanced computer science teaching. @is is also reflected in the fact that Snap! is now sometimes offered

as an introductory programming language for first semesters of computer science (Garcia et al., 2012). In

summary, learning programming using block-based programming languages such as Snap! offers an acces-

sible and visual approach to learning basic concepts, enabling students to develop essential programming

skills while fostering their creativity, problem-solving abilities, and logical reasoning. Block-based program-

ming languages are moreover based on the vision of enabling programming beginners to implement learning-

by-doing or learning-by-making, where they are free to experiment with their own ideas, such as creating,

sharing, playing, and learning with computers (Harel et al., 1993). @erefore, to promote programming skills

for beginners in a school context, the use of block-based programming languages can be beneficial, especially

for creation of student-designed projects.

2.2 Assessment of block-based programmed student projects

When working in the context of student-designed projects, it is crucial to establish suitable evaluation con-

cepts that offer clear and transparent assessment measures for both teachers and students. By doing so, edu-

cators can review the quality of learning materials and provide valuable feedback to support student learning

and growth. Assessment of student performance and feedback is an essential part of the learning process

(Hattie, 2009). Nevertheless, the assessment process is one of the most complex activities in a teacher's job

(Jürgens & Lissmann, 2015). Effective feedback should focus on the task and process, provide clear guidance

on how to improve, link specifically to goals and performance (Shute, 2008). Additionally, research suggests

that feedback should be specific and focused on the most important aspects of student work (Wiliam, 2011).

@e challenge of assessing student-designed projects lies in their open-ended nature, as they are characterized

by diverse approaches, ideas, and implementations, making direct comparisons difficult.

To address this challenge, various concepts and tools for assessing block-based programming projects have

been proposed. In most assessment concepts, however, there is a lack of consensus regarding the concrete

establishment and weighting of assessment criteria (Da Cruz Alves et al., 2019). @is is probably because

there is currently no standardized competence framework derived from an empirically validated model (Ge-

sellschaft für Informatik, 2016). Moreover, most existing systems were not designed for the evaluation of

authentic, open-ended projects, but rather for standardized, task-based learning contexts. Most authors con-

cerned with assessment, either through the development of tools or the investigation of evaluation processes,

regard their approaches as supplementary to teaching and as a means of supporting learning (Boe et al., 2013;

Denner et al., 2012; Funke & Geldreich, 2017; Koh et al., 2014; Moreno-León et al., 2017; Seiter & Foreman,

2013; Werner et al., 2012; Zhang & Biswas, 2019).

5

Table 1 provides an overview of prominent approaches and tools for assessing block-based programming projects, high-

lighting their aims, methods, strengths, and limitations.

Study (Author,

Year)

Aim / Context Assessment Method Strengths Limitations

Boe et al., 2013 –

Hairball

Evaluate Scratch pro-

jects to identify prob-

lematic or missing

constructs

Static analysis with cus-

tomizable plugins (e.g., in-

itialization, synchroniza-

tion, loops)

Objective, scalable de-

tection of code patterns;

high accuracy (≈99%)

Limited to predefined

patterns; cannot assess

creativity or design;

manual review still

needed

Denner et al.,

2012

Middle school girls’

game projects

(Stagecast Creator)

Research study analysing

108 games using coding

categories (complexity, us-

ability, documentation)

Authentic insight into

conceptual understand-

ing; large dataset

Not a standardized tool;

rule-based, not block-

based; limited transfera-

bility

Koh et al., 2014 –

REACT

Middle school STEM /

Scalable Game Design

classes

Real-time formative as-

sessment of computational

thinking patterns

Timely feedback for

teachers; identifies mis-

conceptions during cod-

ing

Limited to predefined

CT patterns; misses

qualitative and creative

aspects

Werner et al.,

2012 – Fairy Per-

formance Assess-

ment

Game programming

elective using Alice

Performance-based tasks

measuring CT (abstraction,

modelling, problem-solv-

ing)

Authentic, multi-dimen-

sional CT measurement;

supports collaboration

studies

Specific to Alice; high

implementation effort;

limited creativity assess-

ment

Ball & Garcia,

2016 – Au-

tograder λ

University Snap!

courses

Automated grading and

feedback integrated into

Snap!

Scalable grading; imme-

diate feedback; simple

setup

Limited to closed-ended

tasks; no assessment of

creativity or design

Wang et al., 2021

– SnapCheck

Snap! courses with in-

teractive projects

Automated testing using

predefined templates and

simulated user actions

High accuracy (≈98%);

scalable; integrated into

Snap!

Only for testable behav-

iours; setup time-inten-

sive; cannot assess open-

ended creativity

Moreno-León et

al., 2017 – Dr.

Scratch

Scratch programming

contest projects

Automated static analysis

compared to human expert

ratings

Strong correlation with

experts; consistent and

scalable

Ignores creativity and

design; focused on tech-

nical aspects only

As the table (Table 1) shows, automated tools such as Hairball (Boe et al., 2013), Dr. Scratch (Moreno-León

et al., 2017), or SnapCheck (Wang et al., 2021) offer highly scalable solutions and produce consistent results

but are primarily limited to predefined technical patterns and cannot capture creativity or the quality of open-

ended designs. In addition, some systems face technical barriers such as installation issues and a constant

need for updates to remain functional, which affects their acceptance among teachers (e.g., Ball & Garcia,

2016). Even when functioning well, these systems often provide only structural feedback about the code and

lack the ability to evaluate whether a problem was solved in a meaningful way (Moreno-León et al., 2017;

Wang et al., 2021). @ese limitations explain why most authors explicitly recommend using automated sys-

tems as a complement to traditional, teacher-driven assessments rather than as a replacement.

For example, Hairball and Dr. Scratch are powerful tools for detecting certain constructs, but they do not

6

assess design aspects, while SnapCheck provides highly accurate testing of interactive behaviours yet re-

quires significant preparation of templates and is unsuitable for authentic, free-topic projects.

@us, there is still a clear need for research and development to create evaluation instruments that can provide

rich, individualized feedback for authentic student work.

One effective approach to evaluating student-designed projects is using rubrics. Andrade H. defines a rubric

as a one– or two–page document that describes varying levels of quality, from excellent to poor, for a specific

assignment (Andrade, 2000). Rubrics provide a clear and consistent framework for evaluating authentic stu-

dent-designed projects. By making expectations explicit and providing qualitative, criterion-based feedback,

rubrics help students understand how to improve their work and promote deeper learning (Wolf & Stevens,

2007). @e rubric presented in this study was developed specifically for Snap! projects and aims to qualita-

tively capture and objectively assess the outcomes of open-ended, autonomous student projects. It was de-

veloped as part of the evaluation of an interdisciplinary self-learning course, "Smart City" (Svedkijs et al.,

2022) for learning the basics of programming with Snap! to be able to qualitatively record and objectively

assess the student projects created.

3. Method

3.1 Development procedure

We opted for a qualitative and exploratory approach to developing the assessment rubric because the research

question is open and the aim is to generate a practical, field-tested assessment instrument (Döring & Bortz,

2016; Gummels, 2020).

3.2 Teaching sequence

To this purpose, 183 students (the majority with no prior knowledge) in grades 9-11 were taught the basics

of programming with the block-based language Snap! in an approx. 20-hour teaching sequence in the school

years 2018/19, 2019/20 and 2020/21. No one had any previous knowledge of block-based programming.

Following the lesson sequence, the pupils created their own projects in small groups on a free topic. Forty

pupil projects resulted from this and after data cleansing, 36 projects were available. @e rubric was devel-

oped using anonymized student project data, collected with informed consent and without any personal iden-

tifiers, complemented by published projects from the Snap! platform.

7

3.3 Analysis and Drafting

Available projects could be used as a baseline data set for the development of the rubric (Fig.1). @e devel-

opment of the rubric involved a comprehensive process, starting with the analysis of baseline data from

student projects and expert evaluation.

Figure 1:Development process of the assessment rubric

To begin, a thorough analysis of the given dataset was conducted, examining each project's structure and

content to gain a deep understanding of its programming constructs, such as loops and object designs. @is

allowed for systematization and categorization of used programming constructs. @e resulting summaries

enabled definition of three different levels (I, II, III) within the dataset. Based on these findings, a draft of the

rubric was created with twelve thematic categories and three levels.

3.4 Expert Review and Iterative Exchange

We reviewed the initial rubric version together with four educational experts (2 female, 2 male) in the field

of programming for qualitative assessment. We defined experts as individuals with several years of experi-

ence using block-based languages, particularly Snap!, in teaching contexts or those who had published aca-

demically on block-based programming languages. Experts’ review led to refinement through an iterative

exchange process. @e final version featured seventeen categories and four levels. In addition, according to

the expert advice the rubric was supplemented with source code examples, and categories were edited and

put in a different order. Beyond that, a general “project characteristics” category with a keyword-like descrip-

tion of the project characteristics in the respective level was added as an orientation framework. Furthermore,

a “creativity impression” category was introduced. Here, a subjective estimate of project creativity in the

sense of technical originality and inventiveness is to be given.

8

4. Evaluation Process and Testing

To test the developed rubric, we prepared a dataset by selecting ten publicly available Snap! projects that

reflect typical student work after their first exposure to programming. @ese projects varied in complexity,

subject matter, and interactivity, ensuring a representative range of examples. @is dataset illustrates the pos-

sible range of projects and serves as a reference for evaluation.

Finally, nine prospective teachers (male: 4, female: 5) majoring in computer science, technology, mathemat-

ics or natural sciences participated in the evaluation process. @ey had prior knowledge of Snap! or other

block-based programming languages and possessed existing teaching experience. Initially, they rated the

randomly sorted projects without any predetermined criteria using a school mark scale (1 = very good, A; 6

= insufficient, F). Afterward, they received the developed rubric and evaluated the same projects again based

on the specified criteria. @e evaluation of the competence grid was performed in German language.

4.1 Current version of the rubric

@e current version of the rubrici comprises seventeen categories and four levels (0, 1, 2, and 3). For each

category, a level can be awarded in one of the four levels. @e overall level is determined as the sum of all

points awarded within all categories.

@e respective categories cover aspects of object-oriented development (e.g. objects or object communica-

tion), algorithmic design (use of loops, branches, reporters), handling of data (variables, lists), Snap! specific

design options (graphic effects), handling of multithreading (header blocks and multithreading), and code

outsourcing (BYOB). In addition, the "project characteristics" category describes a general implementation

in relation to the corresponding level. @e "creativity impression" category attempts to capture a subjective

impression of the project that cannot be measured by the other categories. All categories and levels are listed

below in descriptive statements translated into the English language.

1. Category “objects”

Level 0: Create an unstructured instruction sequence in a sprite.

Level 1: Create instruction sequences in an existing sprite to implement a specific function, e.g. object draws,

object moves.

Level 2: Create and name another object(s) using a parallel statement sequence.

Level 3: Independently create several other objects with a communication or interaction for modelling a

complex system.

2. Category “stage as an object”

9

Level 0: Cannot recognize stage as an object. No stage backgrounds/functions.

Level 1: Embed the stage in the system: set one or more backgrounds for the stage.

Level 2: Perceive the stage as an object: create a program for designing the stage, for example, by automati-

cally changing the background images, using the graphic effects, time lapses.

Level 3: Perceive the stage as an object: create a program for the stage with object interaction.

3. Category “communication with a user AND/OR with other objects”

Level 0: Cannot use communication instructions.

Level 1: Use condition block to evaluate keyboard or mouse input or colour coding.

Level 2: Create simple communication between objects or with the environment.

Level 3: Create advanced communication between objects/with the user, for example via variables.

4. Category “Use of reporter blocks or predicates”

Level 0: Cannot demonstrate implementation of the reporter and predictor blocks.

Level 1: Use simple reporter blocks, such as random number or x-position.

Level 2: Use reporter/predicator blocks as parameter AND/OR in conditions.

Level 3: Use complex/composite reporter/predicator blocks.

5. Category “Graphical effects, sound effects, draw effects”

Level 0: Cannot demonstrate implementation of effects, etc.

Level 1: Use simple sound/speech/drawing instructions/graphical effects.

Level 2: Control the graphic effects AND/OR use combinations of different properties and sounds.

Level 3: Use graphical effects (effect combinations) meaningfully, for example to visualize a complex plot

or to design the program interface.

6. Category “Hat blocks and multithreading”

Level 0: Always start instruction sequence without a hat block.

Level 1: Use a hat block to start the script, the script runs linearly.

10

Level 2: Create several scripts within a project, but without targeted use of the multithreading concept: scripts

work independently of each other.

Level 3: Use several different hat blocks for a multithreading processing of the programs AND/OR use a hat

block for sending the messages AND/OR "When I start as a clone”.

7. Category “Object actions”

Level 0: Present a loose collection of instructions, no meaningful structure of a program.

Level 1: Create a sequence of instructions with fixed numerical values, e.g. with concrete size specifications

AND/OR create a sequence of instructions for a sprite movement or figure geometry with waypoints.

Level 2: Use control flows with fixed values.

Level 3: Parameterize the statement sequence AND/OR use variables in control flows.

8. Category “Creating variables”

Level 0: Treat data as fixed values, with no variables present.

Level 1: Create and name a variable.

Level 2: Create several variables.

Level 3: Create (a) variable(s) for data exchange between objects (global variables) or within an object (local

variables). Demonstrate meaningful use of local and global variables.

9. Category “Using variables”

Level 0: Use only numbers or words as constants.

Level 1: Change variables as numbers or strings in the course of the program.

Level 2: Change the value of a variable depending on a condition, for example, set false to true.

Level 3: Use variables as data containers for various data such as lists, objects.

10. Category “Using operators”

Level 0: Cannot show use of operators.

Level 1: Use simple mathematical operations, such as plus, minus, etc. in the function as a reporter.

Level 2: Use nested operators with variables AND/OR simple operators within a one-way branch/loop.

11

Level 3: Demonstrate meaningful use of complex operators, e.g. in conditions.

11. Category “Use of predicates in control flows”

Level 0: Cannot show existing termination condition (except for endless loop) AND/OR incorrect termination

condition.

Level 1: Formulate a non-parameterized termination condition for a control flow.

Level 2: Formulate a parameterized termination condition for a control flow.

Level 3: Use operators (e.g. and, or, not) for a termination condition in a condition/loop AND/OR complex

conditions (referring to other objects).

12. Category “Use of conditions”

Level 0: Cannot demonstrate implementation of conditions.

Level 1: Use an if-condition or an if-else condition.

Level 2: Use a nested branch AND/OR use a one-way branch for multiple cases.

Level 3: Show sensible use of complex nesting (but no unnecessary nesting, clear source code).

13. Category “Use of loops”

Level 0: Cannot demonstrate loops implementation.

Level 1: Use a loop.

Level 2: Use a combination of two loops (e.g. nesting them).

Level 3: Use multiple loops and complex loop structures, e.g. For loop.

14. Category “Use of lists”

Level 0: Cannot demonstrate list implementation.

Level 1: Create a simple list AND/OR output the list AND/OR prompt input for a list.

Level 2: Use list elements according to the respective index.

Level 3: Create lists with objects AND/OR further lists AND/OR use complex structures and commands.

15. Category “Build Your Own Block”

Level 0: Cannot demonstrate own block implementation.

12

Level 1: Combine several commands in their own blocks (outsource code).

Level 2: Create a block with a return value or with (a) parameter(s). Create reporter.

Level 3: Create a block with complex parameters AND/OR return values, such as lists and objects.

16. Category “Project characteristics”

(Selected examples; full description in the online version)

Level 0: A simple project with partly correct approaches but overall is inadequate or contains errors. No

concept/no idea available. Loose collection of objects and functions.

Level 1: A project is manageable. 1-2 stage backgrounds are used. @e plot is implemented with 2 to 3 objects.

Simple control flows, instructions, operators are used.

Level 2: @e project has a comprehensive structure. Several stage sets with effects are used. Control struc-

tures, instructions, links are used. Code is outsourced.

Level 3: @e project has a complex structure. @e plot is complex, exciting. Complex control structures,

instructions, links, lists are used. Custom blocks are used with parameters and return values.

17. Category “Creativity impression”

Level 0: "@e task has not been solved."

Level 1: "@e task is solved, but not very creatively".

Level 2: "I understand the concept, it's exciting!"

Level 3: "Wow, that's a cool idea; a successful concept!"

Each level is described with a statement and, if useful, supplemented with a source code example (see exam-

ple Tab. 1 "Using reporters and predicates"):

Table 1: Excerpt of a category from the rubric with four descriptions at each level and corresponding

source code examples.

Cate-

gory

Level 0 Level 1 Level 2 Level 3

13

Using

predi-

cates in

control

flows

Cannot show ex-

isting termination

condition (except

for endless loop)

AND/OR use in-

correct termina-

tion condition

Formulate a non-pa-

rameterized termina-

tion condition for a

control flow

Formulate a non-

parameterized ter-

mination condition

for a control flow

Use operators (e.g. and, or,

not) for a termination condi-

tion in a condition/loop

AND/OR complex conditions

(referring to other objects).

Code

exam-

ple

-

4.2 Description of the test data set

@e dataset used for the testing of the rubric consists of ten exemplary projects taken from the virtual Snap!

library.

All of these projects can be found in the Snap! collection” at: @e link has been hidden for the review process

for anonymity reasons.

@e following criteria were formulated for the dataset:

• @e projects should, as far as possible, have different levels of complexity in source code,

presentation, and plot.

• @e projects can be interpreted as an average student performance after a teaching sequence in

programming for novices.

@e following projects were selected. For reasons of clarity, the projects are presented in ascending order of

complexity - Note: the test persons, however, received the projects in random order.

14

Project 1. Row row - Movement of an object along predefined waypoints.

@e source code exhibits a linear, redundant structure. @e object moves from

one coordinate point to another, and the route is not automated. @e outputs

are implemented using a concurrently running script. @e functionality and

presentation are rudimentary. Overall, it is a simple project with some recog-

nizable multi-threading usage.

Project 2: Rainbow Ball – Movement of an object along a random route with colour change.

@e source code includes a loop and instructions from various categories such

as movement, appearance, etc. @e action is limited to visualization on the

stage, and the representation is animated. Overall, it is an interesting project

with an idea that was not further developed or implemented in a context.

Project 3: Exclusive Complexity – Calculating the average of 10 number inputs.

@e source code has a linear structure, not parameterized, and lacks code mod-

ularization.

@e program flow is linear, with a single thread of execution. @e presentation

includes a background image and an object. Overall, it is a simple project in-

volving mathematical calculations.

Project 4: Avocado gif – An animated postcard featuring an avocado mother plant and its seed.

 @e source code implements multiple objects. Various control structures are

used, and the code is modularized. @e action runs concurrently. @e action

involves visualization without user interaction, and the representation is ani-

mated. Overall, it is a small but visually appealing project with a concept. @e

narrative flow could be further developed.

15

Project 5: Human body scanner – With a lens, various systems of the body can be observed.

@e source code is concise. Instructions from different categories are uti-

lized. @ere is no code modularization or user communication. Overall, it is

a small, visually appealing project with potential for further enhancements.

Project 6: Guessing Game – @e user is required to guess a number within a specific range.

@e source code includes control structures and instructions for user communi-

cation. Code is modularized. @ere are no stage animations, only one object.

Overall, it is a simple project related to a classic task.

Project 7: eCard Challenge – A game and an animated Halloween postcard combined into one. @e user is

required to answer quiz questions.

@e source code incorporates various types of instructions. Object interaction

and communication are present. @e action and presentation are cohesive.

However, the source code lacks modularization, resulting in redundant code

segments. Overall, it is a good project with room for improvement.

Project 8: Fashion game – @e user can dress and style a model.

 An extensive project utilizing instructions from various categories, with code

modularization. It has a complex structure, and the action and visualization

complement each other. Overall, it is a comprehensive project with a clear con-

cept.

16

Project 9: Dogder – A reaction game where the square object needs to avoid black dots.

 @e source code utilizes a comprehensive range of instructions and control

structures. It involves complex interactions, a well-defined narrative flow,

and efficient visualization. However, the code lacks modularization, resulting

in some code redundancy and reduced readability. Overall, it is a complex

project that showcases a wide range of functionalities. Project 10: Shooter

Arcade Game – A shooting game with different levels of complexity.

An extensive project utilizing instructions from various categories, with efficient visualization. It has a com-

plex structure, and the action and visualization complement each other. Overall, it is a comprehensive project

with a clear concept, but the source code may be somewhat challenging to navigate due to its complexity

5. Results

Each project was first assessed with a school grade using German grading system from 1(A = very good) to

6 (F = insufficient). In the second part of the evaluation the test dataset was assessed with the described rubric.

@e rubric consists of 17 categories, each of which can be rated on four performance levels (0–3 points).

@is results in a maximum attainable score of 51 points (17 categories × 3 points). To ensure comparability

between the two evaluation phases, the total rubric score was converted into the German grading system

using a linear transformation formula:

RS: reached score; MS: maximum score

@e following graph (Fig.2) illustrates the comparisons of the mean values of the ten assessments. @e blue

cross represents the average ratings of the projects using grades without the rubric, while the orange cross

represents the mean rubric scores converted using the formula mentioned above.

17

Figure 2: Ke average grades for test dataset. Blue crosses mark average results for grading without a

rubric. Orange crosses mark the average results for grading using the rubric. For better comparison

the score was converted in German school grades from 1(A) to 6(F)

It is noticeable that the projects assessed with the rubric receive significantly lower ratings. Even the best

project, on average, achieves only a good grade (B) compared to grading without the rubric. Four projects

do not meet the minimum requirements (grade D). In the open evaluation without a rubric, most projects

achieve good to excellent grades. Both grading systems show in general the tendency from weak projects to

good projects. Nevertheless, there are some outliers in the evaluation without a rubric, for example regarding

projects 2 and 3 or projects 5 and 6. @e difference in evaluation is indeed significant, with certain projects

showing an average difference of two grades (e.g., Project 4).

@e following diagram (Fig. 3) shows the individual results of the assessment without a rubric.

Figure 3: Dispersion of the results after assessing with a school grade with no predetermined criteria.

Average is marked with a cross.

18

In the first part of subjective grade assessment of the projects, the spread of the grades for the respective

projects is particularly striking. Project 2, for example, is assessed by the experts in a range of grades between

2 (good) and 4 (sufficient). @e dispersion is strikingly high for all projects. Only project 10 is rated as a very

good by all evaluators. Furthermore, it is striking that most projects tend to be assessed in the upper third of

the rating range.

@e assessment of projects shows wide variation within each individual evaluation. For example, one partic-

ipant rates project 2 as well as projects 8 and 9 with a good grade, although in the direct comparison it remains

questionable whether these three projects achieve the same level. At the same time, this participant rates

projects 6 and 7 as significantly worse, with a satisfactory grade. Another participant also evaluates project 2

as good, but again evaluates projects 6,7,8 and 9 with an almost very good grade. In this evaluation model,

it is thus not obvious according to which criteria the evaluations are made and a comparison of the evaluations

among each other becomes almost impossible. @us, this evaluation method does not appear to be transparent

and cannot be used for the evaluation of the student projects.

When using the rubric, a higher consistency of the distribution of points can be observed (Fig. 4) and the

results of the assessment show usually much lower dispersion.

Figure 4: Dispersion of the results after assessing with a rubric. Maximum score result is 51 points for

the best grade. Round dots mark the evaluation of German experts. Average is marked with a cross.

Clear outliers can be observed in projects 6 and 8. In project 6, code outsourcing (Category 15: Build Your

Own Block) in own blocks was sometimes overlooked during the assessment, resulting in an incorrect as-

sessment. Project 8 was partially classified as having a too high level of mastery. Presumably, differences

19

between the second and third levels of the rubric can be recognized less easily by inexperienced raters. For

example, for this project, the third level is awarded in the categories on loops and branches, even though the

source code has a level of only two. Despite the observed inconsistencies, the most projects can be assessed

more homogeneously in each case. All ratings are mostly within one grade. @is means that projects can be

better assigned to the different levels. @us, the projects are evenly distributed among the lower, middle, and

high score ranges. @e following graph (Fig. 5) shows the average deviation in grade points from the mean

assessment grades for the respective projects with and without rubric. @e overall mean deviation is 0.41

without the rubric. Without the ceiling effect, the deviation would probably be significantly higher, especially

for good projects (8-10 comparable with projects 1-7). @e overall mean deviation is 0.24 with the rubric,

demonstrating a substantial decrease in rating variability and improved assessment consistency.

Figure 5: Average deviation from mean grade, blue colour for grading without rubric and orange

colour for grading with the rubric.

@e dispersion of values around the mean is significantly smaller by using the rubric. @e highest average

deviation is 0.48 grade points. In contrast, without the rubric, the maximum average deviation from the mean

is 0.75 grade points. However, particularly as project complexity increases, the dispersion in evaluations with

the rubric also tends to increase. @ere could be two reasons for this. First, evaluating complex structures

requires more knowledge in assessment, making it more challenging for inexperienced evaluators. It may

indicate inexperienced assessors´ inability to differentially assess complexity, as well as their tendency to

uniformly assign a good grade. Second, a smaller evaluation dispersion without the rubric does not neces-

sarily indicate a better quality of assessment. Rather, as the note scale stops, a ceiling effect occurs. @e

assessment results show a ceiling effect, where many projects are concentrated at the higher end of the score

range, making it difficult to distinguish between them. It seems, project 10 is assessed as attaining the highest

level by almost all evaluators without a rubric. Obviously, this project works as a standard in comparison to

20

other projects because it is the most complicated example. @at is the probable explanation for the highest

score on the open grading. But if the projects are mapped to a rubric standard, project 10 does not achieve

the best possible grade because it does not fulfil all the requirements. @is project, like project 8, has a com-

plicated structure, so evaluators probably have difficulties scoring it, even with a rubric. @erefore, this could

explain higher dispersion in the evaluation of complicated projects. @e second reason could be that at higher

levels; the rubric allows for more room for interpretation and evaluative freedom. Overall, it can be still

said that in most projects (except projects 8 and 10), the average deviation from the group mean is signifi-

cantly smaller when using the framework, as Fig. 5 clearly shows.

An individual comparison of the ratings by example person (light grey dot) is shown in the following diagram

(Fig. 6). @is is a participant who awards a very different rating, both with and without the rubric. @e partic-

ipant's ratings without the rubric revealed a ceiling effect, as most projects were scored highly, often receiving

A grades. In contrast, when using the rubric, their evaluations became more nuanced and differentiated, indi-

cating a more refined assessment of the projects.

Figure 6: The results for a single example participant. Orange dots mark the evaluation with a rubric;

blue dots mark the evaluation without a rubric. Corresponding group average is marked with crosses.

@e example data set shows the effects of the rubric. Originally, this participant rated projects significantly

higher than the average. For example, project 4 deteriorates from a very good (1, A) grade to a "fail" (5, E).

Projects 1, 3, 5, 6, 8 also experience a significant deterioration. @is is an interesting phenomenon that could

not be clarified within the framework of this evaluation. @ere was a tendency for all evaluators to be signif-

icantly higher at open grading. Furthermore, when the results of example person are compared with the mean

values, it is noticeable that, with the rubric, the assessment is closer to the general mean values. @e individual

mean deviation is 0.04 grading points (2.12 of 51 points). Except for one project (7), the results of open

grading by example person are far from the average grading. @e mean deviation with open grading is 0.86

grading points. @e rubric allows each rater to evaluate using the same scale as all other raters.

21

To examine the consistency of the evaluations and to determine whether the rubric improved the objectivity

of grading, the interrater reliability (IRR) was calculated for both evaluation phases. For the free grading

phase without predetermined criteria, Kendall’s coefficient of concordance (W) was applied, as this method

is appropriate for ordinal data such as school grades (Gibbons, 1993; Olson et al., 2003; Venugopal et al.,

2024). For the rubric-based evaluation, the raw scores were first converted into the German grading system

with increments of 0.25 (e.g., 5.81 → 5.75) to ensure a direct comparison with the free grading phase. A

higher Kendall’s W indicates greater agreement among raters, with values ranging from 0 (no agreement) to

1 (perfect agreement) (Olson et al., 2003).

@is quantitative analysis provides an objective measure of the reliability of the evaluation process and

demonstrates whether the rubric successfully reduced subjective variation in grading. @e following section

first presents the Kendall’s W values for both evaluation phases and compares the level of agreement among

raters.

Figure 6: Comparison of results for individual projects by category. Selection of three projects. Ke

picture shows an average of all graders.

22

@e interrater reliability analysis revealed a clear difference between the two evaluation phases. Without the

rubric, the agreement among the nine raters was moderate to good, with a Kendall’s W of 0.634 (p < .001).

When using the developed rubric, the level of agreement increased substantially to W = 0.940 (p < .001),

indicating very high to almost perfect concordance between raters.

@is result demonstrates that the rubric not only provides a structured framework for evaluation but also

significantly reduces subjective variation in grading. @e substantial increase in Kendall’s W suggests that

the competence grid helped the raters to apply more consistent and comparable evaluation criteria, thus im-

proving the reliability of the assessment process.

Moreover, the designed rubric enables a more refined analysis of project quality at the individual level,

providing a detailed breakdown of each project's strengths and weaknesses. Fig. 7 illustrates this capability,

presenting a comparative analysis of three exemplary projects, highlighting their distinct characteristics and

achievements. This nuanced evaluation allows educators to provide targeted feedback, fostering growth and

improvement in each student's programming skills.

@is representation method can help to break down each assessment individually into strengths and weak-

nesses as needed. Using the evaluation results, it is possible to explicate single components and compare

them. Specifically in this example, the selected sample dataset could be reviewed in terms of existing con-

cepts and the level of proficiency achieved on average. For example, in the category Use of conditions, the

“shooter arcade game”- project achieves a high level of mastery, “guessing game” project shows moderate

expertise, and the “row row” project lacks understanding in this area. On the base of this analysis method, it

is possible to evaluate learning goals and correlated results and to give more detailed feedback on each pro-

ject.

6. Discussion and Conclusion

@e results of this study demonstrate that the rubric, with its 17 categories, is a comprehensive tool for eval-

uating programming projects. @e primary aim of creating a structured description for creative block-based

programming projects was successfully addressed with this rubric, providing a clear and systematic frame-

work for assessment. Statistical analysis confirmed the reliability of the rubric. Kendall's W showed a high

degree of agreement between assessors, demonstrating that the rubric supports consistent assessments by

different assessors. At the same time, the distribution of scores indicated a possible ceiling effect, as particu-

larly good projects achieved the highest possible score in several categories. @is result shows that future

iterations of the rubric could benefit from the addition of more advanced descriptions in order to better dis-

tinguish particularly high-performing projects. @e lack of correlation between categories suggests that each

category provides unique insights into the project's quality. As a result, the number of categories cannot be

reduced without compromising the effectiveness of the evaluation when the rubric is used to derive a grade.

However, for purely qualitative evaluations, certain categories may be excluded, particularly when specific

23

aspects have not been covered during instruction.

@e comparison of the two assessment forms clearly demonstrated that using a rubric led to criterion-led

assessment, significantly reducing the average deviation of grades and thereby improving comparability be-

tween evaluators. Qualitative feedback from the raters confirmed their satisfaction with the tool, highlighting

its clarity, perceived objectivity, and the sense of “clear conscience” when grading. @e included source code

examples were particularly valued, especially by less experienced assessors.

In terms of feasibility, evaluating programming projects with the rubric proved manageable. Assessing a

single project required about nine minutes, totalling roughly 270 minutes for a class of 30 students. While no

empirical data exist for grading times in computer science, this workload is comparable to grading a standard

mathematics test, which typically takes around 360 minutes (Frank et al., 2023) . @us, the rubric is not only

reliable and comprehensive but also practical for classroom use, even in larger cohorts.

Nevertheless, the rubric has limitations. Its construction is based on student projects and qualitative expert

assessment. As a result, not all possible Snap! categories are currently covered in the rubric, indicating a need

for ongoing research and refinement. @ere is room for further differentiation of category descriptions, and

higher proficiency levels would benefit from additional examples to support the application of the rubric.

Implementing the rubric in diverse educational contexts may pose challenges, particularly when teachers

have limited experience with programming and assessment. @e results of this study indicate that the rubric

can be especially useful in such cases, as it helps to harmonize evaluations and align them with the mean

value, as illustrated in Figure 6. @ese findings highlight the potential of the rubric to support less experienced

teachers and suggest that future research should explore strategies to further facilitate its effective use.

Currently, there is no standardized, empirically validated framework for the evaluation of block-based pro-

gramming projects. Existing approaches vary widely and are often designed for standardized, task-based

contexts rather than authentic, open-ended projects. @is study contributes to filling this gap by providing a

structured, qualitative instrument for assessing Snap! projects, while also laying the groundwork for future

comparative studies and broader validation efforts.

@e developed rubric may also be applicable to other block-based programming languages such as Scratch.

However, this potential transferability was not examined within the scope of the present study. Future re-

search should therefore investigate its suitability across different programming environments to validate and

possibly extend its applicability. From the students’ perspective, the rubric can also serve as a reference

framework to understand expectations and support self-assessment. Finally, by providing clear, criterion-

based guidance, the rubric helps to overcome common challenges in evaluating problem-solving skills within

the computational thinking process, particularly in the areas of algorithmic design, parallelization, iteration,

and automation.

24

References

Andrade, H. G. (2000). Using Rubrics to Promote Minking and Learning.

Balouktsis, I. (2016). Learning Renewable Energy by Scratch Programming. Επιστημονική Επετηρίδα

Παιδαγωγικού Τμήματος Νηπιαγωγών Πανεπιστημίου Ιωαννίνων, 9(1), 129.

https://doi.org/10.12681/jret.8916

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and be-

yond. Communications of the ACM, 60(6), 72–80. https://doi.org/10.1145/3015455

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball: Lint-inspired static

analysis of scratch projects. Proceeding of the 44th ACM Technical Symposium on Computer Sci-

ence Education, 215–220. https://doi.org/10.1145/2445196.2445265

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of compu-

tational thinking.

Da Cruz Alves, N., Gresse von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to Assess Computa-

tional @inking Competences Based on Code Analysis in K-12 Education: A Systematic Mapping

Study. Informatics in Education, 18, 17–39. https://doi.org/10.15388/infedu.2019.02

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used

to measure understanding of computer science concepts? Computers & Education, 58(1), 240–249.

https://doi.org/10.1016/j.compedu.2011.08.006

Döring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaf-

ten. Springer Berlin, Heidelberg. https://doi.org/10.1007%2F978-3-642-41089-5

Frank, M., @omas, H., & Martin, R. (2023). Arbeitszeit und Arbeitsbelastung von Lehrkräften an Schulen in

Sachsen 2022: Ergebnisbericht. https://doi.org/10.47952/gro-publ-172

Funke, A., & Geldreich, K. (2017). Measurement and Visualization of Programming Processes of Primary

School Students in Scratch. Proceedings of the 12th Workshop on Primary and Secondary Compu-

ting Education - WiPSCE ’17, 101–102. https://doi.org/10.1145/3137065.3137086

Garcia, D. D., Harvey, B., & Segars, L. (2012). CS principles pilot at University of California, Berkeley.

ACM Inroads, 3(2), 58. https://doi.org/10.1145/2189835.2189853

Gesellschaft für Informatik (Hrsg.). (2016). Bildungsstandards Informatik—Sekundarstufe II. Empfehlungen

der Gesellschaft für Informatik e. V. erarbeitet vom Arbeitskreis »Bildungsstandards SII«, 183/184,

88.

25

Gibbons, J. (1993). Nonparametric Measures of Association. SAGE Publications, Inc.

https://doi.org/10.4135/9781412985291

Gummels, I. (2020). Wie kooperatives Lernen im inklusiven Unterricht gelingt. Springer Spektrum Wiesba-

den. https://doi.org/10.1007/978-3-658-29114-3

Harel, I., Massachusetts Institute of Technology, & Media Laboratory (Hrsg.). (1993). Constructionism: Re-

search reports and essays, 1985-1990 (2. print). Ablex Publ. Corp.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Jürgens, E., & Lissmann, U. (2015). Pädagogische Diagnostik. Beltz Verlag.

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real Time Assessment of Computa-

tional @inking. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 49–52. https://doi.org/10.1109/VLHCC.2014.6883021

Koray, A., & Bilgin, E. (2023). @e Effect of Block Coding (Scratch) Activities Integrated into the 5E Learn-

ing Model in Science Teaching on Students’ Computational @inking Skills and Programming Self-

Efficacy. Science Insights Education Frontiers, 18(1), 2825–2845.

https://doi.org/10.15354/sief.23.or410

Krugel, J., & Ruf, A. (2020). Learners’ perspectives on block-based programming environments: Code.org

vs. Scratch. http://doi.acm.org/10.1145/3421590.3421615

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). @e Scratch Programming Lan-

guage and Environment. ACM Transactions on Computing Education, 10(4), 1–15.

https://doi.org/10.1145/1868358.1868363

Mladenović, M., Mladenović, S., & Žanko, Ž. (2020). Impact of used programming language for K-12 stu-

dents’ understanding of the loop concept. International Journal of Technology Enhanced Learning,

12(1), 79. https://doi.org/10.1504/IJTEL.2020.103817

Modrow, E. (2018). Informatik mit Snap!, Snap! In Beispielen. http://ddi-mod.uni-goettingen.de/Informat-

ikMitSnap.pdf

Moreno-León, J., Román-González, M., Harteveld, C., & Robles, G. (2017). On the Automatic Assessment

of Computational @inking Skills: A Comparison with Human Experts. Proceedings of the 2017

CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2788–2795.

https://doi.org/10.1145/3027063.3053216

26

Olson, L., Schieve, A. D., Ruit, K. G., & Vari, R. C. (2003). Measuring Inter-rater Reliability of the Se-

quenced Performance Inventory and Reflective Assessment of Learning (SPIRAL): Academic Med-

icine, 78(8), 844–850. https://doi.org/10.1097/00001888-200308000-00021

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children’s learning experience in

constructionism-based coding activities through design-based research. Computers in Human Be-

havior, 99, 415–427. https://doi.org/10.1016/j.chb.2019.01.008

Papert, S. (1993). Me children’s machine: Rethinking school in the age of the computer. BasicBooks.

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R., & Chathuranga, B. (2021). A Systematic Map-

ping of Introductory Programming Languages for Novice Learners. IEEE Access, 9, 88121–88136.

https://doi.org/10.1109/ACCESS.2021.3089560

Price, T. W., & Barnes, T. (2015). Comparing Textual and Block Interfaces in a Novice Programming Envi-

ronment. Comparing Textual and Block Interfaces in a Novice Programming Environment.

https://doi.org/10.1145/2787622.2787712

Resnick, M. (2014). Give P’s a chance: Projects, peers, passion, play.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosen-

baum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. Communica-

tions of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-

nan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming for all. Communi-

cations of the ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary

grade students. Proceedings of the Ninth Annual International ACM Conference on International

Computing Education Research, 59–66. https://doi.org/10.1145/2493394.2493403

Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153–189.

https://doi.org/10.3102/0034654307313795

Svedkijs, A., Knemeyer, J.-P., & Marmé, N. (2022). Förderung von Computational @inking durch ein digi-

tales Leitprogramm zur blockbasierten Programmiersprache Snap! In B. Stadl (Hrsg.), Digitale

Lehre nachhaltig gestalten. Waxmann Verlag. https://doi.org/10.31244/9783830996330

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-

gramming language: @e role of self-efficacy. Computers in Human Behavior, 95, 224–232.

https://doi.org/10.1016/j.chb.2018.11.038

27

Venugopal, V., Dongre, A., & Kagne, R. N. (2024). Development of an analytical rubric and estimation of

its validity and inter-rater reliability for assessing reflective narrations. Me National Medical Jour-

nal of India, 36, 323–326. https://doi.org/10.25259/NMJI_732_21

Weintrop, D., & Wilensky, U. (2015). To Block or Not to Block, @at is the Question: Students’ Perceptions

of Blocks-Based Programming. Proceedings of the 14th International Conference on Interaction

Design and Children, 199–208. https://doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school

computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 3.

Weintrop, D., & Wilensky, U. (2018). Comparing Block-Based and Text-Based Programming in High

School Computer Science Classrooms. ACM Transactions on Computing Education, 18(1), 1–25.

https://doi.org/10.1145/3089799

Wen, F.-H., Wu, T., & Hsu, W.-C. (2023). Toward improving student motivation and performance in intro-

ductory programming learning by Scratch: @e role of achievement emotions. Science Progress,

106(4), 00368504231205985. https://doi.org/10.1177/00368504231205985

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). @e fairy performance assessment: Measuring

computational thinking in middle school. ACM Transactions on Computing Education, 215–220.

https://dl.acm.org/doi/10.1145/2157136.2157200

Wiliam, D. (2011). Embedded formative assessment. Solution Tree Press.

Wolf, K., & Stevens, E. (2007). @e Role of Rubrics in Advancing and Assessing Student Learning. Me

Journal of Effective Teaching, 7(1), 3–14.

Zhang, N., & Biswas, G. (2019). Defining and Assessing Students’ Computational @inking in a Learning

by Modeling Environment. In S.-C. Kong & H. Abelson (Hrsg.), Computational Minking Education

(S. 203–221). Springer Singapore. https://doi.org/10.1007/978-981-13-6528-7_12

i https://www.innovation-tank.de/teaching/ - Rubric available for download.

https://www.innovation-tank.de/teaching/

