Rubric for the qualitative assessment of student-designed

Snap! Projects

Nicole Marmé!, Jens-Peter Knemeyer!, Alexandra Svedkijs!

"University of Education Heidelberg

DOI: 10.21585/ijcses.v7i3.226

Abstract

An objective evaluation and assessment of individual student-designed projects are challenging. Appropriate
tools are currently lagging and have to be developed. Block-based programming languages, such as Snap!
are often used for teaching programming basics and the subsequent development of student-designed pro-
gramming projects. The current research qualitatively developed a rating rubric for Snap! projects to investi-
gate how novices’ programming skills can be evaluated and assessed in a criterion-guided manner. For this
purpose, an evaluation was conducted on a baseline dataset of 36 student projects created over three school
years after a programming course for novices. Based on this database we designed an assessment rubric. A
team of experts reviewed and evaluated the assessment rubric. Following expert evaluation, the rubric was
improved and expanded. Finally, prospective teachers conducted a comparative evaluation of a test data set
consisting of ten Snap! projects of varying complexity, with and without the resulting rubric. The results show
that the rating rubric significantly improves the comparability of assessments. In addition, a clear differenti-
ation of the projects by level is achieved for the test data set. Furthermore, the assessment rubric enables a

more precise achieved result evaluation in particular rubric category.

Keywords: Computer science, rubric, qualitative assessment, learning outcomes, teaching materials, coding,

programming languages, Snap!
1. Introduction

Global challenges and technological progress have brought about a heightened emphasis on information
technology skills over the last two decades. The demand for e-learning offers is constantly growing, especially

for IT skills (mmb Institut, 2021). Digitization at all levels and global crises, such as the Covid-19 pandemic,

are intensifying discussions across Europe about which skills and abilities will be needed in the future to be
able to participate in social life (European Commission. Directorate General for Communication., 2020).
Regarding digital competences in particular, competence requirements and necessary action steps for the next
decades are being formulated nationally and internationally at various political levels (European Commis-
sion. Directorate General for Education, Youth, Sport and Culture., 2023). The Council of the European Union
highlights digital literacy as one of the eight key competences for lifelong learning in the 21st century (Pub-
lications Office of the European Union, 2019). The current framework on European Union digital citizenship
competence DigComp 2.2 lists programming competence as one of the key competences (European Com-
mission. Joint Research Centre., 2022). The current approach to facing the challenges in Germany, for exam-
ple, is to expand computer science lessons across all grades from fifth grade onwards. For the required
strengthening of programming skills, the current educational plan for computer science recommends block-
based programming for the acquisition of basic knowledge and skills in programming, especially for begin-
ners (Ministerium fiir Kultus, Jugend und Sport Baden-Wiirttemberg, 2016a, 2016b). The use of block-based
programming languages often goes hand in hand with the development of individual creative projects (Krugel
& Ruf, 2020; Resnick, Silverman, et al., 2009; Resnick, 2014). To successfully implement block-based pro-
gramming languages in the classroom, a systematic approach is needed to evaluate such creative student
projects. There are already some approaches to evaluating block-based programmes as will be discussed in
section 2.2. However, most approaches deal with automated evaluation of the generated code. This involves
solving pre-designed test tasks and evaluating them automatically. Such systems do not allow for the evalu-
ation of individual projects on open topics. This paper therefore investigates whether a competency grid can
be used to evaluate open-ended Snap! projects and how such a grid must be structured to ensure valid and
consistent evaluation. To address this question, a multi-phase research design was applied, including the de-
velopment of the rubric, expert validation, and empirical testing with student projects. The results demonstrate
that the rubric improves the comparability of evaluations and provides a practical, criterion-based tool for

assessing creative, block-based programming projects.

2. Background
2.1 Block-based programming for novices

Block-based programming languages are visual programming languages that use blocks to represent code,
rather than traditional text-based code. This allows users to create programs by dragging and dropping these
blocks together, without having to write lines of code. A program code is put together like a puzzle by as-
sembling the already available instruction blocks. These environments operationalize Papert’s constructionist
principles by providing concrete, manipulable elements that support self-directed creation, experimentation,
and reflection (Papert, 1993). Learners actively construct knowledge, explore multiple solution paths, and
iteratively refine their projects, fostering discovery-based learning and reducing the abstraction barriers typ-

ical of traditional coding (Brennan & Resnick, 2012; Resnick et al., 2009). Platforms such as Snap! enable

students to design interactive projects-games, stories, or animations - promoting cognitive engagement, prob-
lem-solving, and creativity. The visual, block-based interface simplifies syntax, while project sharing, remix-
ing, and collaborative exploration enhance social learning and knowledge co-construction, key aspects of
constructivist and constructionist pedagogy (Papavlasopoulou et al., 2019). Compared to common program-
ming languages that use textual syntax, block-based languages allow easier interaction with the programming
environment and learners can focus more on programming logic instead of dealing with syntactical errors
(Balouktsis, 2016). Block-based languages provide a low barrier to entry and a flexible, expressive environ-
ment. This allows learners to focus on creative and meaningful projects, fostering computational thinking,

systematic reasoning and digital literacy (Resnick, Maloney, et al., 2009).

Block-based programming languages are characterised by their ability to eliminate syntax errors, reduce cog-
nitive load and shift the focus from memory recall to visual recognition through structured, visual program
construction. They are particularly valuable in lowering the entry barrier for novices and enabling intuitive,
interactive learning that fosters engagement and a deeper understanding of core programming concepts (Bau
et al., 2017). In particular, beginners are able to concentrate more on understanding programming concepts

rather than memorising text syntax due to the reduction in cognitive load (Weintrop & Wilensky, 2018)

Block-based programming languages, such as Snap! show significant advantages for introducing program-
ming to novices. These languages are considered "easier" than text-based programming languages (Weintrop
& Wilensky, 2015) and enable an introduction to programming for learners without any prior knowledge
(Maloney et al., 2010). For example, the use of block-based programming languages can provide a better
understanding of basic programming concepts, like loops (Mladenovi¢ et al., 2020). In addition, block-based
programming languages offer a more visual interface that can make programming concepts more accessible.
Features such as execution visibility, language extensibility and liveness in block-based languages create a
positive attitude towards learning and using them (Perera et al., 2021). The use of block-based languages also
increases student motivation in introductory programming courses by promoting positive emotions about
performance, which in turn improves learning performance and engagement (Tsai, 2019; Wen et al., 2023).
With block-based programming languages, learners grasp the task more quickly and achieve significantly
more learning goals in the same amount of time compared to those using text-based languages (Price &
Barnes, 2015). Interest in further programming activities is also rated higher after a learning sequence with a
block-based programming language (Weintrop & Wilensky, 2017). The integration of block-based program-
ming activities significantly improves pupils' computational thinking skills and their self-efficacy in problem
solving. Such activities actively engage learners, promote their independence and strengthen their confidence

in applying programming concepts (Koray & Bilgin, 2023).

Snap! is a further development of the Scratch programming environment, already established in many
schools. Snap! offers some advantages and additional functions compared to Scratch; for example, Snap!
enables comprehensive prototype-based programming by creating objects (Modrow, 2018). In addition, new

blocks can be created as subroutines with control structures, also called the Build Your Own Block principle.

The programming toolbox for object-oriented programming is comprehensive, so that Snap!, in contrast to
Scratch, is a "fully developed programming language" (Modrow, 2018) and is thus in principle also suitable
for advanced computer science teaching. This is also reflected in the fact that Snap! is now sometimes offered
as an introductory programming language for first semesters of computer science (Garcia et al., 2012). In
summary, learning programming using block-based programming languages such as Snap! offers an acces-
sible and visual approach to learning basic concepts, enabling students to develop essential programming
skills while fostering their creativity, problem-solving abilities, and logical reasoning. Block-based program-
ming languages are moreover based on the vision of enabling programming beginners to implement learning-
by-doing or learning-by-making, where they are free to experiment with their own ideas, such as creating,
sharing, playing, and learning with computers (Harel et al., 1993). Therefore, to promote programming skills
for beginners in a school context, the use of block-based programming languages can be beneficial, especially

for creation of student-designed projects.
2.2 Assessment of block-based programmed student projects

When working in the context of student-designed projects, it is crucial to establish suitable evaluation con-
cepts that offer clear and transparent assessment measures for both teachers and students. By doing so, edu-
cators can review the quality of learning materials and provide valuable feedback to support student learning
and growth. Assessment of student performance and feedback is an essential part of the learning process
(Hattie, 2009). Nevertheless, the assessment process is one of the most complex activities in a teacher's job
(Jirgens & Lissmann, 2015). Effective feedback should focus on the task and process, provide clear guidance
on how to improve, link specifically to goals and performance (Shute, 2008). Additionally, research suggests
that feedback should be specific and focused on the most important aspects of student work (Wiliam, 2011).
The challenge of assessing student-designed projects lies in their open-ended nature, as they are characterized

by diverse approaches, ideas, and implementations, making direct comparisons difficult.

To address this challenge, various concepts and tools for assessing block-based programming projects have
been proposed. In most assessment concepts, however, there is a lack of consensus regarding the concrete
establishment and weighting of assessment criteria (Da Cruz Alves et al., 2019). This is probably because
there is currently no standardized competence framework derived from an empirically validated model (Ge-
sellschaft fiir Informatik, 2016). Moreover, most existing systems were not designed for the evaluation of
authentic, open-ended projects, but rather for standardized, task-based learning contexts. Most authors con-
cerned with assessment, either through the development of tools or the investigation of evaluation processes,
regard their approaches as supplementary to teaching and as a means of supporting learning (Boe et al., 2013;
Denner et al., 2012; Funke & Geldreich, 2017; Koh et al., 2014; Moreno-Leon et al., 2017; Seiter & Foreman,
2013; Werner et al., 2012; Zhang & Biswas, 2019).

Table 1 provides an overview of prominent approaches and tools for assessing block-based programming projects, high-

lighting their aims, methods, strengths, and limitations.

Study (Author, | Aim/Context Assessment Method Strengths Limitations

Year)

Boe et al,, 2013 — | Evaluate Scratch pro- | Static analysis with cus- | Objective, scalable de- | Limited to predefined
Hairball jects to identify prob- | tomizable plugins (e.g., in- | tection of code patterns; | patterns; cannot assess

lematic or missing

constructs

itialization, synchroniza-

tion, loops)

high accuracy (<99%)

creativity or design;
manual review still
needed

Denner et al.,

Middle school girls’

Research study analysing

Authentic insight into

Not a standardized tool;

2012 game projects | 108 games using coding | conceptual understand- | rule-based, not block-
(Stagecast Creator) categories (complexity, us- | ing; large dataset based; limited transfera-
ability, documentation) bility
Koh et al,, 2014 — | Middle school STEM / | Real-time formative as- | Timely feedback for | Limited to predefined
REACT Scalable Game Design | sessment of computational | teachers; identifies mis- | CT patterns; misses
classes thinking patterns conceptions during cod- | qualitative and creative
ing aspects
Werner et al, | Game programming | Performance-based tasks | Authentic, multi-dimen- | Specific to Alice; high

2012 — Fairy Per-

elective using Alice

measuring CT (abstraction,

sional CT measurement;

implementation effort;

formance Assess- modelling, problem-solv- | supports collaboration | limited creativity assess-
ment ing) studies ment

Ball & Garcia, | University Snap! | Automated grading and | Scalable grading; imme- | Limited to closed-ended
2016 - Au- | courses feedback integrated into | diate feedback; simple | tasks; no assessment of
tograder A Snap! setup creativity or design
Wang et al., 2021 | Snap! courses with in- | Automated testing using | High accuracy (=<98%); | Only for testable behav-
— SnapCheck teractive projects predefined templates and | scalable; integrated into | iours; setup time-inten-

simulated user actions

Snap!

SiVC; cannot assess open-

ended creativity

Moreno-Leén et
al.,, 2017 - Dr.
Scratch

Scratch programming

contest projects

Automated static analysis
compared to human expert

ratings

Strong correlation with
experts; consistent and

scalable

Ignores creativity and
design; focused on tech-

nical aspects only

As the table (Table 1) shows, automated tools such as Hairball (Boe et al., 2013), Dr. Scratch (Moreno-Leon
et al., 2017), or SnapCheck (Wang et al., 2021) offer highly scalable solutions and produce consistent results
but are primarily limited to predefined technical patterns and cannot capture creativity or the quality of open-
ended designs. In addition, some systems face technical barriers such as installation issues and a constant
need for updates to remain functional, which affects their acceptance among teachers (e.g., Ball & Garcia,
2016). Even when functioning well, these systems often provide only structural feedback about the code and
lack the ability to evaluate whether a problem was solved in a meaningful way (Moreno-Ledn et al., 2017;
Wang et al., 2021). These limitations explain why most authors explicitly recommend using automated sys-
tems as a complement to traditional, teacher-driven assessments rather than as a replacement.

For example, Hairball and Dr. Scratch are powerful tools for detecting certain constructs, but they do not

assess design aspects, while SnapCheck provides highly accurate testing of interactive behaviours yet re-
quires significant preparation of templates and is unsuitable for authentic, free-topic projects.
Thus, there is still a clear need for research and development to create evaluation instruments that can provide

rich, individualized feedback for authentic student work.

One effective approach to evaluating student-designed projects is using rubrics. Andrade H. defines a rubric
as a one— or two—page document that describes varying levels of quality, from excellent to poor, for a specific
assignment (Andrade, 2000). Rubrics provide a clear and consistent framework for evaluating authentic stu-
dent-designed projects. By making expectations explicit and providing qualitative, criterion-based feedback,
rubrics help students understand how to improve their work and promote deeper learning (Wolf & Stevens,
2007). The rubric presented in this study was developed specifically for Snap! projects and aims to qualita-
tively capture and objectively assess the outcomes of open-ended, autonomous student projects. It was de-
veloped as part of the evaluation of an interdisciplinary self-learning course, "Smart City" (Svedkijs et al.,
2022) for learning the basics of programming with Snap! to be able to qualitatively record and objectively

assess the student projects created.

3. Method
3.1 Development procedure

We opted for a qualitative and exploratory approach to developing the assessment rubric because the research
question is open and the aim is to generate a practical, field-tested assessment instrument (Doring & Bortz,

2016; Gummels, 2020).
3.2 Teaching sequence

To this purpose, 183 students (the majority with no prior knowledge) in grades 9-11 were taught the basics
of programming with the block-based language Snap! in an approx. 20-hour teaching sequence in the school
years 2018/19, 2019/20 and 2020/21. No one had any previous knowledge of block-based programming.
Following the lesson sequence, the pupils created their own projects in small groups on a free topic. Forty
pupil projects resulted from this and after data cleansing, 36 projects were available. The rubric was devel-
oped using anonymized student project data, collected with informed consent and without any personal iden-

tifiers, complemented by published projects from the Snap! platform.

3.3 Analysis and Drafting

Available projects could be used as a baseline data set for the development of the rubric (Fig.1). The devel-
opment of the rubric involved a comprehensive process, starting with the analysis of baseline data from

student projects and expert evaluation.

Baselinedata: =) Project analysis and exploration and iterative design of the —_— Testing the grid with test data

30 student corresponding grid

projects using Several iterations Test data preparation

block-based /-\I\‘

language Snap! J Experience-based compilation of 10 different test projects
Level: Novices to il) that are publicly available in the Snap! library.

programming after

. Step-by-step analysis of the data Expert review and discussion of the L)
:et:\?z:::neg(approx. set and design of the grid draft draft Qualitative testing
20 teaching hours) Developers, researchers, teachers, prospective teachers
on programming. 1. Review of the projects 1. Addition of a further level assess the test data set:
2. Recording and segmentation 2. Addition of categories
of existing programming 3. Addition of code examples 1. Afree assessment of the 10 sample projects with a
constructs (loops, object 4. Adjustment of the order of the school grade A to F
design, etc.) categories 2. Assessment of the projects using the grid
3. Summary in suitable 5. Improvement of the wording 3. Comparison and evaluation of the results
categories
4. Definition of levels (I, Il, 11l) Review result
* 17 categories
* 4levels

Figure 1:Development process of the assessment rubric

To begin, a thorough analysis of the given dataset was conducted, examining each project's structure and
content to gain a deep understanding of its programming constructs, such as loops and object designs. This
allowed for systematization and categorization of used programming constructs. The resulting summaries
enabled definition of three different levels (I, II, III) within the dataset. Based on these findings, a draft of the

rubric was created with twelve thematic categories and three levels.
3.4 Expert Review and Iterative Exchange

We reviewed the initial rubric version together with four educational experts (2 female, 2 male) in the field
of programming for qualitative assessment. We defined experts as individuals with several years of experi-
ence using block-based languages, particularly Snap!, in teaching contexts or those who had published aca-
demically on block-based programming languages. Experts’ review led to refinement through an iterative
exchange process. The final version featured seventeen categories and four levels. In addition, according to
the expert advice the rubric was supplemented with source code examples, and categories were edited and
put in a different order. Beyond that, a general “project characteristics” category with a keyword-like descrip-
tion of the project characteristics in the respective level was added as an orientation framework. Furthermore,
a “creativity impression” category was introduced. Here, a subjective estimate of project creativity in the

sense of technical originality and inventiveness is to be given.

4. Evaluation Process and Testing

To test the developed rubric, we prepared a dataset by selecting ten publicly available Snap! projects that
reflect typical student work after their first exposure to programming. These projects varied in complexity,
subject matter, and interactivity, ensuring a representative range of examples. This dataset illustrates the pos-

sible range of projects and serves as a reference for evaluation.

Finally, nine prospective teachers (male: 4, female: 5) majoring in computer science, technology, mathemat-
ics or natural sciences participated in the evaluation process. They had prior knowledge of Snap! or other
block-based programming languages and possessed existing teaching experience. Initially, they rated the
randomly sorted projects without any predetermined criteria using a school mark scale (1 = very good, A; 6
= insufficient, F). Afterward, they received the developed rubric and evaluated the same projects again based

on the specified criteria. The evaluation of the competence grid was performed in German language.
4.1 Current version of the rubric

The current version of the rubric' comprises seventeen categories and four levels (0, 1, 2, and 3). For each
category, a level can be awarded in one of the four levels. The overall level is determined as the sum of all

points awarded within all categories.

The respective categories cover aspects of object-oriented development (e.g. objects or object communica-
tion), algorithmic design (use of loops, branches, reporters), handling of data (variables, lists), Snap! specific
design options (graphic effects), handling of multithreading (header blocks and multithreading), and code
outsourcing (BYOB). In addition, the "project characteristics" category describes a general implementation
in relation to the corresponding level. The "creativity impression" category attempts to capture a subjective
impression of the project that cannot be measured by the other categories. All categories and levels are listed

below in descriptive statements translated into the English language.
1. Category “objects”
Level 0: Create an unstructured instruction sequence in a sprite.

Level 1: Create instruction sequences in an existing sprite to implement a specific function, e.g. object draws,

object moves.
Level 2: Create and name another object(s) using a parallel statement sequence.

Level 3: Independently create several other objects with a communication or interaction for modelling a

complex system.

2. Category “stage as an object”

Level 0: Cannot recognize stage as an object. No stage backgrounds/functions.
Level 1: Embed the stage in the system: set one or more backgrounds for the stage.

Level 2: Perceive the stage as an object: create a program for designing the stage, for example, by automati-

cally changing the background images, using the graphic effects, time lapses.

Level 3: Perceive the stage as an object: create a program for the stage with object interaction.
3. Category “communication with a user AND/OR with other objects”

Level 0: Cannot use communication instructions.

Level 1: Use condition block to evaluate keyboard or mouse input or colour coding.

Level 2: Create simple communication between objects or with the environment.

Level 3: Create advanced communication between objects/with the user, for example via variables.
4. Category “Use of reporter blocks or predicates”

Level 0: Cannot demonstrate implementation of the reporter and predictor blocks.

Level 1: Use simple reporter blocks, such as random number or x-position.

Level 2: Use reporter/predicator blocks as parameter AND/OR in conditions.

Level 3: Use complex/composite reporter/predicator blocks.
5. Category “Graphical effects, sound effects, draw effects”

Level 0: Cannot demonstrate implementation of effects, etc.

Level 1: Use simple sound/speech/drawing instructions/graphical effects.

Level 2: Control the graphic effects AND/OR use combinations of different properties and sounds.

Level 3: Use graphical effects (effect combinations) meaningfully, for example to visualize a complex plot

or to design the program interface.
6. Category “Hat blocks and multithreading”
Level 0: Always start instruction sequence without a hat block.

Level 1: Use a hat block to start the script, the script runs linearly.

Level 2: Create several scripts within a project, but without targeted use of the multithreading concept: scripts

work independently of each other.

Level 3: Use several different hat blocks for a multithreading processing of the programs AND/OR use a hat
block for sending the messages AND/OR "When I start as a clone”.

7. Category “Object actions”
Level 0: Present a loose collection of instructions, no meaningful structure of a program.

Level I: Create a sequence of instructions with fixed numerical values, e.g. with concrete size specifications

ANDY/OR create a sequence of instructions for a sprite movement or figure geometry with waypoints.
Level 2: Use control flows with fixed values.
Level 3: Parameterize the statement sequence AND/OR use variables in control flows.
8. Category “Creating variables”
Level 0: Treat data as fixed values, with no variables present.
Level 1: Create and name a variable.
Level 2: Create several variables.

Level 3: Create (a) variable(s) for data exchange between objects (global variables) or within an object (local

variables). Demonstrate meaningful use of local and global variables.
9. Category “Using variables”
Level 0: Use only numbers or words as constants.
Level 1: Change variables as numbers or strings in the course of the program.
Level 2: Change the value of a variable depending on a condition, for example, set false to true.
Level 3: Use variables as data containers for various data such as lists, objects.
10. Category “Using operators”
Level 0: Cannot show use of operators.
Level 1: Use simple mathematical operations, such as plus, minus, etc. in the function as a reporter.

Level 2: Use nested operators with variables AND/OR simple operators within a one-way branch/loop.

10

Level 3:

11.

Level 0: Cannot show existing termination condition (except for endless loop) AND/OR incorrect termination

Demonstrate meaningful use of complex operators, e.g. in conditions.

Category “Use of predicates in control flows”

condition.

Level 1:

Level 2:

Level 3:

Formulate a non-parameterized termination condition for a control flow.

Formulate a parameterized termination condition for a control flow.

Use operators (e.g. and, or, not) for a termination condition in a condition/loop AND/OR complex

conditions (referring to other objects).

12.

Level 0:

Level 1:

Level 2:

Level 3:

13.

Level 0:

Level 1:

Level 2:

Level 3:

14.

Level 0:

Level 1:

Level 2:

Level 3:

15.

Level 0:

Category “Use of conditions”

Cannot demonstrate implementation of conditions.

Use an if-condition or an if-else condition.

Use a nested branch AND/OR use a one-way branch for multiple cases.

Show sensible use of complex nesting (but no unnecessary nesting, clear source code).
Category “Use of loops”

Cannot demonstrate loops implementation.

Use a loop.

Use a combination of two loops (e.g. nesting them).

Use multiple loops and complex loop structures, e.g. For loop.

Category “Use of lists”

Cannot demonstrate list implementation.

Create a simple list AND/OR output the list AND/OR prompt input for a list.

Use list elements according to the respective index.

Create lists with objects AND/OR further lists AND/OR use complex structures and commands.
Category “Build Your Own Block”

Cannot demonstrate own block implementation.

Level 1: Combine several commands in their own blocks (outsource code).

Level 2: Create a block with a return value or with (a) parameter(s). Create reporter.

Level 3: Create a block with complex parameters AND/OR return values, such as lists and objects.
16. Category “Project characteristics”

(Selected examples; full description in the online version)

Level 0: A simple project with partly correct approaches but overall is inadequate or contains errors. No

concept/no idea available. Loose collection of objects and functions.

Level 1: A project is manageable. 1-2 stage backgrounds are used. The plot is implemented with 2 to 3 objects.

Simple control flows, instructions, operators are used.

Level 2: The project has a comprehensive structure. Several stage sets with effects are used. Control struc-

tures, instructions, links are used. Code is outsourced.

Level 3: The project has a complex structure. The plot is complex, exciting. Complex control structures,

instructions, links, lists are used. Custom blocks are used with parameters and return values.
17. Category “Creativity impression”

Level 0: "The task has not been solved."

Level 1: "The task is solved, but not very creatively".

Level 2: "I understand the concept, it's exciting!"

Level 3: "Wow, that's a cool idea; a successful concept!"”

Each level is described with a statement and, if useful, supplemented with a source code example (see exam-

ple Tab. 1 "Using reporters and predicates"):

Table 1: Excerpt of a category from the rubric with four descriptions at each level and corresponding

source code examples.

Cate- Level 0 Level 1 Level 2 Level 3
gory

12

Using Cannot show ex- | Formulate a non-pa- | Formulate a non- | Use operators (e.g. and, or,
predi- isting termination | rameterized termina- | parameterized ter- | not) for a termination condi-
cates in | condition (except | tion condition for a | mination condition | tion in a condition/loop
control | for endless loop) | control flow for a control flow | AND/OR complex conditions
flows AND/OR use in- (referring to other objects).

correct termina-

tion condition

Code -
exam-
ple
repeat until’ touching edge |? when|,_| clicked
6 € deorees. set number | to 1

turn § degrees
|y R

PR umber = I
move steps f I
| @ step | turn & €D degrees

change x by € move @D steps
change x by €D

r;:nge number | by

4.2 Description of the test data set

The dataset used for the testing of the rubric consists of ten exemplary projects taken from the virtual Snap!

library.

All of these projects can be found in the Snap! collection” at: The link has been hidden for the review process

for anonymity reasons.
The following criteria were formulated for the dataset:

. The projects should, as far as possible, have different levels of complexity in source code,

presentation, and plot.

. The projects can be interpreted as an average student performance after a teaching sequence in

programming for novices.

The following projects were selected. For reasons of clarity, the projects are presented in ascending order of

complexity - Note: the test persons, however, received the projects in random order.

13

Project 1. Row row - Movement of an object along predefined waypoints.

ROWROWROW

8

The source code exhibits a linear, redundant structure. The object moves from
one coordinate point to another, and the route is not automated. The outputs
are implemented using a concurrently running script. The functionality and
presentation are rudimentary. Overall, it is a simple project with some recog-

nizable multi-threading usage.

Project 2: Rainbow Ball — Movement of an object along a random route with colour change.

=
/4/7
x‘\
=

The source code includes a loop and instructions from various categories such
as movement, appearance, etc. The action is limited to visualization on the
stage, and the representation is animated. Overall, it is an interesting project

with an idea that was not further developed or implemented in a context.

Project 3: Exclusive Complexity — Calculating the average of 10 number inputs.

The source code has a linear structure, not parameterized, and lacks code mod-

ularization.

The program flow is linear, with a single thread of execution. The presentation
includes a background image and an object. Overall, it is a simple project in-

volving mathematical calculations.

Project 4: Avocado gif — An animated postcard featuring an avocado mother plant and its seed.

The source code implements multiple objects. Various control structures are
used, and the code is modularized. The action runs concurrently. The action
involves visualization without user interaction, and the representation is ani-
mated. Overall, it is a small but visually appealing project with a concept. The

narrative flow could be further developed.

14

Project 5: Human body scanner — With a lens, various systems of the body can be observed.

The source code is concise. Instructions from different categories are uti-
lized. There is no code modularization or user communication. Overall, it is

a small, visually appealing project with potential for further enhancements.

Project 6: Guessing Game — The user is required to guess a number within a specific range.

e o The source code includes control structures and instructions for user communi-

e cation. Code is modularized. There are no stage animations, only one object.
betweer ind

Overall, it is a simple project related to a classic task.

Project 7: eCard Challenge — A game and an animated Halloween postcard combined into one. The user is

required to answer quiz questions.

The source code incorporates various types of instructions. Object interaction
Jousametack and communication are present. The action and presentation are cohesive.

However, the source code lacks modularization, resulting in redundant code

segments. Overall, it is a good project with room for improvement.

Project 8: Fashion game — The user can dress and style a model.

e An extensive project utilizing instructions from various categories, with code
penneeel modularization. It has a complex structure, and the action and visualization
complement each other. Overall, it is a comprehensive project with a clear con-

cept.

15

Project 9: Dogder — A reaction game where the square object needs to avoid black dots.

E The source code utilizes a comprehensive range of instructions and control
structures. It involves complex interactions, a well-defined narrative flow,
and efficient visualization. However, the code lacks modularization, resulting
in some code redundancy and reduced readability. Overall, it is a complex
project that showcases a wide range of functionalities. Project 10: Shooter

Arcade Game — A shooting game with different levels of complexity.

An extensive project utilizing instructions from various categories, with efficient visualization. It has a com-
plex structure, and the action and visualization complement each other. Overall, it is a comprehensive project

with a clear concept, but the source code may be somewhat challenging to navigate due to its complexity

5. Results

Each project was first assessed with a school grade using German grading system from 1(A = very good) to

6 (F =insufficient). In the second part of the evaluation the test dataset was assessed with the described rubric.

The rubric consists of 17 categories, each of which can be rated on four performance levels (0-3 points).
This results in a maximum attainable score of 51 points (/7 categories % 3 points). To ensure comparability
between the two evaluation phases, the total rubric score was converted into the German grading system

using a linear transformation formula:

5*RS
MS

Grade = 6 —

RS: reached score; MS: maximum score

The following graph (Fig.2) illustrates the comparisons of the mean values of the ten assessments. The blue
cross represents the average ratings of the projects using grades without the rubric, while the orange cross

represents the mean rubric scores converted using the formula mentioned above.

16

Project number

1 2 3 4 5 6 7 8 S 10
A 1 X
X X X
X
B 2 X Average open X
grading X
C 3 X
5 X
o
o .
D a X X Average using
competece grid
E 5
F 6

Figure 2: The average grades for test dataset. Blue crosses mark average results for grading without a
rubric. Orange crosses mark the average results for grading using the rubric. For better comparison

the score was converted in German school grades from 1(A) to 6(F)

It is noticeable that the projects assessed with the rubric receive significantly lower ratings. Even the best
project, on average, achieves only a good grade (B) compared to grading without the rubric. Four projects
do not meet the minimum requirements (grade D). In the open evaluation without a rubric, most projects
achieve good to excellent grades. Both grading systems show in general the tendency from weak projects to
good projects. Nevertheless, there are some outliers in the evaluation without a rubric, for example regarding
projects 2 and 3 or projects 5 and 6. The difference in evaluation is indeed significant, with certain projects

showing an average difference of two grades (e.g., Project 4).

The following diagram (Fig. 3) shows the individual results of the assessment without a rubric.

Project number

Grade

4 s @ee S c+®:+ 6 — Participants' assessment
cos@ees 7 i@ 8 cei@ee 9
= == Average

Figure 3: Dispersion of the results after assessing with a school grade with no predetermined criteria.

Average is marked with a cross.

17

In the first part of subjective grade assessment of the projects, the spread of the grades for the respective
projects is particularly striking. Project 2, for example, is assessed by the experts in a range of grades between
2 (good) and 4 (sufficient). The dispersion is strikingly high for all projects. Only project 10 is rated as a very
good by all evaluators. Furthermore, it is striking that most projects tend to be assessed in the upper third of

the rating range.

The assessment of projects shows wide variation within each individual evaluation. For example, one partic-
ipant rates project 2 as well as projects 8 and 9 with a good grade, although in the direct comparison it remains
questionable whether these three projects achieve the same level. At the same time, this participant rates
projects 6 and 7 as significantly worse, with a satisfactory grade. Another participant also evaluates project 2
as good, but again evaluates projects 6,7,8 and 9 with an almost very good grade. In this evaluation model,
it is thus not obvious according to which criteria the evaluations are made and a comparison of the evaluations
among each other becomes almost impossible. Thus, this evaluation method does not appear to be transparent

and cannot be used for the evaluation of the student projects.

When using the rubric, a higher consistency of the distribution of points can be observed (Fig. 4) and the

results of the assessment show usually much lower dispersion.

50

Competence score

1 2 3 4 5 6 7 8 9 10

Project number

coe@es 1 2 3 ‘

4 cee@ee 5 «-+®--6 — Participants' assessment
coe@ee 7 cse@ee 8 ces@es 9 ‘
— %= Average

Figure 4: Dispersion of the results after assessing with a rubric. Maximum score result is 51 points for

the best grade. Round dots mark the evaluation of German experts. Average is marked with a cross.

Clear outliers can be observed in projects 6 and 8. In project 6, code outsourcing (Category 15: Build Your
Own Block) in own blocks was sometimes overlooked during the assessment, resulting in an incorrect as-

sessment. Project 8 was partially classified as having a too high level of mastery. Presumably, differences

18

between the second and third levels of the rubric can be recognized less easily by inexperienced raters. For
example, for this project, the third level is awarded in the categories on loops and branches, even though the
source code has a level of only two. Despite the observed inconsistencies, the most projects can be assessed
more homogeneously in each case. All ratings are mostly within one grade. This means that projects can be
better assigned to the different levels. Thus, the projects are evenly distributed among the lower, middle, and
high score ranges. The following graph (Fig. 5) shows the average deviation in grade points from the mean
assessment grades for the respective projects with and without rubric. The overall mean deviation is 0.41
without the rubric. Without the ceiling effect, the deviation would probably be significantly higher, especially
for good projects (8-10 comparable with projects 1-7). The overall mean deviation is 0.24 with the rubric,

demonstrating a substantial decrease in rating variability and improved assessment consistency.

Figure 5: Average deviation from mean grade, blue colour for grading without rubric and orange

colour for grading with the rubric.

0,8
0,7
0,6

0,5

open grading

0,4

0,3 :

0,2 :

-Lihhl B

N | n
2 3 4 5 6 7 8 9 10

Project number

Avergae deviation from the mean grade
Grading with competence grid

The dispersion of values around the mean is significantly smaller by using the rubric. The highest average
deviation is 0.48 grade points. In contrast, without the rubric, the maximum average deviation from the mean
is 0.75 grade points. However, particularly as project complexity increases, the dispersion in evaluations with
the rubric also tends to increase. There could be two reasons for this. First, evaluating complex structures
requires more knowledge in assessment, making it more challenging for inexperienced evaluators. It may
indicate inexperienced assessors’ inability to differentially assess complexity, as well as their tendency to
uniformly assign a good grade. Second, a smaller evaluation dispersion without the rubric does not neces-
sarily indicate a better quality of assessment. Rather, as the note scale stops, a ceiling effect occurs. The
assessment results show a ceiling effect, where many projects are concentrated at the higher end of the score
range, making it difficult to distinguish between them. It seems, project 10 is assessed as attaining the highest

level by almost all evaluators without a rubric. Obviously, this project works as a standard in comparison to

19

other projects because it is the most complicated example. That is the probable explanation for the highest
score on the open grading. But if the projects are mapped to a rubric standard, project 10 does not achieve
the best possible grade because it does not fulfil all the requirements. This project, like project 8, has a com-
plicated structure, so evaluators probably have difficulties scoring it, even with a rubric. Therefore, this could
explain higher dispersion in the evaluation of complicated projects. The second reason could be that at higher
levels; the rubric allows for more room for interpretation and evaluative freedom. Overall, it can be still
said that in most projects (except projects 8 and 10), the average deviation from the group mean is signifi-

cantly smaller when using the framework, as Fig. 5 clearly shows.

An individual comparison of the ratings by example person (light grey dot) is shown in the following diagram
(Fig. 6). This is a participant who awards a very different rating, both with and without the rubric. The partic-
ipant's ratings without the rubric revealed a ceiling effect, as most projects were scored highly, often receiving
A grades. In contrast, when using the rubric, their evaluations became more nuanced and differentiated, indi-

cating a more refined assessment of the projects.

Project number
1 2 3 4 5 6 7 8 9 10

A1 ° ° ° ° ° ® s
‘ X
xF) gradi 6
o Participant 4 carries out an open gr R
X x X
2 Y X) 41
X
36
X
@
L L] 1 g
N 3
o ; g
3 X * 5
& g
D aX a g
S

competence grid

Figure 6: The results for a single example participant. Orange dots mark the evaluation with a rubric;

blue dots mark the evaluation without a rubric. Corresponding group average is marked with crosses.

The example data set shows the effects of the rubric. Originally, this participant rated projects significantly
higher than the average. For example, project 4 deteriorates from a very good (1, A) grade to a "fail" (5, E).
Projects 1, 3, 5, 6, 8 also experience a significant deterioration. This is an interesting phenomenon that could
not be clarified within the framework of this evaluation. There was a tendency for all evaluators to be signif-
icantly higher at open grading. Furthermore, when the results of example person are compared with the mean
values, it is noticeable that, with the rubric, the assessment is closer to the general mean values. The individual
mean deviation is 0.04 grading points (2.12 of 51 points). Except for one project (7), the results of open
grading by example person are far from the average grading. The mean deviation with open grading is 0.86

grading points. The rubric allows each rater to evaluate using the same scale as all other raters.

20

To examine the consistency of the evaluations and to determine whether the rubric improved the objectivity
of grading, the interrater reliability (IRR) was calculated for both evaluation phases. For the free grading
phase without predetermined criteria, Kendall’s coefficient of concordance (W) was applied, as this method
is appropriate for ordinal data such as school grades (Gibbons, 1993; Olson et al., 2003; Venugopal et al.,
2024). For the rubric-based evaluation, the raw scores were first converted into the German grading system
with increments of 0.25 (e.g., 5.81 — 5.75) to ensure a direct comparison with the free grading phase. A
higher Kendall’s W indicates greater agreement among raters, with values ranging from 0 (no agreement) to

1 (perfect agreement) (Olson et al., 2003).

This quantitative analysis provides an objective measure of the reliability of the evaluation process and
demonstrates whether the rubric successfully reduced subjective variation in grading. The following section
first presents the Kendall’s W values for both evaluation phases and compares the level of agreement among

raters.

Level
15 2 25 3 35 4

o
=

0,5

Objects

Stage as an object

Communication with a user AND/OR...

Usa of reporter blocks or predicates
Grafical effects, soundeffects, draw...

Hat blocks and multithreading

Object actions
Creating variables
Using variables

Using operators

Category

(il

Using of predicatesin control flows
Using of conditions

Using of loops

Using of lists

Build Your Own Block

Project characteristics

Creativity impression

Emrow row M guessinggame M shooterarcade game

Figure 6: Comparison of results for individual projects by category. Selection of three projects. The

picture shows an average of all graders.

21

The interrater reliability analysis revealed a clear difference between the two evaluation phases. Without the
rubric, the agreement among the nine raters was moderate to good, with a Kendall’s W of 0.634 (p <.001).
When using the developed rubric, the level of agreement increased substantially to W = 0.940 (p < .001),

indicating very high to almost perfect concordance between raters.

This result demonstrates that the rubric not only provides a structured framework for evaluation but also
significantly reduces subjective variation in grading. The substantial increase in Kendall’s W suggests that
the competence grid helped the raters to apply more consistent and comparable evaluation criteria, thus im-

proving the reliability of the assessment process.

Moreover, the designed rubric enables a more refined analysis of project quality at the individual level,
providing a detailed breakdown of each project's strengths and weaknesses. Fig. 7 illustrates this capability,
presenting a comparative analysis of three exemplary projects, highlighting their distinct characteristics and
achievements. This nuanced evaluation allows educators to provide targeted feedback, fostering growth and

improvement in each student's programming skills.

This representation method can help to break down each assessment individually into strengths and weak-
nesses as needed. Using the evaluation results, it is possible to explicate single components and compare
them. Specifically in this example, the selected sample dataset could be reviewed in terms of existing con-
cepts and the level of proficiency achieved on average. For example, in the category Use of conditions, the
“shooter arcade game”- project achieves a high level of mastery, “guessing game” project shows moderate
expertise, and the “row row” project lacks understanding in this area. On the base of this analysis method, it
is possible to evaluate learning goals and correlated results and to give more detailed feedback on each pro-

ject.

6. Discussion and Conclusion

The results of this study demonstrate that the rubric, with its 17 categories, is a comprehensive tool for eval-
uating programming projects. The primary aim of creating a structured description for creative block-based
programming projects was successfully addressed with this rubric, providing a clear and systematic frame-
work for assessment. Statistical analysis confirmed the reliability of the rubric. Kendall's W showed a high
degree of agreement between assessors, demonstrating that the rubric supports consistent assessments by
different assessors. At the same time, the distribution of scores indicated a possible ceiling effect, as particu-
larly good projects achieved the highest possible score in several categories. This result shows that future
iterations of the rubric could benefit from the addition of more advanced descriptions in order to better dis-
tinguish particularly high-performing projects. The lack of correlation between categories suggests that each
category provides unique insights into the project's quality. As a result, the number of categories cannot be
reduced without compromising the effectiveness of the evaluation when the rubric is used to derive a grade.

However, for purely qualitative evaluations, certain categories may be excluded, particularly when specific

22

aspects have not been covered during instruction.

The comparison of the two assessment forms clearly demonstrated that using a rubric led to criterion-led
assessment, significantly reducing the average deviation of grades and thereby improving comparability be-
tween evaluators. Qualitative feedback from the raters confirmed their satisfaction with the tool, highlighting
its clarity, perceived objectivity, and the sense of “clear conscience” when grading. The included source code

examples were particularly valued, especially by less experienced assessors.

In terms of feasibility, evaluating programming projects with the rubric proved manageable. Assessing a
single project required about nine minutes, totalling roughly 270 minutes for a class of 30 students. While no
empirical data exist for grading times in computer science, this workload is comparable to grading a standard
mathematics test, which typically takes around 360 minutes (Frank et al., 2023) . Thus, the rubric is not only

reliable and comprehensive but also practical for classroom use, even in larger cohorts.

Nevertheless, the rubric has limitations. Its construction is based on student projects and qualitative expert
assessment. As a result, not all possible Snap! categories are currently covered in the rubric, indicating a need
for ongoing research and refinement. There is room for further differentiation of category descriptions, and

higher proficiency levels would benefit from additional examples to support the application of the rubric.

Implementing the rubric in diverse educational contexts may pose challenges, particularly when teachers
have limited experience with programming and assessment. The results of this study indicate that the rubric
can be especially useful in such cases, as it helps to harmonize evaluations and align them with the mean
value, as illustrated in Figure 6. These findings highlight the potential of the rubric to support less experienced

teachers and suggest that future research should explore strategies to further facilitate its effective use.

Currently, there is no standardized, empirically validated framework for the evaluation of block-based pro-
gramming projects. Existing approaches vary widely and are often designed for standardized, task-based
contexts rather than authentic, open-ended projects. This study contributes to filling this gap by providing a
structured, qualitative instrument for assessing Snap! projects, while also laying the groundwork for future

comparative studies and broader validation efforts.

The developed rubric may also be applicable to other block-based programming languages such as Scratch.
However, this potential transferability was not examined within the scope of the present study. Future re-
search should therefore investigate its suitability across different programming environments to validate and
possibly extend its applicability. From the students’ perspective, the rubric can also serve as a reference
framework to understand expectations and support self-assessment. Finally, by providing clear, criterion-
based guidance, the rubric helps to overcome common challenges in evaluating problem-solving skills within
the computational thinking process, particularly in the areas of algorithmic design, parallelization, iteration,

and automation.

23

References
Andrade, H. G. (2000). Using Rubrics to Promote Thinking and Learning.

Balouktsis, I. (2016). Learning Renewable Energy by Scratch Programming. Emotyuovikny Emretnpido
Hoaidoaywyixod Tunuoros Nnmoywywv — [avemomuiov lwovvivay, 9(1), 129.
https://doi.org/10.12681/jret.8916

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and be-
yond. Communications of the ACM, 60(6), 72—80. https://doi.org/10.1145/3015455

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball: Lint-inspired static
analysis of scratch projects. Proceeding of the 44th ACM Technical Symposium on Computer Sci-
ence Education, 215-220. https://doi.org/10.1145/2445196.2445265

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of compu-
tational thinking.

Da Cruz Alves, N., Gresse von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to Assess Computa-
tional Thinking Competences Based on Code Analysis in K-12 Education: A Systematic Mapping
Study. Informatics in Education, 18, 17-39. https://doi.org/10.15388/infedu.2019.02

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used
to measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.

https://doi.org/10.1016/j.compedu.2011.08.006

Déring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaf-
ten. Springer Berlin, Heidelberg. https://doi.org/10.1007%2F978-3-642-41089-5

Frank, M., Thomas, H., & Martin, R. (2023). Arbeitszeit und Arbeitsbelastung von Lehrkrdften an Schulen in
Sachsen 2022: Ergebnisbericht. https://doi.org/10.47952/gro-publ-172

Funke, A., & Geldreich, K. (2017). Measurement and Visualization of Programming Processes of Primary
School Students in Scratch. Proceedings of the 12th Workshop on Primary and Secondary Compu-
ting Education - WiPSCE 17, 101-102. https://doi.org/10.1145/3137065.3137086

Garcia, D. D., Harvey, B., & Segars, L. (2012). CS principles pilot at University of California, Berkeley.
ACM Inroads, 3(2), 58. https://doi.org/10.1145/2189835.2189853

Gesellschaft fiir Informatik (Hrsg.). (2016). Bildungsstandards Informatik—Sekundarstufe II. Empfehlungen
der Gesellschaft fiir Informatik e. V. erarbeitet vom Arbeitskreis » Bildungsstandards Sll«, 183/184,
88.

24

Gibbons, J. (1993). Nomparametric Measures of Association. SAGE Publications, Inc.
https://doi.org/10.4135/9781412985291

Gummels, 1. (2020). Wie kooperatives Lernen im inklusiven Unterricht gelingt. Springer Spektrum Wiesba-
den. https://doi.org/10.1007/978-3-658-29114-3

Harel, 1., Massachusetts Institute of Technology, & Media Laboratory (Hrsg.). (1993). Constructionism: Re-
search reports and essays, 1985-1990 (2. print). Ablex Publ. Corp.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.
Jirgens, E., & Lissmann, U. (2015). Pddagogische Diagnostik. Beltz Verlag.

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real Time Assessment of Computa-
tional Thinking. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 49-52. https://doi.org/10.1109/VLHCC.2014.6883021

Koray, A., & Bilgin, E. (2023). The Effect of Block Coding (Scratch) Activities Integrated into the SE Learn-
ing Model in Science Teaching on Students’ Computational Thinking Skills and Programming Self-
Efficacy. Science Insights Education Frontiers, 18(1), 2825-2845.
https://doi.org/10.15354/sief.23.0r410

Krugel, J., & Ruf, A. (2020). Learners’ perspectives on block-based programming environments: Code.org
vs. Scratch. http://doi.acm.org/10.1145/3421590.3421615

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Lan-
guage and Environment. ACM Transactions on Computing Education, 10(4), 1-15.
https://doi.org/10.1145/1868358.1868363

Mladenovié¢, M., Mladenovi¢, S., & Zanko, Z. (2020). Impact of used programming language for K-12 stu-
dents’ understanding of the loop concept. International Journal of Technology Enhanced Learning,

12(1), 79. https://doi.org/10.1504/1JTEL.2020.103817

Modrow, E. (2018). Informatik mit Snap!, Snap! In Beispielen. http://ddi-mod.uni-goettingen.de/Informat-
ikMitSnap.pdf

Moreno-Ledn, J., Roman-Gonzalez, M., Harteveld, C., & Robles, G. (2017). On the Automatic Assessment
of Computational Thinking Skills: A Comparison with Human Experts. Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems, 2788-2795.
https://doi.org/10.1145/3027063.3053216

25

Olson, L., Schieve, A. D., Ruit, K. G., & Vari, R. C. (2003). Measuring Inter-rater Reliability of the Se-
quenced Performance Inventory and Reflective Assessment of Learning (SPIRAL): Academic Med-

icine, 78(8), 844—-850. https://doi.org/10.1097/00001888-200308000-00021

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children’s learning experience in
constructionism-based coding activities through design-based research. Computers in Human Be-

havior, 99, 415-427. https://doi.org/10.1016/j.chb.2019.01.008
Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. BasicBooks.

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R., & Chathuranga, B. (2021). A Systematic Map-
ping of Introductory Programming Languages for Novice Learners. I[EEE Access, 9, 88121-88136.
https://doi.org/10.1109/ACCESS.2021.3089560

Price, T. W., & Barnes, T. (2015). Comparing Textual and Block Interfaces in a Novice Programming Envi-
ronment. Comparing Textual and Block Interfaces in a Novice Programming Environment.

https://doi.org/10.1145/2787622.2787712
Resnick, M. (2014). Give P’s a chance: Projects, peers, passion, play.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. Communica-
tions of the ACM, 52(11), 60—67. https://doi.org/10.1145/1592761.1592779

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming for all. Communi-
cations of the ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary
grade students. Proceedings of the Ninth Annual International ACM Conference on International

Computing Education Research, 59-66. https://doi.org/10.1145/2493394.2493403

Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153—189.
https://doi.org/10.3102/0034654307313795

Svedkijs, A., Knemeyer, J.-P., & Marmé, N. (2022). Férderung von Computational Thinking durch ein digi-
tales Leitprogramm zur blockbasierten Programmiersprache Snap! In B. Stadl (Hrsg.), Digitale
Lehre nachhaltig gestalten. Waxmann Verlag. https://doi.org/10.31244/9783830996330

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual pro-
gramming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232.
https://doi.org/10.1016/j.chb.2018.11.038

26

Venugopal, V., Dongre, A., & Kagne, R. N. (2024). Development of an analytical rubric and estimation of
its validity and inter-rater reliability for assessing reflective narrations. 7The National Medical Jour-

nal of India, 36, 323-326. https://doi.org/10.25259/NMJI_732 21

Weintrop, D., & Wilensky, U. (2015). To Block or Not to Block, That is the Question: Students’ Perceptions
of Blocks-Based Programming. Proceedings of the 14th International Conference on Interaction

Design and Children, 199-208. https://doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school
computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 3.

Weintrop, D., & Wilensky, U. (2018). Comparing Block-Based and Text-Based Programming in High
School Computer Science Classrooms. ACM Transactions on Computing Education, 18(1), 1-25.
https://doi.org/10.1145/3089799

Wen, F.-H., Wu, T., & Hsu, W.-C. (2023). Toward improving student motivation and performance in intro-
ductory programming learning by Scratch: The role of achievement emotions. Science Progress,

106(4), 00368504231205985. https://doi.org/10.1177/00368504231205985

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Measuring
computational thinking in middle school. ACM Transactions on Computing Education, 215-220.
https://dl.acm.org/doi/10.1145/2157136.2157200

Wiliam, D. (2011). Embedded formative assessment. Solution Tree Press.

Wolf, K., & Stevens, E. (2007). The Role of Rubrics in Advancing and Assessing Student Learning. The
Journal of Effective Teaching, 7(1), 3—14.

Zhang, N., & Biswas, G. (2019). Defining and Assessing Students’ Computational Thinking in a Learning
by Modeling Environment. In S.-C. Kong & H. Abelson (Hrsg.), Computational Thinking Education
(S. 203-221). Springer Singapore. https://doi.org/10.1007/978-981-13-6528-7 12

! https://www.innovation-tank.de/teaching/ - Rubric available for download.

27

https://www.innovation-tank.de/teaching/

