
06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 1/12

Turnitin Orijinallik Raporu
İşleme kondu: 05-Şub-2019 20:33 +03

NUMARA: 1073445080

Kelime Sayısı: 5867

Gönderildi: 1

Makale2 Fatih Kürşat Cansu
tarafından

4% match (yayınlar)
"Computational Thinking in the STEM Disciplines", Springer Nature America, Inc, 2018

1% match (yayınlar)
"Emerging Research, Practice, and Policy on Computational Thinking", Springer Nature,
2017

1% match (yayınlar)
Peter J. Denning. "The profession of ITBeyond computational thinking", Communications
of the ACM, 06/01/2009

1% match (yayınlar)
Daniel HICKMOTT, Elena PRIETO-RODRIGUEZ. "To Assess or Not to Assess: Tensions
Negotiated in Six Years of Teaching Teachers about Computational Thinking", Informatics
in Education, 2018

1% match (yayınlar)
Voogt, Joke, Petra Fisser, Jon Good, Punya Mishra, and Aman Yadav. "Computational
thinking in compulsory education: Towards an agenda for research and practice",
Education and Information Technologies, 2015.

1% match (yayınlar)
Margarida Romero, Alexandre Lepage, Benjamin Lille. "Computational thinking
development through creative programming in higher education", International Journal of
Educational Technology in Higher Education, 2017

1% match (yayınlar)
Aman Yadav, Chris Mayfield, Ninger Zhou, Susanne Hambrusch, John T. Korb.
"Computational Thinking in Elementary and Secondary Teacher Education", ACM
Transactions on Computing Education, 2014

1% match (yayınlar)
Hemmendinger, David. "A plea for modesty", ACM Inroads, 2010.

1% match (yayınlar)
Hatice Yildiz Durak, Mustafa Saritepeci. "Analysis of the relation between computational
thinking skills and various variables with the structural equation model", Computers &
Education, 2018

1% match (yayınlar)
Serhat Altiok, Erman Yükseltürk. "chapter 11 Analyzing Current Visual Tools and
Methodologies of Computer Programming Teaching in Primary Education", IGI Global,
2018

1% match (yayınlar)
Stamatios Papadakis, Michail Kalogiannakis, Vasileios Orfanakis, Nicholas Zaranis. "The
Appropriateness of Scratch and App Inventor as Educational Environments for Teaching
Introductory Programming in Primary and Secondary Education", International Journal of
Web-Based Learning and Teaching Technologies, 2017

1% match (yayınlar)

Benzerlik Endeksi

%21
Internet Sources: N/A
Yayınlar: %21
Öğrenci Ödevleri: N/A

Kaynağa göre Benzerlik

http://link.springer.com/10.1007/978-3-319-93566-9
http://link.springer.com/10.1007/978-3-319-52691-1
http://dx.doi.org/10.1145/1516046.1516054
https://www.mii.lt/informatics_in_education/htm/infedu.2018.12.htm
http://dx.doi.org/10.1007/s10639-015-9412-6
https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-017-0080-z
http://dl.acm.org/citation.cfm?doid=2600089.2576872
http://dx.doi.org/10.1145/1805724.1805725
http://linkinghub.elsevier.com/retrieve/pii/S0360131517302087
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3200-2.ch011
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.2017100106

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 2/12

Ana M Pinto-Llorente, Sonia Casillas Martín, Marcos Cabezas González, Francisco José
García-Peñalvo. "Developing computational thinking via the visual programming tool",
Proceedings of the Fourth International Conference on Technological Ecosystems for
Enhancing Multiculturality - TEEM '16, 2016

1% match (yayınlar)
"Second Handbook of Information Technology in Primary and Secondary Education",
Springer Nature America, Inc, 2018

1% match (yayınlar)
Akcaoglu, Mete. "Learning problem-solving through making games at the game design
and learning summer program", Educational Technology Research and Development,
2014.

1% match (yayınlar)
Hüseyin Özçınar. "chapter 1 A Brief Discussion on Incentives and Barriers to
Computational Thinking Education", IGI Global, 2018

< 1% match (yayınlar)
Kadir Demir, Cansu Çaka, Nihal Dulkadir Yaman, Hakan İslamoğlu, Abdullah Kuzu.
"chapter 3 Examining the Current Definitions of Computational Thinking", IGI Global,
2018

< 1% match (yayınlar)
Sharifah Maryam Syed Azman, Mahyuddin Arsat, Hasnah Mohamed. "The framework for
the integration of computational thinking in ideation process", 2017 IEEE 6th International
Conference on Teaching, Assessment, and Learning for Engineering (TALE), 2017

< 1% match (yayınlar)
S Swestyani, M Masykuri, B A Prayitno, Y Rinanto, S Widoretno. "An analysis of logical
thinking using mind mapping", Journal of Physics: Conference Series, 2018

< 1% match (yayınlar)
Ekmel Çetin, Selçuk Özdemir. "Children's problem-solving with programming activities: a
case study with small basic", International Journal of Innovation in Education, 2017

< 1% match (yayınlar)
H. Bahadir Yanik, Terri L. Kurz, Yasin Memis. "chapter 12 Learning from Programming
Robots", IGI Global, 2018

< 1% match (yayınlar)
Weintrop, David, Elham Beheshti, Michael Horn, Kai Orton, Kemi Jona, Laura Trouille, and
Uri Wilensky. "Defining Computational Thinking for Mathematics and Science Classrooms",
Journal of Science Education and Technology, 2015.

< 1% match (yayınlar)
Deborah Silvis, Katie Headrick Taylor, Reed Stevens. "Community technology mapping:
inscribing places when “everything is on the move”", International Journal of Computer-
Supported Collaborative Learning, 2018

< 1% match (yayınlar)
Filiz Kalelioğlu, Yasemin Gülbahar, Dilek Doğan. "chapter 2 Teaching How to Think Like a
Programmer", IGI Global, 2018

< 1% match (yayınlar)
Bruno Henrique de Paula, Andrew Burn, Richard Noss, José Armando Valente. "Playing
Beowulf: Bridging computational thinking, arts and literature through game-making",
International Journal of Child-Computer Interaction, 2017

< 1% match (yayınlar)
Isabella Corradini, Michael Lodi, Enrico Nardelli. "Conceptions and Misconceptions about
Computational Thinking among Italian Primary School Teachers", Proceedings of the 2017
ACM Conference on International Computing Education Research - ICER '17, 2017

< 1% match (yayınlar)
Mehmet Durnalı, Şenol Orakcı, Osman Aktan. "chapter 13 The Smart Learning Potential of
Turkey's Education System in the Context of FATIH Project", IGI Global, 2019

http://dl.acm.org/citation.cfm?doid=3012430.3012495
http://link.springer.com/10.1007/978-3-319-71054-9
http://dx.doi.org/10.1007/s11423-014-9347-4
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3200-2.ch001
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3200-2.ch003
http://ieeexplore.ieee.org/document/8252305/
http://stacks.iop.org/1742-6596/1022/i=1/a=012020?key=crossref.6a53c71b5b514f38de55cca27a437e3f
http://www.inderscience.com/link.php?id=91503
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3200-2.ch012
http://dx.doi.org/10.1007/s10956-015-9581-5
http://link.springer.com/10.1007/s11412-018-9275-0
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3200-2.ch002
http://linkinghub.elsevier.com/retrieve/pii/S2212868917300247
http://dl.acm.org/citation.cfm?doid=3105726.3106194
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-6136-1.ch013

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 3/12

< 1% match (yayınlar)
Marcos Román-González, Juan-Carlos Pérez-González, Carmen Jiménez-Fernández.
"Which cognitive abilities underlie computational thinking? Criterion validity of the
Computational Thinking Test", Computers in Human Behavior, 2017

< 1% match (yayınlar)
Woonhee Sung, Junghyun Ahn, Shi Ming Kai, Ahram Choi, John B. Black. "chapter 19
Incorporating Touch-Based Tablets into Classroom Activities", IGI Global, 2016

< 1% match (yayınlar)
"Human and Machine Learning", Springer Nature, 2018

< 1% match (yayınlar)
José Miguel Merino-Armero, José Antonio González-Calero, Ramón Cózar-Gutiérrez, Rafael
Villena-Taranilla. "Computational Thinking Initiation. An experience with robots in Primary
Education", Journal of Research in Science Mathematics and Technology Education, 2018

< 1% match (yayınlar)
Portelance, Dylan J., Amanda L. Strawhacker, and Marina Umaschi Bers. "Constructing the
ScratchJr programming language in the early childhood classroom", International Journal
of Technology and Design Education, 2015.

< 1% match (yayınlar)
Marutpong Chailangka, Arnan Sipitakiat, Paulo Blikstein. "Designing a Physical Computing
Toolkit to Utilize Miniature Computers", Proceedings of the 2017 Conference on Interaction
Design and Children - IDC '17, 2017

< 1% match (yayınlar)
Linda Seiter, Brendan Foreman. "Modeling the learning progressions of computational
thinking of primary grade students", Proceedings of the ninth annual international ACM
conference on International computing education research - ICER '13, 2013

< 1% match (yayınlar)
Beard, Charles H.. "Transfer of Computer Skills From Introductory Computer Courses",
Journal of Research on Computing in Education, 1993.

< 1% match (yayınlar)
Neil Y. Yen, Martin M. Weng, Louis R. Chao. "A novel system architecture to enhance web-
based assessment environment", 2009 IEEE International Symposium on IT in Medicine &
Education, 2009

< 1% match (yayınlar)
Tenzin Doleck, Paul Bazelais, David John Lemay, Anoop Saxena, Ram B. Basnet.
"Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving:
exploring the relationship between computational thinking skills and academic
performance", Journal of Computers in Education, 2017

< 1% match (yayınlar)
Annwesa Dasgupta, Senay Purzer. "No patterns in pattern recognition: A systematic
literature review", 2016 IEEE Frontiers in Education Conference (FIE), 2016

< 1% match (yayınlar)
Punya Mishra, Danah Henriksen. "Creativity, Technology & Education: Exploring their
Convergence", Springer Nature, 2018

< 1% match (yayınlar)
Gary Cheng. "Exploring factors influencing the acceptance of visual programming
environment among boys and girls in primary schools", Computers in Human Behavior,
2019

< 1% match (yayınlar)
International Handbook of Information Technology in Primary and Secondary Education,
2008.

< 1% match (yayınlar)
Sarantos Psycharis, Maria Kallia. "The effects of computer programming on high school
students’ reasoning skills and mathematical self-efficacy and problem solving",

http://linkinghub.elsevier.com/retrieve/pii/S0747563216306185
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-0251-7.ch019
http://link.springer.com/10.1007/978-3-319-90403-0
http://www.estej.com/wp-content/uploads/2018/07/JRSMTE-V1-2-4_MERINO-ARMERO_PUB.docx.pdf
http://dx.doi.org/10.1007/s10798-015-9325-0
http://dl.acm.org/citation.cfm?doid=3078072.3084339
http://dl.acm.org/citation.cfm?doid=2493394.2493403
http://dx.doi.org/10.1080/08886504.1993.10782062
http://ieeexplore.ieee.org/document/5236219/
http://link.springer.com/10.1007/s40692-017-0090-9
http://ieeexplore.ieee.org/document/7757676/
http://link.springer.com/10.1007/978-3-319-70275-9
https://linkinghub.elsevier.com/retrieve/pii/S0747563218305788
http://dx.doi.org/10.1007/978-0-387-73315-9
http://link.springer.com/10.1007/s11251-017-9421-5

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 4/12

Instructional Science, 2017

< 1% match (yayınlar)
J. Angel Velazquez-Iturbied. "Towards an Analysis of Computational Thinking", 2018
International Symposium on Computers in Education (SIIE), 2018

< 1% match (yayınlar)
Jamal Al-Karaki, Saad Harous, Hassan Al-Muhairi, Yousuf AlHammadi et al. "Towards an
innovative computer science & technology curriculum in UAE public schools system", 2016
IEEE Global Engineering Education Conference (EDUCON), 2016

< 1% match (yayınlar)
Arzu Deveci Topal, Esra Çoban Budak, Aynur Kolburan Geçer. "The effect of algorithm
teaching on the problem-solving skills of deaf-hard hearing students", Program, 2017

< 1% match (yayınlar)
Sentance, Sue, and Andrew Csizmadia. "Computing in the curriculum: Challenges and
strategies from a teacher’s perspective", Education and Information Technologies, 2016.

An Overview of Computational Thinking Sibel Kılıçarslan CANSU, PhD. Abant İzzet
Baysal University Faculty of Natural Sciences Mathematics Department
kilicarslan_s@ibu.edu.tr Fatih Kürşat CANSU Bahçeşehir University Institute of
Educational Sciences Educational Technologies Doctorate Program
fatihkursat.cansu@stu.bahcesehir.edu.tr Abstract Computers and smart devices
have become ubiquitous staples of our lives. Computers and computer-controlled
devices are used in all industries from medical vocations to engineering, and textile
production. One field where computers have inevitably spread into is education,
and one pre-requisite of controlling computers, or increasing the level and
efficiency of our control over them, is making human-computer interactions as
efficient as possible. This process of efficient and effective computer use, known as
“Computer-like Thinking” or “Computational Thinking”, is seen as a field with
potential to support individual and societal development in our rapidly progressing
world and to provide significant economic benefits. The fundamental concepts and
scope of this field have been delineated in diverse manners by different
researchers. Similarly, researchers have also advanced distinct critical viewpoints
towards and potential benefits of computational thinking. This study aims to first
define the concept of computational thinking by referencing source literature, then
analyze the aims of certain criticisms of the field, and discuss the fundamental
elements of computational thinking and contemporary research on these elements.
Keywords: computational thinking, computer-like thinking, computational-
informatic thinking 1. Introduction “Computer” as a word references a device that
“computes”, localized into Turkish as “bilgisayar” by Prof. Dr. Aydın Köksal
(Keser,2011: p.88). Yet it is difficult to claim the same about “computational
thinking”, which is localized in a number of ways by researchers. Özden et al.
(2015) use “bilgisayarca düşünme”, whereas Yesan, Özçınar and Tanyeri (2017)
prefer “hesaplamalı düşünme”. Çınar and Tüzün (2017), meanwhile, used “bilgi
sayımsal düşünme” and “bilgi işlemsel düşünme” in their paper. This study will
primarily use “bilgi işlemsel düşünme” (Computational Thinking). The presence of
such diverse localization attempts is natural. As Piaget has (Bringuier, 1980: p.57)
specified, definition of terms comes after the creation of terms in scientific
research. The novelty of this field, leading to a lack of uniformity in jargon and
everyday divergence of terms in common usage, may be the explanation of this
phenomenon. A similar differentiation is observed in the computer science /
informatics divide separating researchers in the field. Whereas European sources
prefer the term “informatics”, putting information before the devices used to
process it; American researchers seem to prefer “computer science” as their term
for this field (Kalelioğlu, Gülbahar and Kukul, 2016). Nonetheless, despite
differences in terminology, it is observed that the fundamental focus of this field is
the basic principles of computer science and their interaction with mankind. 2. The
History of Computational Thinking While computational thinking is widely
considered to have begun by Wing’s (2006) article on the subject, it was first
referenced by Papert (1996), as “procedural thinking”. Papert, then in MIT’s
Department of Mathematics, in the course of his research on computer and
software usage in solving geometric problems claimed that computational thinking
could be employed in defining the relationship between a problem and its solution
and the structuring of data. Papert and his colleagues had developed the LOGO

http://link.springer.com/10.1007/s11251-017-9421-5
https://ieeexplore.ieee.org/document/8586710/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7474656
http://www.emeraldinsight.com/doi/10.1108/PROG-05-2017-0038
http://dx.doi.org/10.1007/s10639-016-9482-0

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 5/12

programming language in the 1960’s. The main aim of this language was aiding
students in thinking mathematically and logically. LOGO was at its core a
constructivist language, accepting learning to be a fundamentally individual activity
and explaining it in Piagetian terms. Papert (1991: p.1)’s individualization of this
concept resulted in the notion of learning-by-making. Papert’s adoption of this
philosophy is not surprising, considering his experience working alongside Piaget in
the Centre of Genetic Epistemology in Geneva between 1958 and 1963. LOGO was
thus designed as an environment conductive to and supportive of Piagetian learning
(Logo, 2015). Figure 1. Seymour Papert and LOGO-based robot Turtle. LOGO and
the constructivist ethos behind it were considered to have the potential to
transform education when the language was first introduced. This potential did not
come to life however, as constructivism gradually lost traction in the education
systems of the UK and the USA (Agalianos, Noss, and Whitty, 2001: p.497). This
loss was not unprecedented, as other programming languages such as PLATO
(Programmed Logic for Automatic Operations), CAI (Computer Assisted
Instruction), CBT (Computer Based Training) and CAL (Computer Assisted
Learning) also faced the same fate (Etherington, 2017). 3. Defining Computational
Thinking As computational thinking is a newborn field, its definition varies from
researcher to researcher. Due to this variation between academics, this paper will
consider practical definitions offered by organizations such as ISTE (International
Society for Technology in Education) and CSTA (Computer Science Teacher
Association) in addition to those determined by the academics themselves. Wing
(2006, p.33) defines computational thinking as “Computational thinking involves
solving problems, designing systems, and understanding human behavior, by
drawing on the concepts fundamental to computer science.”. However, after further
revisions [as the original article was 4 pages long and many topics were not fully
explored.] a different definition was accepted in 2011. According to Wing (2011),
computational thinking is defined as “Computational thinking is the thought
processes involved in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an information-
processing agent.”. Table 1 showcases the various definitions of computational
thinking employed by the contemporary academia. Table 1. Contrasting Definitions
of Computational Thinking. Definition Source ...the thought processes involved in
formulating problems and their solutions (Cuny, Snyder, Wing, 2010 so that the
solutions are represented in a form that can be effectively carried akt. Wing, 2011,
p.20) out by an information-processing agent.Computational thinking is the
thought processes used to formulate a problem Wing (2014) and express its
solution or solutions in terms a computer can apply effectively. The mental process
for abstraction of problems and the creation of Yadav et al. (2014) automatable
solutions. Computational thinking is the process of recognising aspects of
computation Furber (2012) in the world that surrounds us, and applying tools and
techniques from Computer Science to understand and reason about both natural
and artificial systems and processes.Computational thinking has a long history
within computer science. Known Denning (2009) in the 1950s and 1960s as
“algorithmic thinking,” it means a mental orientation to formulating problems as
conversions of some input to an output and looking for algorithms to perform the
conversions. Today the term has been expanded to include thinking with many
levels of abstractions, use of mathematics to develop algorithms, and examining
how well a solution scales across different sizes of problems. ...[Computational
Thinking] is to teach them how to think like an economist, Hemmendinger (2010) a
physicist, an artist, and to understand how to use computation to solve their
problems, to create, and to discover new questions that can fruitfully be explored.
These definitions tend to focus on the cognitive performances and processes of
individuals. Accordingly, we may conclude that activities based on computational
thinking are essentially meant to improve cognitive skills and support the
processes of teaching and learning in the affected individuals. Researchers in the
field have also held workshops with the aim of establishing the true nature of and a
working definition for computational thinking. Some of these workshops have
concluded that a rigorous and consistent definition would benefit the field (BİD
Workshop Committee, 2011). On the other hand, certain researchers held that
attempting to define computational thinking in clear-cut terms is unnecessary and
that effort should be applied in establishing the internal relationships within the
computational thinking corpus (Voogt et al., 2015: p.726): “There is no clear-cut
definition for CT and the main tension in the attempt to define CT has to do with
defining the core competencies of CT versus the more peripheral competencies. We
argue that for the purpose of conceptualizing CT and integrating it in education, we
should not try to give an ultimate definition of CT, but rather try to find similarities

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 6/12

and relationships in the discussions about CT (Voget et al., 2015: p.726).” While a
general concept of computational thinking can be established based on these
definitions, they offer little insight into how computational thinking should be
applied in practice in the field of education. Practical definitions of computational
thinking and its constituents are needed before achievement targets and
educational programmes can be created in the classroom. CSTA and ISTE have
provided activity rubrics for computational thinking in the years 2011, 2015 and
2016. Table 2 is a list of these activities, sorted according to keywords. Table 2.
Practical computational thinking activities, curated by ISTE. Keywords Source
Formulating, organizing, analyzing, modelling, abstractions, algorithmic thinking,
automating, efficiency, generalizing, transferring ISTE (2011) Creativity, algorithmic
thinking, critical thinking, problem solving, cooperation ISTE (2015; Oden et al.
2015) Data analysis, abstract thinking, algorithmic thinking, modelling,
representing data, breaking problems into components, automation ISTE (2016)
(Computational Thinker Definition) As these definitions show, the activity lists
provide a framework for educators, delineating the educational achievements which
they should aim for and outlining methods for assessment and evaluation of these
achievements. For example, an educator using these rubrics would know that
teaching visual programming tools such as Scratch or KODU in class is not only
meant to help students have fun while designing computer games: They would also
use the experience as a medium for instilling some of the concepts and abilities
outlined in Table 2. 4. Components of Computational Thinking The fundamental
components of computational thinking are also a source of divergence between
researchers. In order to establish a baseline for further analysis, components used
by various researchers have been provided in Table 3. Table 3. Components of
Computational Thinking Components Source Abstraction, Algorithms, Automation,
Problem Decomposition, Parallelization, Simulation Barr & Stephenson (2011)
Abstraction, Automation, Analysis Lee et al. (2011) Abstraction, Algorithmic
Thinking, Decomposition, Evaluation, Generalization Selby & Woollard (2013)
Abstraction, Algorithms, Decomposition, Debugging, Generalization Angeli et al.
(2016) Abstraction, Algorithms, Automation, Problem Decomposition,
Generalization Wing (2006, 2008, 2011) While the exact components may differ,
we believe the essential concepts they represent are largely uniform across the
field. Computational thinking abilities are essentially the set of skills needed to
convert complex, messy, partially defined, real-world problems into a form that a
mindless computer can tackle without further assistance from a human (BCS,
2014, p.3). As such, this paper will use the definitions of abstraction, problem
decomposition, algorithmic thinking, automation and generalization from amongst
the components provided. These definitions can be listed as (Humpreys, 2015): ●
Abstraction makes problems or systems easier to think about. Abstraction is the
process of making an artefact more understandable through reducing the
unnecessary detail and number of variables; therefore leading to more
straightforward solutions. One of the best-known examples of this is the London
underground example, provided by Humpreys (2015). The London underground
map provides just enough information for the traveler to navigate the underground
network without the unnecessary burden of information such as distance and exact
geographic position. It is a representation that contains precisely the information
necessary to plan a route from one station to another – and no more. Similar
examples may be provided for other subjects, allowing the concept to be better
understood (Wing, 2008): ○ Verbal and story-based problems in mathematics such
as filling rates of pools, areas to be fenced off and accounting calculations are
essentially an exercise in abstraction for the students where they are required to
separate relevant and irrelevant data and state their solutions in the symbolic
language of algebra, geometry, or arithmetic. ○ In geography, students make use
of specialized maps (physical, topographic, political, touristic etc.), ignoring many
aspects of real-world geography in favour of ease-of-access for data relevant to
their current study. ○ History lessons are essentially abstractions of local histories
and individual biographies taught as national or world history – abstract projections
of real-world events. ● Problem Decomposition is a method for taking apart
problems into smaller and more understandable constituents. This method is also
known as “Divide and Conquer”. ● Algorithmic Thinking is the process of
constructing a scheme of ordered steps which may be followed to provide solutions
to all constituent problems necessary to solve the original problem. ● Automation is
the configuration of formed algorithms over computers and technological resources
to be efficiently applicable to other problems. ● Generalization is the process of
adapting formulated solutions or algorithms to different problem states, even if the
variables involved are different. Decomposition Abstraction Pattern Recognition

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 7/12

Algorithms Figure 2. 4 basic strategies for computational thinking (McNicholl, 2018:
p.37). There are also a number of techniques used to exemplify and evaluate
computational thinking. These comprise the equivalent of a scientific method for
computer science. They are employed to put computational thinking to practice in
the classroom, at home and at work (Humpreys, 2015): ● Reflection ○ Reflection is
the skill of making judgements (evaluation) that are fair and honest in complex
situations that are not value-free. Within computer science this evaluation is based
on criteria used to specify the product, heuristics (or rules of thumb) and user
needs to guide the judgements. A child’s realization, when playing with pebbles,
that 3 + 4 is the same as 4 + 3 is an example of reflection (or rather, reflective
abstraction). The information created in this example is derived not from the
pebbles themselves but from the actions taken on them. ● Coding ○ An essential
element of the development of any computer system is translating the design into
code form and evaluating it to ensure that it functions correctly under all
anticipated conditions. Debugging is the systematic application of analysis and
evaluation using skills such as testing, tracing, and logical thinking to predict and
verify outcomes. ● Designing ○ Designing involves working out the structure,
appearance and functionality of artefacts. It involves creating representations of
the design, including human readable representations such as flowcharts,
storyboards, pseudo-code, systems diagrams, etc. It involves further activities of
decomposition, abstraction and algorithm design. ● Analysing ○ Analysing involves
breaking down into component parts (decomposition), reducing the unnecessary
complexity (abstraction), identifying the processes (algorithms) and seeking
commonalities or patterns (generalisation). It involves using logical thinking both to
better understand things and to evaluate them as fit for purpose. ● Applying ○
Applying is the adoption of pre-existing solutions to meet the requirements of
another context. It is generalization - the identification of patterns, similarities and
connections - and exploiting those features of the structure or function of artefacts.
An example includes the development of a subprogram or algorithm in one context
that can be re-used in a different context. 5. Critique and Contemporary Research
in Computational Thinking Wing (2006), in the article “Computational Thinking”,
provided a definition of computational thinking, and held that computational
thinking is a fundamental ability for the future which will become a necessity for all
individuals and should be employed in the curriculums for students of all levels.
However, the article itself in Wing (2006) totaled only 4 pages, was not based on
independent research and lacked in-depth analysis of many topics covered in the
article. While the article has been used as a foundation for research done by many
academics, it has also been put under a heavy amount of critique. Hemmendinger
(2010) especially claimed that the components of computational thinking as
presented in Wing (2006) are not unique to computational thinking. According to
Hemmendiger (2010): ● Reformulating hard problems is typical of all domains of
problem solving, ● Philosophers have been thinking about thinking — recursively —
for a long time, ● Mathematics surely uses abstraction, and so do all disciplines that
build models, ● Separation of concerns and using heuristics also characterizes
problem-solving in general., Furthermore, Hemmendinger (2010) advances that
teaching individuals involved in other disciplines how to think like a computer
scientist is unreasonable. Rather than employing a single discipline to dictate the
thought processes for all disciplines, physicists should think like physicists and
economists should think like economists while making use of computational
thinking and computational processing technologies in order to solve questions in
their field efficiently and determine new questions which would result in novel,
efficient methods once solved. Another objection to Wing comes from Denning
(2016). According to Denning (2016), the article ascribes an undeservedly
significant weight to algorithms and algorithmic thinking. Rather than valuing
algorithms above their contribution, Denning (2016) suggest that an
algorithmically-controlled computational thinking model should not be ignored as
an alternative. Additionally, they advance the notion that computational thinking is
not a fundamental skill and cannot be regarded as an equal to fundamental
abilities such as reading and writing. In short, the idea that every individual can
use computational thinking and campaigns with claims such as “Coding for
Everyone”, “A Nation of Coders” and “A Coder at Every Home” are unrealistic. The
question of whether every profession and every individual really need to employ
computational thinking and consequentially coding abilities as a part of
computational thinking, is an unresolved discussion in the field. One of the most
striking comments on this conundrum is provided by Barr & Stephenson (2011:
p.113): The ultimate goal should not be to teach everyone to think like a computer
scientist, but rather to teach them to apply these common elements to solve

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 8/12

problems and discover new questions that can be explored within and across all
disciplines (Barr and Stephenson, 2011: p.113). Learning computational thinking
and computer science are not one and the same. Yet colloquially, these two
expressions are used interchangeably. This supposed equivalency is erroneous as
the latter is essentially meant to educate learners in the study and use of the
principles of mathematical calculation. One reason why this belief is in wide
circulation could possibly be Wing (2006)’s original claim that “computational
thinking is thinking like a computer scientist.”. Denning (2009) and Hemmendinger
(2010) oppose this claim mainly because of their thesis that such a definition of
computational thinking could give the impression that computational thinking is
only relevant to the field of computer science and is largely inapplicable to
everyday situations in would-be computational thinking learners. Programming
education is a sub-field of computer science and while primarily conducted to
educate learners in the best practices of computer programming, one of its goals is
being conductive to the creation of high-quality computer programs. Computational
thinking, while it has considerable overlap with computer science on certain
elements, focuses mainly on developing and disseminating approaches to problem
solving, unlike computer science. While the terms “coding” and “programming” are
used interchangeably with each other, “coding” has been employed as a more
exciting and less scary alternative, especially to entice and motivate beginners in
scripting. Platforms such as Code Studio, Hour of Code, Code Monkey and MIT’s
Scratch and App Inventor 2 tend to use coding rather than programming. More
advanced text-based and OOP languages (Python, Java etc.) edge towards the use
of programming instead. One widely-held belief is that computational thinking, and
as a result coding and programming education, has a positive effect on students’
problem-solving abilities. Multiple different manifestations of this belief may be
observed in contemporary research, and it can be connected to more solid scientific
reasoning via analyzing the results of contemporary research: ● Palumbo (1990)’s
meta-analysis study concluded that strong evidence to the existence of a
meaningful correlation between programming education and problem-solving
abilities could not be found. Palumbo (1990) came to this conclusion by evaluating
different studies conducted on high school students by a variety of researchers.
These included studies based on CAI (Computer Aided Instruction), LOGO and
BASIC languages being taught to different groups of students in various class hours
and total course length in weeks configurations – none of which discovered a
scientifically significant correlation. As previously stated in this article, one of the
reasons for the near-extinction of these programming languages may be their
inability to provide the expected contribution to the students’ problem-solving
abilities. ● Kalelioğlu & Gülbahar (2014) held a 5-week long study with 5th Grade
Middle School students (22 girls and 27 boys) in the 2013-2014 educational year.
Students conducted varying activities in the Scratch programming language as part
of the study. Their results indicated that when quantitative data is analyzed, there
was no statistically significant divergence between the pre-study and post-study
problem- solving ability quotients. Analysis of qualitative data, on the other hand,
showed increased student enthusiasm towards programming. ● Kukul &
Gökçearslan (2014) worked with 304 5th and 6th grade students who had not
taken any programming lessons previously. Similarly, to Kalelioğlu & Gülbahar
(2014), they also used Scratch. Their conclusions indicated that no statistically
significant change in the students’ problem-solving abilities was observed. ● Morelli
et al. (2011) analyzed the results under specific indicators. The “App Inventor”
mobile programming application was taught to high school students as part of a
summer programme. Neither the “problem-driven learning” nor “support for
learning” indicators mention an increase in the problem- solving abilities of
students, instead opting to focus on the increase in motivation observed. ● Wong et
al. (2015) conducted an experimental study on 264 5th Grade students in Hong
Kong between the years of 2012 and 2014. The first year of the study was used to
teach KODU (A game engine developed by Microsoft) to the students, while in the
second year Scratch and Small Basic were used in the curriculum. The students’
mathematics grade average rose from 74.86 in 2012-2013 to 77.59 in 2013- 2014.
The students’ creativity, critical thinking and problem-solving abilities were also
evaluated. Based on t-Test results conducted on data retrieved from the ESDA
student evaluation portal, the students’ problem-solving abilities appeared to rise
from 2.75 to 2.95. However, while the researchers did indicate that participation in
coding developed certain abilities in the students, other fundamental abilities were
not conclusively affected. Various strong claims have been made regarding the
positive influence of programming/ coding education in the cognitive development
of children. Papert (1980), believed that programming allowed children to shape

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&lan… 9/12

their own learning environments. Papert’s most important claim was that learning
LOGO improved problem-solving abilities by providing concrete experiences which
were conductive to conceptualizing pictures on an operational scale (As Papert
himself was a mathematician, his examples were frequently based on mathematics
and geometry. Concrete experiences were defined as the appearance of geometric
shapes on the screen.). Formal operational thinking was defined as Piaget as the
ability to construct relationships, make inferences and build hypotheses (Kıncal &
Yazgan, 2010: p.724). An individual capable of formal operational thinking can
make abstractions, understand mathematical constructs requiring high-level
thinking, generalize by applying the acquisitions from these problems to other
problems, is able to make plans, and employs a procedural method of thinking. At
this point, the similarities between formal operational thinking as defined by Piaget
and CT-based abilities become apparent. This is why Papert claimed that LOGO
could aid in dismissing negative attitudes towards math in students, teaching
mathematical concepts, and strengthening self-control and success-oriented
attitudes in children (Liao & Bright, 1991: p.252). Results from these studies show
conflicting opinions in computational thinking literature when it comes to the
question of whether programming education on its own has a meaningful effect in
the problem-solving abilities of students. But studies where components of
computational thinking are employed show an increase in the students’ problem-
solving, abstract-thinking, troubleshooting and cooperative learning abilities. ●
Roman-Gonzales et al. (2017) studied 1251 Spanish students in 5th – 10th grades.
CTt (Computational Thinking Test) and PMAt (Primary Mental Abilities Test) were
applied to the students. The correlation between CT abilities and “spatial memory”,
“Reasoning” and “Problem-solving” was calculated experimentally, with spatial
memory being k (r=0.44), reasoning (r=0.44) and problem-solving (r=0.67).
Problem-solving appears to be more heavily-influenced than other abilities. ●
Grover, Pea & Cooper (2015) worked with 54 students in Northern California
between 11 and 14 years old. A 7-week course was designed for the students
where they used the Scratch coding platform and were able to translate their code
to text-based platforms based on their acquisitions from the platform. The
researchers were able to correlate CT abilities with problem-solving abilities. When
the results are analyzed, students are shown to have especially advanced
themselves in algorithmic thinking abilities. Another interesting point is that the
students’ previous CT experiences and mathematical abilities (as determined by an
introductory exam conducted by the researches) were strong indicators of learning
outcomes. Pea & Kurland (1984, p.35) enumerated “mathematical ability”,
“memory capacity”, “analogical reasoning ability”, “situational reasoning ability” and
“procedural thinking ability” as the mathematical skills necessary for acquisition of
programming ability, while also specifying that students who are especially able to
operate the LOGO language successfully were also successful in English and
humanities classes, and not merely in mathematics. ● Webb (2010) assayed the
contribution of programming education to students’ troubleshooting abilities. A
regimen of 2 hours per week for 5 weeks was planned for, with CT skills being
connected to problem- solving ability. While 19 boys and 21 girls were present at
the beginning, due to personal reasons and exams only 24 students (16 boys, 8
girls) completed the regimen. At the end of the study, students were asked to “Fix
the Frogger Program” in 40 minutes. Only 1 student failed this assignment, with
the rest proceeding to the debugging phase. ● The study conducted by Bers et al.
(2013) was based on 3 preschool classes (2 public and 1 private) of 53 students in
total, and had a length of 20 hours. During this study, learners were exposed to 6
main subjects including engineering design processes, robotics, instruction-based
programming, loops, sensors, and control mechanisms. TangibleK robots and
software were employed in the study. The contents of these subjects were tailored
to suit the students’ age. Songs, games, and rhythmic and repetitive moves were
inserted to the applications. For example, “Simon Says” was used in lesson 3:
algorithmic programming and CHERP (Creative Hybrid Environment for Robotic
Programming), a drag- and- drop software was taught. The students’
troubleshooting, understanding of the relationship between instructions and
movement, and use of instruction order and flow-control instructions was studied.
The results indicated that students’ abilities to cooperate, create ideas, share via
negotiation as well as motor skills improved. Furthermore, the students were
described to have become more active in their creativity and problem-solving
abilities, both in the mathematical and real world. Upon analysis of these studies, it
becomes apparent that it is lessons in coding, mathematics, natural sciences, social
sciences and language arts taught according to computational thinking skills and
not mere programming or coding education which affect an increase in the

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&la… 10/12

problem-solving, abstract thinking, troubleshooting, procedural thinking and similar
abilities in students. An appropriate and interdisciplinary application of the
component of CT abilities needs to be advanced in order to raise students not only
as coders but as individuals with a radical way of thought and perspective.
Furthermore, it may be appropriate for Computational thinking and STEAM
(Science, Technology, Engineering, Arts and Mathematics) to be considered
together as these two fields share a great deal of subject material (Gülbahar, 2017:
p.331). Interdisciplinary work in part of the students and their ability to realize the
relationships between areas of study, determine the problems they are facing,
investigate potential solutions, decide upon the correct solution, gather data,
analyze data, troubleshoot, develop their models and generalize solutions (ISTE,
2016) will aid their problem-solving abilities. 6. Conclusion Computer science-based
technologies are developing rapidly in our era, influencing the problem-solving
processes and social lives of both individuals and societies. From medical work to
social media use, results of computer science studies are integrated to the daily
lives of individuals in a multitude of fields. The effects of computer science on
modern society is also an indicator of its effects on the scientific method and
therefore, naturally, scientists. Natural scientists have long posited computation as
a “third” foundation of the scientific method alongside theory and experimentation,
and that computational thinking is essential to their work (Denning, 2009). Though
the definitions of and framework for computational thinking as set out by Wing
(2006) have long been critiqued by other researchers, the importance of computer
science has been growing daily, finding applications in multiple fields from curing
disease to preventing terrorist attacks. Nonetheless, the claim that computer
science and as a results computational thinking is a fundamental discipline on par
with reading, writing and basic arithmetic, is still being debated. Populist notions
such as “Computer Science and Computational Thinking for All”, aimed at bringing
the field to the mainstream, will make it more difficult for the field to preserve its
rightful rigour. As we have deducted from the works of Denning, Hemmendinger
and Barr amongst others presented in this article, ascribing an undeserved
importance to certain fields – whether they be deemed coding, computer science,
or computational thinking – would be inappropriate. Still, researchers may benefit
from holding computational thinking as a potential method of transforming
education, as long as they also hold the criticisms applied to the field in equal
regard. As Denning (2010, p.28) has also stated, holding computational thinking
(and coding) in (undeservedly) excessive esteem may lead us back to the same
pitfalls we are attempting to avoid. As a final remark, we hold that the fundamental
goal of computational thinking (and instilling this ability in students) and computer
education should be aiding students in understanding and – through use of their
creative impulses – changing the world they live in, for the better (Department for
Education, 2014, p.217). References Agalianos, A., Noss, R., & Whitty, G. (2001).
Logo in mainstream schools: the struggle over the soul of an educational
innovation. British Journal of Sociology of Education, 22(4), 479-500.Angeli, C.,
Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6
computational thinking curriculum framework: Implications for teacher knowledge.
Journal of Educational Technology & Society, 19(3), 47. Barr, V., & Stephenson, C.
(2011). Bringing computational thinking to K-12: what is Involved and what is the
role of the computer science education community?. Acm Inroads, 2(1), 48-54.
BCS, The Chartered Institute for IT. 2014. Call for evidence - UK Digital Skills
Taskforce. http://bit.ly/ILi8mdn [Retrieved 17.01.2018]. Bers, M. U., Flannery, L.,
Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:
Exploration of an early childhood robotics curriculum. Computers & Education, 72,
145-157. Bringuier, J. C. (1980). Conversations with Jean Piaget. Society, 17(3),
56-61. Çınar, M. & Tüzün, H. (2017, February). Bilgisayımsal Düşünme Sürecinin
Doğasına İlişkin Nitel Bir Analiz (A Qualitative Analysis on the Nature of the
Computational Thinking Process). Presented to 19. Akademik Bilişim Konferası
(Conference on Academic Informatics), Aksaray University, retrieved 24.12.2017
from http://ab.org.tr/ab17/ozet/233.html. Denner, J., Werner, L., & Ortiz, E.
(2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts?. Computers & Education,
58(1), 240-249. Denning, P. J. (2009).The profession of IT Beyond computational
thinking. Communications of the ACM, 52(6), 28-30. Department for Education.
2014. The National Curriculum in England, Framework Document. Reference: DFE-
00177-2013. Retrieved 26.12.2017 from:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335116/Master_final_
 nationa l _curriculum_220714.pdf. Etherington,C. (2017), Retrieved 24.12.2017
from: https://news.elearninginside.com/how-plato-changed-the- world-in-1960/.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&la… 11/12

Furber S (2012) Shut down or restart? The way forward for computing in UK
schools. Technical report, The Royal Society, London.Grover, S., Pea, R., & Cooper,
S. (2015). Designing for deeper learning in a blended computer science course for
middle school students. Computer Science Education, 25(2), 199-237.
Hemmendinger, D. (2010). A plea for modesty. Acm Inroads, 1(2), 4-7. Humpreys,
S. (2015). Computational Thinking, a guide for teacher. Computing at School.
Charlote BCS. The Chartered Institue for IT ISTE (2011), Operational definitions of
computational thinking, retrieved 24.12 .2017 from:
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/
CompThinkingFlyer .pdf. ISTE (2016), ISTE Standarts for Students, retrieved
24.12.2017 from: http://www.iste.org/docs/Standards- Resources/iste-
standards_students-2016_one-sheet_final.pdf?sfvrsn=0.23432948779836327.
Kalelioglu, F., & Gülbahar, Y. (2014). The effects of teaching programming via
Scratch on problem solving skills: a discussion from learners' perspective.
Informatics in Education, 13(1), 33. Kalelioglu, F., Gülbahar, Y.,& Kukul, V. (2016).
A framework for computational thinking based on a systematic research review.
Baltic Journal of Modern Computing, 4(3), 583. Keser, H. (2011). Türkiye'de
Bilgisayar Eğitiminde İlk Adım: Orta Öğretimde Bilgisayar Eğitimi İhtisas Komisyonu
Raporu (Turkey’s First Steps in Computer Education: Specialized Commission on
Computer Education in Secondary Education Report). Eğitim Teknolojisi Kuram ve
Uygulama (Theoretical and Practical Educational Technologies), 1(2), 83-94. Kıncal,
R. Y., & Yazgan, A. D. (2010). Investigating the formal operational thinking skills of
7th and 8th grade primary school students according to some variables. Elementary
Education Online, 9(2), 723-733. Korkmaz, Ö., Çakır, R., Özden, M. Y., Oluk, A., &
Sarıoğlu, S. (2015). Bireylerin Bilgisayarca Düşünme Becerilerinin Farklı
Değişkenler Açısından İncelenmesi (A Multi-Variable Investigation of the
Computational Thinking Abilities of Individuals). Ondokuz Mayıs Üniversitesi Eğitim
Fakültesi Dergisi (19th May University Faculty of Education Journal), 34(2), 68-87.
Korkmaz, Ö., Çakır, R., Özden, M. Y., Oluk, A., & Sarıoğlu, S. (2015). Bireylerin
Bilgisayarca Düşünme Becerilerinin Farklı Değişkenler Açısından İncelenmesi (A
Multi-Variable Investigation of the Computational Thinking Abilities of Individuals).
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi (19th May University Faculty of
Education Journal), 34(2), 68-87. Kukul, V., & Gökçearslan, Ş. (2014). Scratch ile
programlama eğitimi alan öğrencilerin problem çözme becerilerinin incelenmesi.
(Investigation of the Problem-solving Skills of Students with Scratch- based
Programming Education.) Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., ... & Werner, L. (2011). Computational thinking for youth in practice.
Acm Inroads, 2(1), 32-37. Liao, Y.K. C., & Bright, G. W. (1991). Effects of
computer programming on cognitive outcomes: A meta- analysis. Journal of
Educational Computing Research, 7(3), 251-268. Logo Foundation (2015). Logo
and Learning, retrieved 24.12.2017 from: http://el.media.mit.edu/logo-
foundation/ what_is _logo/ logo_and_learning .html. McNicholl, R.(2018).
Computational thinking using code.org. Hello World, 4, 37. Morelli, R., De
Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011, March). Can
android app inventor bring computational thinking to k-12. In Proc. 42nd ACM
technical symposium on Computer science education (SIGCSE'11) (s. 1-6).National
Research Council. (2010). Committee for the Workshops on Computational
Thinking. In Report of a workshop on the scope and nature of computational
thinking, Natl Academy Pr. Palumbo, D. B. (1990). Programming
language/problem-solving research: A review of relevant issues. Review of
educational research, 60(1), 65-89. Papert, S.,&Harel, I. (1991). Situating
constructionism. Constructionism, 36(2), 1-11.Pea, R. D., & Kurland, D. M. (1984).
On the cognitive effects of learning computer programming. New ideas in
psychology, 2(2), 137-168.Román-González, M., Pérez-González, J. C., & Jiménez-
Fernández, C. (2016). Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test. Computers in Human
Behavior, 1-14Selby, C., & Woollard, J. (2013). Computational thinking: the
developing definition. Tekerek, M.,& Altan, T. (2014). The effect of scratch
environment on student's achievement in teaching algorithm. World Journal on
Educational Technology, 6(2), 132-138. Voogt, J., Fisser, P., Good, J., Mishra, P., &
Yadav, A. (2015). Computational thinking in compulsory education: Towards an
agenda for research and practice. Education and Information Technologies, 20(4),
715-728. Wing, J. (2014). Computational thinkingbenefits society. 40th
Anniversary Blog of Social Issues in Computing, 2014.Wing, J. M. (2006).
Computational thinking. Communications of the ACM, 49(3), 33-35. Wing, J. M.
(2008). Computational thinking and thinking about computing. Philosophical
transactions of the royal society of London A: mathematical, physical and

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

06.02.2019 Turn�t�n

https://www.turn�t�n.com/newreport_pr�ntv�ew.asp?eq=1&eb=0&esm=5&o�d=1073445080&s�d=0&n=0&m=2&svr=317&r=52.7232514877809&la… 12/12

engineering sciences, 366(1881), 3717-3725. Wing, J. M. (2011), Research
Notebook: Computational thinking -what and why? The Link Magazine, 20-23.
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-
whyYadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher education. ACM
Transactions on Computing Education (TOCE), 14(1), 5. Yecan, E., Özçınar, H., &
Tanyeri, T. (2017). Bilişim Teknolojileri Öğretmenlerinin Görsel Programlama
Öğretimi Deneyimleri (A Collection of Visual Programming Experiences by
Information Technologies Educators). İlköğretim Online (Elementary Education
Online), 16(1). 2 3 4 5 6 7 8 9 10

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

