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Abstract 

Programming can be challenging to learn, and for visually impaired (VI) learners, there are numerous additional 
barriers to the learning process. Many modern programming environments are inaccessible to VI learners, being 
difficult or impossible to interface with using a screen reader. A review of the literature has identified a number 
of strategies that have been employed in the quest to make learning to program accessible to VI learners. These 
can be broadly divided into the following categories; auditory and haptic feedback, making text-based languages 
(TBLs) accessible, making block-based languages (BBLs) accessible and physical artefacts. A common theme 
among the literature is the difficulty VI learners have in gaining an understanding of the overall structure of their 
code. Much of the research carried out in this space to date focuses on the evaluation of interventions aimed at 
VI high-school and undergraduate students, with limited attention given to the learning processes of VI learners. 
Additionally, the majority of the research deals with TBLs, this is despite the fact that most introductory 
programming courses for primary learners use BBLs. Therefore, further research is urgently needed to 
investigate potential strategies for introducing VI children in primary education to programming and the learning 
processes involved. 
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1. Introduction 

The introduction of computing into the national curriculum for England in 2014, brought with it the requirement 
for primary school children to be taught the basic concepts of programming from the age of 5 (Department for 
Education, 2014). Programming can be challenging to learn and, for visually impaired (VI), learners there are 
numerous additional barriers to the learning process. Many modern programming environments are inaccessible 
to VI learners, being challenging or impossible to interface with using a screen reader (Baker et al., 2015; Stefik 
et al., 2011) and user interfaces often employ highly graphical depictions (Ludi, 2013). Kane & Bigham (2014) 
identified the following criteria for the development of environments in which VI children can learn to program: 

• “Programming tools must be accessible to the student and must work with the assistive technology that 
he or she uses.” 

• “The student must be provided with programming tasks that hold their interest and provide encouraging 
feedback.” (Kane & Bigham, 2014, p. 257). 

This literature review sets out to provide an overview and discussion of the different strategies that have been 
employed in order to make learning programming accessible to VI learners. Additionally, areas that require 
further research will be identified and discussed. 

2. Methodology 

This review examines literature from peer-reviewed sources, published between 2000 and November 2017. 
Studies were identified by searching research databases, in addition to citation tracing. The following databases 
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were searched: ACM Digital Library, Taylor and Francis, IEEE, Eric and Wiley Online Library. The search 
terms “visually impaired”, “programming” and “education” were initially used, followed by additional searches 
employing alternative search terms with similar meanings, an overview of these terms is given in Table 1.  
 

Search Term Alternatives 

Visually Impaired Blind, visual impairments 
Programming Coding, software development 
Education Learning, learners, school 

Table 1 Summary of Search Terms 
 

Once a short list of articles was formed, the following criteria were used to decide whether the articles should be 
included in the literature review: 

• Papers were included if they had an educational focus, however a small number of other papers were 
retained in order to provide contextual information. 

• Papers were included if they were included in a peer-reviewed academic publication. 
• Papers published since 2000 were included. One exception was made for a paper that is frequently cited 

and therefore provides contextual information. 
Upon further examination of the literature, four main themes emerged; making text-based languages accessible, 
making block-based languages accessible, physical artefacts as well as auditory and haptic feedback. Each of 
these themes is explored in turn in the following sub-sections. An overview of the literature cross-referenced by 
theme is also provided in appendix A. 

3. Overview of Literature 

3.1 Making Text-Based Languages Accessible 
3.1.1 Accessibility of Programming Environments 
A survey of experienced VI developers has demonstrated that many programming environments are either not 
fully compatible with screen readers or challenging to navigate solely using auditory feedback alone, this makes 
them inaccessible to many VI programmers (Albusays & Ludi, 2016). For example Eclipse features a number of 
tabbed windows, which can be accessed through keyboard shortcuts, however this is a time consuming process 
when relying on auditory feedback (Cheong, 2010). Additionally, the BricxCC and Robot C programming 
environments, which are both designed for programming Lego Mindstorms robots, are not fully compatible with 
JAWS (a popular screen reader) (Ludi, 2013). Although Visual Studio (2010) is technically accessible, no sound 
is generated to indicate when the user switches between tabs (Stefik et al., 2011). 

One approach that has been taken to address the inaccessibility of programming environments is the use of a 
standard text editor alongside a screen reader (Bigham et al., 2008; Cheong, 2010; Kane & Bigham, 2014). A 
drawback of this approach is the loss of debugging tools that are standard in most modern programming 
environments. Tools have also been developed to improve the accessibility of programming environments, for 
example the Wicked Audio Debugger (WAD) was developed to work with the popular Visual Studio 
programming environment to assist VI programmers with the debugging process (Stefik et al., 2007).  

An alternative strategy is the development of accessible programming environments. An example is JavaSpeak, 
which was developed as a tool to assist VI undergraduate students learn how to program in Java (Francioni & 
Smith, 2002; Smith et al., 2000). It is based on the concept of EmacSpeak (Raman, 1996), which has a speech 
interface aimed at experienced programmers. Unlike EmacSpeak, JavaSpeak is designed for undergraduate 
students that are learning to program, enabling them to experience their code at different granularities. The 
development process of the JavaSpeak environment has been described, however there is no evidence of 
evaluation of the tool in use. 
More recently, the JBrick programming environment was developed to make the programming of Lego 
Mindstorms robots accessible (Ludi, 2013). The NXC language (Not eXactly C) has been used in outreach 
programs along with the BricxCC programming environment to enable VI learners to program Lego Mindstorms 
robots (Dorsey et al., 2014; Ludi & Reichlmayr, 2011). However, the BricxCC programming environment is not 
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fully compatible with JAWS (a popular screen reader). JBrick was developed as an alternative to BricxCC, it is 
compatible with common screen readers and braille displays, enables code to be easily located by line number 
and provides both audio and visual feedback (Ludi et al., 2014). 
 
3.1.2 Accessibility of Programming Languages 

Another important consideration is the choice of programming language; many commonly used languages, such 
as C and Java, make extensive use of non-alphanumeric characters such as brackets and curly braces, which can 
be challenging to work with using a screen reader. Additionally, the complex syntax of many languages can 
make typing mistakes more likely and debugging more challenging. Languages such as Ruby, which use mainly 
text and limit the number of non-alphanumeric symbols are preferable as they are less likely to cause problems 
with screen readers (Kane & Bigham, 2014). In their study, Kane and Bigham also considered Python, as it 
meets most of the previously mentioned criteria, however it also uses white space which could be confusing 
when used with a screen reader. During the course of their study, which took place over a week and involved 12 
VI learners, Kane and Bigham found that the students were successful in writing programs in Ruby, however the 
mispronunciation of some of the terms by the screen reader caused minor challenges. 

There are text-based languages that have been designed specifically for VI users, for example the APL (Audio 
Programming Language) for example, was developed by VI learners for VI learners (Sánchez & Aguayo, 2006). 
APL features a reduced set of commands which can be accessed and selected through a circular command list, 
with no requirement to memorise commands. The results of a small usability study of APL indicate that the 
language enables learners to understand programming concepts and apply them. 
In 2011, Stefik et al. conducted an exploratory study to evaluate the accessible programming environment 
Sodbeans, along with the Hop programming language, which they developed. Sodbeans is aimed at middle and 
high school students and makes use of audio cues for navigation along with an auditory debugger for the Hop 
programming language. The findings from the evaluation indicate an increase in learner self-efficacy after 
participation in a programming workshop that employed Sodbeans and Hop. 

The Hop programming language was developed further, becoming Quorum, a language designed for all, while 
still being accessible to VI learners (Stefik et al., 2011). The development of Quorum was informed by empirical 
studies investigating the intuitiveness of the syntax of different languages and the accuracy rates of novice 
programmers using them (Stefik & Siebert, 2013). 
 
3.1.3 Code Navigation 

A common theme that occurs among the literature is the difficulty VI learners have navigating their code and 
understanding the overall structure when using a screen reader (Bigham et al., 2008; Kane & Bigham, 2014; 
Ludi et al., 2014). This can often result in learners inserting code in the incorrect position. There are steps that 
can be taken to mitigate these difficulties; in order to gain a better understanding of their position in the code, 
learners can be encouraged to move the text cursor in order to hear the characters read out. In addition, learners 
can also be provided with code samples in braille to help them develop an understanding of the overall structure 
of the code. 

The challenge of navigating the code and understanding its structure was considered during the development of 
StructJumper, a plugin for the Eclipse programming environment which enables VI users to navigate through a 
program written in Java (Baker et al., 2015). StructJumper generates a tree that is made up of the nested 
structures contained within the program, this enables the user to easily jump between each nested structure in the 
code. The participants that took part in a small-scale evaluation of StructJumper found that it helped them speed 
up their navigation through the code. 
 
3.1.4 Other Considerations 

It is also important to consider that the level of vision among VI learners will vary considerably, as will their 
preferred assistive technologies (Bigham et al., 2008; Ludi et al., 2014). Experience with assistive technologies 
may also vary. Bigham et al. (2008) found that students that were already proficient in the use of a screen reader 
were the most successful. Another factor that can impact on progress of VI learners is their familiarity with 
keyboard layout, with typing skills also being identified as an important skill for learning to program in a 
text-based language (Ludi, 2013; Ludi et al., 2014). 
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Another factor to be considered is the accessibility of tools designed to create graphical user interfaces (GUIs), 
as existing tools that are employed to generate GUIs are either not accessible or very challenging to use for VI 
learners. In order to address this issue Siegfried (2006) developed a scripting language to enable VI programmers 
to produce Visual Basic Forms. More recently, Konecki (2014) developed GUIDL, a tool that enables VI 
learners to create GUIs for their programming projects. GUIDL was evaluated by a small group of adult novice 
programmers who found they were able to use the tool to successfully create GUIs that could be used in their 
own programs. 

Although there are a number of studies focusing on teaching VI learners to program in a text-based language 
(TBL), these mainly focus on high school and undergraduate students. The following section will look at the 
accessibility of (BBLs), which are targeted at students in primary school. 
 
3.2 Making Block-Based Languages Accessible 

When learning how to program a significant amount of time is spent learning the syntax of a specific language; 
this can potentially hinder the development of an understanding of the core programming concepts. BBLs such 
as Scratch (Maloney et al., 2010) enable learners to develop programs by snapping blocks together, removing the 
need for them to learn the complex syntax of a TBL. 
BBLs are intrinsically visual and are therefore not accessible to most VI learners. There is a need for an 
alternative to BBLs such as Scratch (Koushik & Lewis, 2016; Ludi, 2015). One such alternative is Noodle, a 
programming system for creating sound and music that has program elements which can be inserted and 
arranged purely using keyboard commands (Lewis, 2014). The concept of Noodle is promising; however, it does 
not appear to have been trialed with learners and the language used in the audio feedback is not appropriate for 
primary school children. This makes it an unsuitable choice for the introduction of programming to young VI 
children.  

Ludi (2015) and her team have been working on making the Blockly language accessible to VI learners. The 
language that Ludi and her team are developing will enable navigation purely by keyboard and also incorporate 
audio cues in order to communicate the level of nesting. Following on from the work on Noodle, Lewis has been 
working with Koushik in the development of another accessible Blockly-based language called the Pseudospatial 
Blocks (PB) language (Koushik & Lewis, 2016). Pseudospatial refers to the distorted nature of the geometry of 
movement. In PB the learner selects an insertion point using the keyboard and they can select the program 
element they want from a filtered list; the program elements are filtered by syntactic category. Koushik and 
Lewis (2016) argue that PB has advantages over visual languages for all learners as invalid program blocks for a 
given space are filtered out. 

The Lady Beetle and World of Sounds programming environments are alternatives to BBLs that were developed 
in order to introduce young VI children to the basic concepts of programming (Jašková & Kaliaková, 2014). The 
Lady Beetle programming environment enables the learner to select single word commands, without having to 
type them. These commands control the movement of a beetle across a grid. As the beetle moves, the coordinates 
of the current square are read out. World of Sounds, on the other hand, enables learners to create simple 
programs that produce sequences of sounds. 
The development of these accessible BBL alternatives is a promising step forward in the quest to find an 
accessible alternative to block-based languages, however they could still present learners with difficulties 
gaining an understanding of the overall structure of their code when using a screen reader. The table shown in 
appendix A demonstrates that there is still some way to go for BBL research to catch up with TBLs. 
 
3.3 Physical Artefacts 
3.3.1 Programmable Devices 

The physical nature of programmable devices such as robots make them a common tool for the teaching of 
introductory programming and it is has been shown to be just as appealing to VI learners (Ludi, 2013). When 
teaching computing with robotics, the robots can either be pre-assembled or learners can be required to build 
their own robots as part of the learning process. This has its own challenges, particularly for VI learners. 

Dorsey Rayshun, Chung Hyuk, & Howard (2014) conducted an evaluation of four educational robotics kits 
during a series of summer workshops, which investigated their suitability for use with VI learners. In each 
workshop the VI learners were paired with a sighted buddy and tasked with building robots using the various kits. 
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The LEGO Mindstorm RCX was found to be the easiest for VI learners to work with, requiring the least support 
from their sighted buddies. 

A number of studies have been conducted, which investigate outreach programs designed to increase 
participation of VI students in computing using robotics (Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi 
& Reichlmayr, 2011). The findings of these studies indicate that after the workshops the confidence level of the 
students in programming improved, as did their desire to take computing in school or pursue it as a career. 
 
3.3.2 Physical Programming Languages 

Most systems used in physical computing, whilst being physical themselves are still programmed using a GUI on 
a computer. In physical programming languages (PPLs), commands are represented by physical objects which 
can be joined together to create programs. The Tern PPL uses wooden blocks that can be joined together in order 
to construct programs. A webcam is used to convert physical into digital code (Horn & Jacob, 2007a, 2007b). 
Tern was initially evaluated over the period of one week with nine sighted children. The children used Tern to 
program robots, not all of them were able to understand the effect of their programs on the robot. This may be 
partially down to the delay between code creation and execution as it has to be converted to digital code using a 
webcam connected to a computer. 
The physical nature of physical programming languages means they have the potential to be a powerful learning 
tool for VI children, howeverTern itself is not accessible. On the other hand there is Torino, a physical 
programming language that is designed to be inclusive of VI learners (Thieme et al., 2017). Torino features pods 
which can be joined together to create programs that produce sound and music. Each pod features dials, which 
act as parameters and enable the learner to change the sound sample or note and the duration. The physical 
nature of Torino programs could potentially enable the learner to gain an overall of the structure of the whole 
program. 
 
3.3.3 3D Models 
It is common practice for computing teachers to use diagrams, graphics or animations to illustrate programming 
concepts such as data structures, “most tools used to teach data structures, algorithmic thinking and basic 
programming are visually oriented” (Papazafiropulos et al., p. 491). While assistive technologies enable VI 
learners to access information, they are unable to present a complex concept in a simple form in the same way a 
visual representation can. 

3D models can be used to represent abstract concepts in a way that is accessible to VI learners. As part of their 
research Stefik et al. (2011) interviewed teachers in one school for VI children and found that where possible 
new concepts should be introduced through the use of physical objects. In response to this, they developed 
‘manipulatives’ for teaching key programming concepts, such as variables. Jašková & Kaliaková (2014) used a 
tactile table consisting of a 10x10 grid to teach VI children how to write simple algorithms. The children were 
given the task to write a sequence of commands in a text editor that guided a bee to follow a pre-set path through 
the tactile grid. The learners would simulate the execution of the program by moving the bee with their hands. 

With the advent of 3D printers, 3D models have become much easier to produce. Papazafiropulos et al. (2016) 
used 3D printed models in a small feasibility study to teach concepts such as data structures and algorithms to VI 
children. The model they used features cylinders of varying heights, with the height representing the value of the 
element. The cylinders slot into a tray which represents the array. It was used to teach how sorting and searching 
algorithms could be applied to arrays.  
3D printing was also used by Kane & Bigham (2014) as part of a week-long programming workshop, in which 
children produced code to generate physical visualizations of data. They found that the ability to generate and 
print their own tactile maps was extremely engaging for the children, however, the speed of 3D printing was a 
limitation as they had to be printed overnight. They also identified the need for universal tools that can be used to 
easily create tactile graphics. 

Lego provides a quick and simple method of producing basic 3D models for use in the teaching of programming 
concepts to VI learners. Capovilla et al. (2013) discovered this when they employed Lego models in the teaching 
of sorting and searching algorithms to a small group of adult VI learners. Once the learners had familiarized 
themselves with the algorithms using the Lego models, they were then asked to solve sorting and searching tasks 
in a spreadsheet. All participants were able to complete the assigned tasks. 
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3.4 Auditory and Haptic Feedback 
Sounds that vary in tone and pitch can be used to indicate the different states of a physical object or virtual 
representation, as can haptic feedback in the form of vibrations. PLUMB EXTRA (EXploring data sTRuctures 
using Audible Algorithm Animation) was developed to enable VI undergraduate students to access simulations 
of algorithms designed to manipulate data structures (Calder et al., 2007). It is based on PLUMB, a system 
designed to enable VI learners navigate graphs (Calder et al., 2006). The PLUMB EXTRA system enables 
learners to explore the state of data structures at any point using a series of audio cues. In the Calder et al. (2007) 
study, the development of the system is described; however, the evaluation of the system is limited. 

During a series of workshops, Dorsey et al. (2014) made use of different piano notes and vibrations in a Wii 
remote in order to indicate the different states of a robot while navigating a maze. The results are this study 
indicate that if sufficient haptic and auditory feedback is provided, VI learners are able to perform tasks that are 
considered to be highly visual. 

4. Discussion 

This review has demonstrated the dominance of TBLs in the literature, this is despite the fact that in primary 
computing education BBLs are most prevalent, as highlighted by the recent Royal Society Report (The Royal 
Society, 2017). According to the national curriculum (Department for Education, 2014), all children in England 
should learn the basic concepts of programming from the age of 5. However, the inherent inaccessibility of 
BBLs, along with their widespread use in primary computing lessons can lead to VI learners being excluded 
from programming lessons. Initial steps have been taken towards making BBLs accessible to VI learners, 
however there is still a long way to go and more research is needed. 
Research relating to the use of TBLs with VI learners has identified the difficulty learners can have in gaining an 
understanding of the overall structure of their code as can they only listen to one line of code at a time, putting a 
heavy reliance on short term memory. Even though it has been shown that it is possible to make BBLs accessible 
to VI learners, this difficulty could still present a barrier for learners. PPLs, on the other hand, could potentially 
enable VI learners to develop an understanding of the structure of the code through touch, as long as the 
individual blocks or elements used in the PPL are physically different. Therefore, the use of PPLs with VI 
learners needs to be investigated in terms of learning processes and possible benefits. 

The literature relating to TBLs has identified a number of potential challenges for VI learners in addition to 
possible strategies to overcome them. This research can be used to inform the teaching of programming to 
high-school VI learners, however more research is still required. If VI learners are successfully introduced to 
programming in primary school through PPLs or accessible BBLs, they will enter high-school understanding the 
basic concepts. This could potentially smooth the transition to TBLs and as a result possibly reduce the 
significance of some of the challenges currently associated with TBLs. This highlights the urgent need for 
research into strategies for making programming accessible to primary VI learners. 

5. Conclusion 

Much of the research carried out in this space to date focuses on the development of interventions and their 
impact on student perceptions and engagement, with limited attention given to the pedagogy of teaching 
programming to VI learners. This is certainly an area that warrants further research. 
Currently the most popular languages for introductory programming in primary schools in the UK are 
block-based (The Royal Society, 2017), which are currently not accessible to VI learners. Therefore, there is a 
need for further investigation into potential accessible alternatives to BBLs, PPLs are a promising candidate 
given their potential to enable learners to gain an understanding of the overall structure of their code. 

6. Summary 

A range of studies have investigated ways in which learning text-based languages can be made accessible to VI 
learners (Bigham et al., 2008; Dorsey et al., 2014; Kane & Bigham, 2014; Ludi, 2013; Ludi et al., 2014; Ludi & 
Reichlmayr, 2011; Smith et al., 2000; Stefik et al., 2011), however, these have focused mainly on high school 
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and undergraduate students. Block-based languages have also been examined, with the aim of making them 
accessible to VI learners (Koushik & Lewis, 2016; Lewis, 2014). Pseudospacial Blocks (PB) is a promising 
development, which is more suited to the needs of VI learners in primary education. It should be noted however, 
that it could be challenging for learners to gain an understanding of the overall structure of their code when using 
PB, as is the case with text-based languages. 

Physical artefacts can be employed to engage sighted and VI learners alike, the use robotics is one such example 
(Dorsey et al., 2014; Ludi, 2013; Ludi et al., 2014; Ludi & Reichlmayr, 2011). The drawback of this approach is 
that it currently still relies on TBLs, bringing with them their own complications, which have based discussed 
previously. PPLs, on the other hand have the potential to be a powerful tool in the teaching of programming to 
VI learners in primary education, combining the physical with the facility to gain an understanding of the overall 
structure of a program. 
3D models (Kane & Bigham, 2014; Papazafiropulos et al., 2016; Stefik et al., 2011) along with auditory and 
haptic feedback (Calder et al., 2007; Dorsey et al., 2014) have been shown to be useful aids in the teaching 
process, however they cannot be used to teach programming in isolation and need to be combined with other 
strategies. 

7. Guidelines 

Drawing on the literature, a set of guidelines has been produced for educators and developers working with VI 
learners. It should be noted, however that these guidelines are based on the literature that is currently available 
and may change as the field develops and more evidence is gathered. 

1. Accessible physical programming languages may be a suitable alternative to block-based languages 
when introducing young VI children to programming.  

2. Simple programming concepts can be taught to young VI children using 3D artefacts, for example 
writing an algorithm to move a bee in a tactile grid. 

3. When teaching with text-based programming languages, the choice of language is important. Either 
choose a language that is specially designed for VI learners, or a general-purpose language with simple 
syntax and limited use of non-alphanumeric characters, for example Ruby. 

4. Ensure you choose a programming environment that is fully accessible and easy to navigate using a 
screen reader. If an appropriate environment is not available, a plain text editor can be used, although 
the lack of debugging tools can be challenge. 

5. Abstract concepts that are usually taught using visual representations can often be effectively taught to 
VI learners using 3D artefacts. For example, teaching data structures using different sized cylinders that 
slot into a tray. 

6. VI learners often struggle to gain an overall understanding of the structure of code written in text-based 
languages, one support strategy is to provide example code in Braille (for braillists). 

7. Choosing an appropriate theme for programming activities can make them accessible and engaging for 
VI learners. For example, tasks that involve programming a physical device, such as a robot can be very 
engaging. However, it is important to provide positional information for the robot in non-visual forms, 
this can include the use of auditory and haptic feedback. 
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