
International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 1

Secondary Computer Science Teachers’ Pedagogical Needs

Olgun Sadik1

Anne Todd Ottenbreit-Leftwich2

Thomas Andrew Brush3

1Inonu University

2Indiana University

3Indiana University

DOI: 10.21585/ijcses.v4i1.79

Abstract

The purpose of this study is to identify secondary computer science (CS) teachers’ pedagogical needs in the United

States. Participants were selected from secondary teachers who were teaching CS courses or content in a school

setting (public, private, or charter) or an after-school program during the time of data collection. This is a

qualitative study using CS teachers’ discussions in the Computer Science Teachers Association’s (CSTA) email

listserv, responses to open-ended questions in a questionnaire, and discussions in follow-up interviews. Content

analysis, thematic analysis and constant comparative method of qualitative data analysis were used to analyze the

data. The most common pedagogical need expressed was learning student-centered strategies for teaching CS and

guiding students’ understanding with the use of scaffolding and team-management strategies in CS classes.

Furthermore, addressing students’ beliefs in CS and their preconceptions in math and reading were important

factors influencing teaching CS effectively in secondary schools.

Keywords: computer science education, computing education, teachers’ needs, teachers’ challenges, computer

science pedagogy, learning computer science, teaching computer science, teacher education

1 Introduction

Within the United States, more stakeholders have pushed for increased opportunities for computer science (CS)

for K-12 students (Code.org Advocacy Coalitian, 2019; Smith, 2016). To meet this need, state departments of

education and legislation have implemented numerous policies and resources to broaden K-12 student access to

CS (Code.org, 2019). As of 2019, 15 states have made it a requirement that all high schools need to offer at least

one computer science class each year (e.g., Indiana, Texas, West Virginia, Arkansas) (Code.org, 2019). Some have

even pushed further, requiring all high school students to complete at least one CS course (e.g., Arkansas and West

Virginia). However, integrating CS in K-12 schools is a systemic change (Barr & Stephenson, 2011; DeLyser &

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 2

Wright, 2019) and this change requires well-prepared teachers (Lang et al., 2013). With the push for more CS

classes, many states have been trying to identify how to meet this need and improve CS teachers' content,

curriculum and pedagogical knowledge through teacher education and professional development programs.

According to the Code.org Advocacy Coalition’s State of Computer Science Education (2019) report, the number

of teacher certification programs has been increasing in the United States from 27 in 2017, 33 in 2018 to 38 in

2019. Another way this need for more CS teachers has been met is by training teachers from other content areas

(e.g., math, science, foreign languages, etc.) through professional development programs (Menekse, 2015). Other

programs have created CS teachers through supporting industry. For example, the Technology Education and

Literacy in Schools Program supports teachers by partnering industry computer scientists with practicing teachers

(DeLyser & Preston, 2015). However, studies have shown that many secondary CS teachers express needing more

support beyond the certification programs and professional development programs provided (Giannakos,

Doukakis, Pappas, Adamopoulos, & Giannopoulou, 2015; Qian, Hambrusch, Yadav, & Gretter, 2018). This leads

to the problem of what CS teachers’ challenges and needs are to help them improve their craft of teaching CS.

1.1 Teachers’ Challenges and Needs in CS Education

In spite of current efforts to offer high quality CS classes in K-12 schools, many teachers have challenges and

needs to better teach CS in their classes. These challenges can be categorized as knowledge and skills needs,

curricular needs, contextual needs and pedagogical needs (Sadik, 2017). In terms of knowledge and skills, CS

teachers share their limited CS content knowledge and skills in various studies (Angeli et al., 2016; Yadav, Gretter,

Hambrusch, & Sands, 2016). Yadav et al. (2016) expressed that some CS teachers came from different backgrounds

and had to learn CS alone from books and online resources. When these teachers were asked about their knowledge

and skills needs, they reported the need for better understanding of programming constructs and more experience

on computer programming (Yadav et al., 2016). Furthermore, understanding the principles of coputational thinking

emerged as another important knowledge and skills need. CS teachers shared their needs for professional

development programs to learn and implement the principles of computational thinking in their CS classes

(Fessakis & Prantsoudi, 2019). In terms of curriculum, CS teachers reported needs for more resources for content

delivery and assessment (Sentance & Csizmadia, 2016). Most CS teachers reported creating their own curricular

resources alone (e.g. books, materials, presentationss) (Brown & Kölling, 2013; Yadav et al., 2016). Finding or

creating quality assessment is especially difficult due to problem based and collaborative nature of CS projects

(Wilson & Guzdial, 2010). Therefore, teachers expressed the need for assessment materials to guide and grade

students’ work in CS classes (Vivian et al., 2020). In terms of contextual needs, one of the important barriers was

no to limited collaboration opportunities between CS teachers in schools (Tenenberg & Fincher, 2007). Most

teachers expressed the feeling of loneliness and asked for a colleague to share ideas and resources (Yadav et al.,

2016). Even though there are online communities for CS teachers to collaborate (Sadik, 2017), CS teachers need

other CS teacher colleagues to regularly discuss and share ideas and resources in their subject (Cutts, Robertson,

Donaldson, & O’Donnell, 2017). Furthermore, CS teachers need more support from their schools in terms of

accessing up-to-date computer hardware and software. This show the need for technical support staff who can take

care of software and hardware updates and maintanance in schools (Sadik, 2017).

In order to address and help CS teachers’ needs for content and curriculum, The Association for Computing

Machinery (ACM), Code.org, the Computer Science Teachers Association (CSTA), the Cyber Innovation Center,

National Math and the Science Initiative developed the K-12 Computer Science Framework. However, recent

research emphasized CS pedagogy as the most significant aspect of teaching CS effectively in K-12 schools

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 3

(Giannakos et al., 2015; Sentance & Humphreys, 2018; Yadav, et al., 2016). Due to the project and/or problem-

based nature of CS education courses (Yadav et al., 2016), planning the lessons, keeping the students active and

guiding them in their learning process can be difficult (Davenport, 2000). Furthermore, diverse student needs and

interests make it more complicated to teach CS in their classes (Schulte & Knobelsdorf, 2007). Therefore, recent

studies reported CS teachers’ limited experience with student centered practices and teaching students with diverse

needs (Che, Kraemer, & Sitaraman, 2019) and suggested conducting more research on CS teachers’ pedagogical

needs. In order to understand CS teachers’ pedagogical needs, an interested reader needs to know what effective

teaching and learning means in CS education as well as the successful instructional strategies in CS classrooms.

1.2 CS Pedagogy

Teaching is a complex field that requires strong pedagogical knowledge for planning, leading and mentoring

dynamic classroom environments and students' learning experience. The International Society for Technology in

Education (ISTE) (2011) highlighted that effective teaching and learning in CS education requires knowledge of

various instructional strategies and materials. Research on CS education pedagogy has been a topic of interest

since early 1980. Four of the successful strategies used in CS education include problem-based learning (Kay et

al., 2000; Yadav, Subedi, Lundeberg, & Bunting, 2011), project-based learning (Mills & Treagust, 2003), pair

programming (McDowell, Werner, Bullock, & Fernald, 2006), and media computation (Guzdial, 2003). For

instance, in problem-based learning (PBL), students work in groups to solve a complex problem using various

types of scaffolds (Hmelo-Silver, 2003). In CS education PBL, students are given a complex CS problem in a

computer lab environment with tutorials to facilitate their problem-solving process. Project-based learning has also

been implemented in CS education. Tasks in project-based learning are designed similar to projects in real life and

give learners the opportunity to apply their knowledge in product design and development (Mills & Treagust,

2003). Even though there are similarities with PBL, project-based learning is product focused and requires students

to be careful about resources and time, while PBL gives more flexibility in this process. Another important practice,

pair programming, is a technique in which two programmers work on the same programming task design and

development using one computer simultaneously. This technique was derived from CS industry practices and has

been used as an instructional method in both K–12 and higher education. Media computation was a recently

developed instructional technique that emphasized learning computing concepts and skills in digital media design

(Guzdial, 2003). Guzdial has argued that digital media (e.g. images, videos, audios) can be modified and

redesigned using programming and this process can help students learn computation in a more meaningful way. In

addition to the instructional methods discussed here, previous studies documented the success of using various

other tools and environments in CS education such as computer games (Papastergiou, 2009), virtual learning

environments (Esteves, Fonseca, Morgado, & Martins, 2011) and robotics kits (Bers, Ponte, Juelich, Viera, &

Schenker, 2002).

Even though CS education research has provided evidence of learning gains with all these strategies, tools and

contexts, recent research expressed the need for understanding in-service teachers’ explicit challenges in CS

pedagogy, especially in student centered learning environments. Due to limited population in earlier levels, this

study only targets secondary CS teachers and aims to understand their needs in effective teaching in CS education.

The present study proposes that K-12 teachers may have crucial needs in pedagogy (Hazzan, Lapidot, & Ragonis,

2015; Yadav et al., 2016) and any efforts aiming to prepare CS teachers, initially, need to identify CS teachers’

pedagogical needs and answer the following research question:

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 4

1. What pedagogical needs do U.S. secondary school teachers share to better teach computer science classes

or content in their classes?

The study aims to reach teachers who are teaching CS content in formal and informal learning environments and

explore secondary education teachers' pedagogical needs in teaching CS in the US. It is argued that by identifying

needs in this grade range, this study will help:

1. address the specific pedagogical needs of secondary CS teachers,

2. inform administrators and scholars as they develop data-driven professional development programs and

resources and

inform teacher education programs about in-service secondary CS teachers' pedagogical needs and assist them in

preparing courses that address those needs.

2 Method

Recent literature emphasized the need for improving CS teachers’ knowledge and skills in CS pedagogy; however,

there is limited exploratory research that explains what that need entails. Using multiple data collection methods

for data complementarity and triangulation with rich data (Creswell & Clark, 2017), this study employs general

qualitative research design to explore and explain CS teachers’ pedagogical needs in detail.

2.1 Participants and Setting

Although previous research has recommended beginning CS education as early as kindergarten (Fessakis, Gouli,

& Mavroudi, 2013; Kelleher, Pausch, Pausch, & Kiesler, 2007), due to the limited number of CS teachers and

courses at the K-5 level at the time of the present study, the researchers focused only on secondary school level.

Participants were selected from secondary teachers who were teaching CS courses or content in a school setting

(public, private, or charter) or an after-school program during the time of data collection. In this study, secondary

education refers to both middle and high school between grades 6-12. Even though there was a discussion in the

literature about the title of the field of study as computing education versus computer science education (Guzdial,

2015), the second was selected because of its broader use in K-12 education and public society. “Model Curriculum

for K-12 Computer Science” defined CS as “an academic discipline that encompasses the study of computers and

algorithmic processes, including their principles, their hardware and software designs, their applications, and their

impact on society” (Tucker, 1996, p. 6). With this description, teachers who mentioned teaching the following

and related areas were identified and considered as CS teachers for the purposes of this study:

programming, hardware design, networks, graphics, databases and information

retrieval, computer security, software design, programming languages and paradigms,

logic, translation between levels of abstraction, artificial intelligence, the limits of

computations (what computers cannot do), applications in information technology

and information systems, and social issues (Internet security, privacy, intellectual

property (Barr & Stephenson, 2011, p. 113).

2.2 Data Collection and Analysis

This research was completed in three phases:

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 5

1. The first phase included analysis of CS teachers' publicly available email communications in Computer

Science Teachers Association (CSTA) listserv. The preliminary step of phase 1 was organizing all the

emails in the listserv, which included creating an Excel spreadsheet that included the email subjects, email

content and the dates of each email sent. As members responded at different days and times to various

topics, all the communications in the spreadsheet were grouped by subject and then sorted by date and

time for each subject. After organizing the data, the spreadsheet was imported to Nvivo qualitative data

analysis software.

2. The second phase included conducting a questionnaire with open ended questions to all the teachers in

the CSTA membership database.

3. In the third stage, interviews with eight purposefully selected teachers were conducted to understand CS

teachers’ pedagogical needs in more detail.

2.2.1 Email Listserv Analysis

In the first phase of the research, due to extensive data in the email listserv, the teachers' communications were

analyzed in two steps. In the first step, the researcher used inductive content analysis to identify the conversations

related to pedagogy using the teacher communications (3 years, N=1706) in the email listserv (Weber, 1990).

Following the content analysis, in the second step of the analysis in this phase, the email conversations related to

pedagogy were analyzed using the thematic analysis technique (Braun & Clarke, 2006) to identify CS teachers'

specific pedagogical needs with evidence. Every email identified as pedagogical needs was coded and each of

these was categorized into one of seven themes. Table 1 shows examples of codes emerged from the email

conversations and depicts how the researchers categorized the codes into the themes. Peer debriefing technique

was used in the analysis stage to manage subjectivity, challenge researcher assumptions and discuss alternative

interpretations. Initially, one researcher analyzed the email data and other researchers reviewed and provided

alternative views to his interpretations.

Table 1. Examples of codes and the themes emerged

CODE EXAMPLES THEMES EMERGED

• How to introduce programming

• Help students learn programming

• Guiding students’ learning

• Instructional Strategies for

Teaching CS

• Connections between programming languages

• Pedagogical parallels between programming languages

• Transfer learning to new contexts

• Transferring Skills between

Programming Languages and

Platforms

• Debugging students code

• Efficient strategies to answer students’ coding questions

• Strategies that guide students solve their own problems

• Answering Students’ Questions

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 6

• Effective teamwork strategies

• Creating environments for students’ collaboration

• Allowing students to work together

• Facilitating Student Interaction

and Collaboration

• Looking for resources that increase interest in CS

• Increasing interest

• Kids give up easily

• Teaching Students with Low

Interest in CS

• Limited fundamental skills

• Defining set of skills necessary to become a programmer

Students different development levels in high school

• Teaching Students Who Lack

Fundamental Skills

2.2.2 Questionnaire Analysis

In this phase, the questionnaire was disseminated to CS teacher members of CSTA through their email addresses.

121 members responded to the open-ended questions with rich comments and examples. The open-ended responses

were included and analyzed using the constant comparative method of qualitative data analysis (Glaser, 1965).

Glaser defines the purpose of the constant comparative method as providing an alternative to analysis, comparing

themes and looking for agreements and conflicts (“negative cases or a consideration of alternative hypotheses”),

and increasing credibility in the study results. The researcher imported the teachers' responses to Nvivo software

and conducted comparison of the email listserv analysis results with the qualitative questionnaire responses. At

the end of the questionnaire, the participants were asked to contribute voluntarily in a follow-up, semi-structured

interview (3rd phase), in order to elaborate upon their pedagogical needs with examples from their practices.

2.2.3 Interview Data Collection and Analysis

A semi-structured interview protocol was used (Fraenkel, Wallen, & Hyun, 2011) and the interview questions were

developed from the questionnaire responses to gather more information on secondary teachers' needs. For example,

in the questionnaire, when a participant shared his or her need for learning more strategies on student centered

learning in CS classes, s/he was asked to define the need and give examples from his/her classroom. Eight

purposefully selected teachers (based on their responses to the questionnaire) participated in the follow-up

interviews. The researchers selected participants who reported diverse needs and aimed to enrich the data with

detailed explanations and examples. For example, teachers who mentioned scaffolding as a need or strong need in

the questionnaire were purposefully selected to the interviews to enrich the data with better explanations and more

examples.

The interview data collection ended when the researchers decided that the data was saturated, as suggested by

Guba and Lincoln (1985): “exhaustion of sources, saturation of categories, emergence of regularities, and over-

extension.” The interviews were fully transcribed. The teacher names and all the identifying information were

replaced with pseudonyms. The data was analyzed using the constant-comparative method in the same way as

conducted in phase 2 to enhance the findings. This phase also helped the researchers provide more descriptive

information about CS teachers' needs with examples from the participants' explanations of their practices.

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 7

2.3 Issues of Reliability-Validity and Limitations of the Study

The researchers employed various techniques to ensure the standard of trustworthiness of this research (Guba &

Lincoln, 1985). In the early stages of the research, multiple researcher meetings were held face to face to establish

our research questions, identify our criteria for participant selection and develop and clarify the data collection

methods. The data collection process was started using existing teacher discussions in the email listserv. This gave

researchers access and opportunity to interpret teacher discussions in a real-life context. This data is triangulated

using multiple forms of data sources (questionnaire and interviews) to answer the research question with rich data.

This helped the researchers ensure that the data is credible. This reduced the risk for researcher bias. The interviews

in the final phase were fully transcribed and analyzed with multiple researchers’ input and agreement. Furthermore,

the researchers sent the results to the participants and asked their confirmation of the researchers’ interpretations.

This technique is called member checking and have been used in qualitative research to ensure confirmability of

the research results (Birt, Scott, Cavers, Campbell, & Walter, 2016). Nevertheless, the study has limitations. Even

though all the possible efforts have been made for trustworthiness, the participants were coming from secondary

teacher members of one target organization and did not represent all the secondary CS teachers in the US.

Furthermore, there is always risk for researcher bias in qualitative research.

3 Findings

The pedagogical needs were identified from CS teachers' communications in both the listserv and the questionnaire

and expanded on with the interview data. Within the findings, email quotations are marked with “E,” questionnaire

responses are marked with “Q,” and the follow up interviews are marked with “I.” Each quotation is also identified

with a number indicating a unique participant. For the purposes of this study, teachers' perceived pedagogical needs

included the following themes:

3.1 Need for Learning Student Centered Strategies for CS Education

Most secondary CS teachers stated that they need to learn new strategies to teach CS content and enhance student

learning in their courses. For example, one teacher wanted to know how to teach Linux with new instructional

strategies: “I think it's really important for my students to learn Linux but I have no idea how to teach it” (E-2).

Pair programming was one of the student-centered learning strategies primarily discussed in the listserv. For

example, one teacher shared her failure in using pair programming in a CS class and asked for advice from other

CS teachers: “I have done pairing, but must not have done it correct, because it was not as productive as I'd liked.

What ideas do you have” (E-4)? In the questionnaire, 17 teachers asked for help related to student-centered

strategies in CS education. For example, one teacher stressed the need for facilitating students' learning: “I will

appreciate further pedagogical help with teaching computer science and facilitating student knowledge,

particularly helping students make better connections with the material, and more effectively debug without

needing face time or one-on-one time from me” (Q-2). Another teacher emphasized his need for supporting

students’ learning via scaffolds in a computer-programming course: “I need better strategies for teaching computer

programming to students who have never written computer programs before. What's best to teach first, second,

etc. I want a scaffolded approach to teaching programming” (Q-3). When asked to explain this need in more detail

and provide examples in the interviews, all eight participants described their current practices and explained why

they want to learn new instructional strategies. For instance, I-2 described his current practice as “straight lecture”

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 8

and explained it:

I do a lot of straight lectures in my classroom, I do lot of type; I'll pull the projector,

I'll put code on the projector and have kids follow through on their own computers,

basically they copy down what I'm doing. (I-2)

Another teacher emphasized his need to learn new instructional strategies, problem-based and pair programming

approaches for student-centered CS learning:

I want to learn new instructional strategies that I never got, because I didn't go to a

teaching school, I never went to school to learn to be a teacher. I feel that it's personal

that I needed to learn better how to do things like problem-based learning and pair

programming. (I-7)

3.2 Need for Strategies Guiding Students Transfer Skills Between Programming Platforms and Languages

In the listserv emails, the participants expressed the need for helping secondary students transfer their skills from

visual programming platforms (e.g., block-coding) to text-based environments (e.g., Python), and between text-

based environments (e.g., from Python to Java). For example, one teacher emphasized her students' difficulty

transferring their CS learning from visual programming environments to text-based programming environments:

“In my teaching, it seems that majority of students have difficulty migrating concepts they learned from visual

environments into text-based environments. Starting with Scratch/turtle I found that I essentially had to reteach

concepts in Python/Java” (E-11). Another teacher shared the same concern between text-based programming

languages: “I have found the same thing with students going from python to Java or python to C” (E-12). In the

questionnaire responses, the participants exemplified the transfer issue. For instance, a CS teacher who had started

teaching an advanced placement CS (AP-CS) course for the first time and complained about her students' lack of

transfer from her previous classes to the new AP CS class: “…we are working on strings again and it seems they

do not remember what we were supposed to learn previously. It makes me think there must be something else I

can do to help the process” (Q-8). Similarly, the interviewees listed their students' lack of transfer between the CS

courses when there were connections. For instance, I-4 shared his failure to help students see the connections

between Scratch and other programming languages when moved from one set of content to another:

At the end of each semester I ask them what did they think of it, did they feel using

Scratch was valuable? Were they able to transfer what they had learned from one

language to another in them? The responses I get, for the most part, are that while

they found it interesting, they didn't see the parallels. I know the parallel is there. They

just don't make the connections. (I-4)

3.3 Need for Strategies Guiding Students' Errors while Coding

The email listserv members stressed the need for strategies addressing students' questions and problems in

programming activities in classroom and explained it as the need for analyzing code quickly and guiding the

students' CS learning process while coding. One teacher stressed the importance of analyzing code quickly: “When

helping students with a project, the teacher needs to quickly analyze what is wrong with the frustrated students'

program and then give some advice on how to fix it” (E-14). In another email, one teacher mentioned the need to

provide one-to-one guidance to students “We don't provide one-on-one mentoring to students while programming”

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 9

(E-3). In the questionnaire responses, the participants explained this need as assessing code for correctness, giving

students appropriate feedback, guiding students through solving code errors, and creating scaffolding that does not

need face-to-face guidance. For instance, one teacher explicitly stated correcting students' code as a need for better

CS instruction: “I need help with fixing students code, etc. -sample debugging questions in C++, Java C - and

pseudocode” (Q-11). Another teacher emphasized her need for strategies to assess students' code for correctness,

structure, and efficiency: “I need to streamline the process of assessing my students' code for correctness, use of

comments, ease of use, and grammar and spelling in output statements and comments” (Q10). When asked to

explain this need in more detail and provide examples in the interviews, four teachers shared their own strategies

and asked for more strategies that can lead their students to finding errors in their code. The interviewees asked

for strategies that can lead students to find the errors themselves by exploration. One of these teachers used

questioning as scaffolding and asked for more strategies that could guide his students:

The easy answer that is the wrong one is to point the student to the bug and say: Well,

here's what you did wrong. The harder answer in mind, but the one that I prefer is to

sort of ask the student: What do you mean by this chunk of code? And have them

explain to me what they are trying to say and then Socratic method or using

questioning to get them to see what they have said, where what they have said doesn't

add up with what they intended to say. I would like to learn more strategies other than

just questioning and flat out giving them the answer to help them with that. (I-1)

3.4 Need for Strategies to Facilitate Student Interaction and Collaboration

The email listserv members stressed the need for strategies creating a collaborative classroom environment and

guiding student discussions. For instance, when teachers discussed problems in their classroom, several teachers

emphasized the importance of creating an environment for learning: “How do kids learn and how do we create an

environment to allow that learning to best take place” (E-13). In the questionnaire responses, the participants

explained this need as creating a collaborative environment where all the students help each other and attend

learning activities: “How to facilitate student independence and helping each other and strategies for when they

really are stuck and need individual help and I can't be there for everyone” (Q-12). Another teacher commented

about a collaborative environment as a need: “Creating collaborative environment and excitement around problems

and solutions” (Q-13). When asked to explain this need in more detail and provide examples in the interviews,

four teachers described their own teaching practices, emphasizing the importance of student interaction and

broadening the scope of the need to ensure all the students' active participation in collaborative work. One

interviewee explained that collaboration is essential in a CS a class:

[Programming projects] forces collaboration in the classroom between me and the

students but especially between the students. They quickly learn everybody's got

questions and there's only one teacher. If you want your question answered, you've got

to go to someone else in the class. The other people in the class don't have to be

experts, they just have to be one step ahead of you, because they can help you with the

thing you were trying to do.” (I-5)

This collaboration requires a flexible environment where students help each other, become creative and learn from

each other. Another teacher explained the need for a less structured CS classroom for effective collaboration and

need for ensuring student learn in teamwork:

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 10

It's really trying to map out your lesson and your unit plans to allow that time, balance

that time for them to be able to do some of that collaboration together, or working

together around problem solving, or evaluating each other, like a game or an

animation or something that they created. All of this requires a little bit less structured

environment than what the students are used to, so it's about allowing them to be able

to be creative, and have that time so they can just think and kick the tires, but also

making sure that that time is effective, and they're learning (I-3)

3.5 Need for Strategies Teaching Students with Low Interest in CS

Secondary CS teachers reported that they need more strategies to teach students with low interest in CS, which

includes strategies to inform students about the challenges and benefits of CS. Increasing student interest especially

became an issue for the participants when a CS class was required or students enrolled in a class when they did

not have another option. They believe when a student does know what CS is and understands both the challenges

and benefits of CS, their interest and motivation increase. Therefore, some teachers were willing to select students

before they were allowed to register. The listserv discussions, questionnaire responses and interviews support these

findings. The teachers in the email listserv stressed the need to increase their students’ interest and motivation and

defined those as preconditions, especially when learning programming. The following example demonstrates

this need:

I have discovered as an in-service teacher that there are a small number of factors

that have a disproportionate impact on learning. They are centered around student

motivation and interest. The primary question here is how do you get the student

engaged and actively seeking knowledge in CS. (E-12)

While some teachers discussed that being an elective class reduced the enrollment rates in CS classes, some

teachers in the listserv stressed this as a positive factor. One of the teachers described this as: “all it really needs is

a desire to learn the stuff, and the fact that it is an elective really helps on that front” (E-12). In the questionnaire

responses, 10 teachers commented about student interest in CS classes. In these responses, the teachers stated that

increasing interest is a need in the following conditions:

• When the course is required, there were students in the class with no to little interest in learning CS (N=5).

• Students came with low interest from various backgrounds (N= 7).

• It was hard to sustain student interest and motivation in programming classes (N=7).

Therefore, those teachers solicited strategies for increasing student interest in CS, as in the following example with

underrepresented student populations:

Students are now required to take a computer programming class before graduation -

so I have many underrepresented populations and girls enrolled in my course.

Students who have little interest in the class. I would be greatly beneficial to share

strategies on how to motivate students who have little interest in the class. (Q-33)

Sustaining interest in CS classes was also a need mentioned in the questionnaire responses. Most teachers stressed

that many students come in with interest in CS, but as the class moves forward to difficult concepts in coding, they

lose that interest. They are looking for strategies to sustain interest throughout the course. For instance, one teacher

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 11

approached this issue and asked for help:

As a math teacher, I often encounter students not interested in a content. In that

class, they have to accept it because it's a core requirement for graduation. In

computer science, all students enter with an interest, but some lose that interest as the

year progresses. How can I keep them motivated to finish the year even when interest

wanes? (Q-35)

The interviews validated the listserv and questionnaire responses. Seven out of eight interviewees expressed this

as a need. When asked to explain this need in more detail and provide examples, the interviewees stated that there

were students in their classes who lost interest in the subject and considered it both unrelated to their needs or too

challenging. Therefore, most of the interviewees solicited strategies to motivate these students with low interest

into learning CS. For instance, one of the teachers stated that there were not many electives for students to choose

from in his school and students with low interest were forced to take his class. He expressed the need to be able to

help those students to learn CS concepts and skills:

I do get a lot of kids in my classes because we're a small school, we don't have a ton

of electives. Sometimes kids just get dropped into classes they don't necessarily want,

but I still feel that there's value for those kids to understand. (I-2)

3.6 Need for Strategies Teaching Students Who Lack Literacy and Math Skills

For all the participants of this research, math background was reported as an issue for the students in CS classes.

Furthermore, reading comprehension tended to be a problem in some contexts where there were economically

disadvantaged and minority students with limited content knowledge in general. Secondary CS teachers stated that

they need more strategies to teach students with low mathematics and reading comprehension skills. The email

listserv participants stated that some of their students lacked fundamental skills, which influenced their

understanding and ability to apply the concepts and skills in CS classes. One teacher described the problem:

“Somehow some of my students have core (base) knowledge missing or so confused that it makes it hard for them

to progress” (E-37). Math, especially algebra, emerged as the most important skill that students needed to be

successful in CS classes: “I have many instances in which I have to divert my curriculum to teach them Algebra

concepts that should have known” (E-39). Reading comprehension was another factor identified in the listserv,

especially for understanding instructions in CS classes. One teacher highlighted her concern: “Reading

comprehension is a struggle. Some of them can't follow specific instructions and don't understand the importance

of flawless execution, error free and clear thinking when writing programs” (E-39). In the questionnaire responses,

25 teachers shared opinions about fundamental skills they consider important for learning CS and their need for

strategies in dealing with those students who lack them. For instance, one teacher emphasized this as an evolving

need with CS becoming more available in schools:

Excellent question! As schools adopt CS for everyone, it will add the challenge of

working with students with lower reading and math skills. This issue could be the

game changer in CS education since up until now the students in the CS program have

typically been quite high academic achievers. (Q-26)

Seven out of eight final-phase interviewees expressed learning strategies to teach students who lack fundamental

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 12

skills as a need. The interviewees provided examples of scenarios where their students had difficulty on simple

calculations and reading directions. One of the interviewees explained lack of math background as a problem with

an example in his CS classes:

Some students could think algebraically or abstractly without a transcript credit, but

those students who have a limited background in math will struggle when solving

complex problems. Even the very simple assignment like I'm going to prompt the user

for the number of gallons of gasoline burned and the distance traveled and calculate

the miles per gallon, I've seen students in 9th and 10th grade really struggle to figure

out how to do that. (I-1)

Reading comprehension was not explicitly mentioned in overall interview discussions; however, some teachers

connected this issue to students' disadvantages and limited skills in core content areas in general. For instance, one

of the teachers mentioned English as a second language students in his CS classes:

I do have a large number of students who are classified as English language learners.

I would say the majority of my students, English is not their first language. The vast

majority of their parents have very limited English and speak Spanish at home. (I-8)

One of the interviewees explained this further, and argued that learning CS requires a background in different

content areas:

I think it's a combination. I think the content knowledge is obviously extremely

important because it is what's out there. I think it goes hand in hand with trying to

figure out how to best present them to students. It involves all the related to other

things they are learning about in school. It obviously ties in with a lot of math, science,

English, a lot of other subjects want to make sure there's some development for

students. (I-7)

4 Discussion

The overall findings suggest that secondary CS teachers need community help from other teachers to meet their

needs in teaching CS (Ni & Guzdial, 2012). This study focused on the pedagogical needs and found the

participants' primary need as learning and using student-centered learning strategies in CS classes. Specifically,

secondary CS teachers stressed the need for scaffolding strategies that can guide students in solving computing

problems in various levels at the individual level and in teams. The sections below discuss the participants'

pedagogical needs in detail.

4.1 Learning and Applying Scaffolding Strategies in CS Classes

The primary discussion was evolved from the need for student-centered learning strategies in solving CS problems

in coding activities. In order to be successful in learning CS, students need guidance while solving problem based

activities (Hmelo-Silver, 2004; Mayer, 2003). This guidance is conceptualized as scaffolding in the literature.

Scaffolding helps students to complete complex learning tasks that are difficult to achieve without assistance

(Belland, 2014; Wood, Bruner, & Ross, 1976). Scaffolding makes the learning process more manageable

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 13

(Hmelo-Silver & Bromme, 2007) and is of primary importance in supporting students to reflect on their own

learning and develop higher order thinking skills (Azevedo, Cromley, Winters, Moos, & Greene, 2005; Saye &

Brush, 2002). Brush and Saye (2002) defined two types of scaffolding: hard and soft. Hard scaffolds are planned

in advance such as multimedia resources (e.g. helpful websites). Soft scaffolds are more dynamic and happen

simultaneously. Examples of soft scaffolding include teachers' using questioning strategy to guide their problem-

solving processes.

Guzdial (2015) also stressed scaffolding as one of those primary conditions for effective CS education. In the

present study, secondary CS teachers identified similar issues. In CS, when students are assigned a problem, they

often use trial-and-error when they are not given adequate facilitation (Shute, Sun, & Asbell-Clarke, 2017). Trial-

and-error is not an efficient problem-solving strategy (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013), it

takes time and often yields no results. The findings suggest a more purposeful design of computational problem

solving (Shute et al., 2017), with teachers' scaffolding embedded in the process and facilitating students' coding

practices. Secondary CS teachers want to learn more strategies to answer students' questions during coding

practices, particularly when students are debugging their own codes, finding and fixing errors, and increasing the

efficiency of their code. These are important components of computational thinking in programming activities

(Grover & Pea, 2013). Students tend to expect teachers to point out their mistakes, but this is not an effective

teaching method. Providing feedback in the form of guiding questions helps students to assess and reflect on their

own learning (Nicol & Macfarlane‐Dick, 2006).

4.2 Creating a Collaborative Teamwork Environment in CS Classes

The results suggest that teachers need tools and strategies to make sure all students actively participate and equally

contribute during teamwork and recommend further research to identify successful team building and management

strategies, especially in pair programming activities. Teamwork is a crucial part of CS learning and benefits

students' learning experience through sharing information and receiving feedback within a social community of

peers (Sancho-Thomas, Fuentes-Fernández, & Fernández-Manjón, 2009). In pair programming, students work

collaboratively in teams. Pair programming involves strong pair collaboration within teams, with less teacher

involvement (Nagappan et al., 2003). It is not surprising that teachers who requested feedback in the email listserv

about pair programming were also looking for team building and management skills to create successful

collaborative environments. The findings suggest that CS teachers want to make sure that all their students actively

participate in teamwork. Poor teams often involve one expert student taking all the responsibility, while other

members become passive participants who may not benefit from the learning opportunities (Shimazoe & Aldrich,

2010). Cooperative team work is the primary condition of successful pair programming practices in computer

programming courses (Umapathy & Ritzhaupt, 2017). Teachers in the study also solicited strategies for creating a

collaborative learning environment where students search for answers from their partners rather than the teacher.

It is important to note that CS teachers have limited time during a class period to answer all the questions, and

team work becomes an important opportunity to alleviate those problems (Sancho-Thomas et al., 2009).

However, teachers need to be aware of the differences between team members in terms of knowledge/skills and

personality (Ally, Darroch, & Toleman, 2005).

4.3 Transferring Knowledge and Skills between Programming Languages and Platforms

Even though limited examples were found, the findings suggest that secondary teachers need strategies to help

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 14

students transfer learning and build on their previous knowledge in subsequent CS classes. Transfer of learning is

important, not only to make connections between concepts and skills, but also when developing new learning

(Driscoll, 1994). Transfer of learning can make CS experiences more connected and meaningful. This need was

emphasized in previous CS education studies related to programming. For example, learning the concepts and

logic of programming (e.g., variables, loops) from visual programming tools (e.g., Scratch) in middle school

helped students learn complex programming concepts more easily in text based languages, and also increased

enrollment numbers in CS classes (Armoni, Meerbaum-Salant, & Ben-Ari, 2015). In another study, Franklin et al.

(2016) conducted a study with high-school students' and reported this as a challenge. Franklin et al. reported this

as an important concern and recommended the teachers help students see the connection between visual

programming and text-based programming activities in their instruction.

4.4 Increasing Students’ Interest in Learning CS

Most secondary teachers in this study reported that students in their classes do not perceive a connection between

CS and their personal lives or their professional futures; thus, they do not value learning CS. Therefore, if teachers

want to increase students' positive beliefs and interest in learning CS, they need to find ways to make CS relevant

to their students’ lives (Tew, Fowler, & Guzdial, 2005). For example, Umbleja (2016) stressed that code.org

activities increase students' understanding and interest in CS if they are provided the concepts and skills in primary

education or earlier secondary levels. Umbleja emphasized that as they age into their teenager years, it may be

difficult to change their biases about CS. This statement is validated in studies with middle school girls. Outlay,

Platt, and Conroy (2017) stressed that young ages are critical to develop positive beliefs of CS competency and

knowledge and increase interest. To assist with CS teachers’ needs regarding students' beliefs, the researchers

suggest the following:

1. Introducing CS to students early in their education through short-term programs and local campaigns,

2. Developing curriculum that represents diverse student interests,

3. Defining short-term benefits and learning outcomes

Short-term programs and national promotions (e.g., code.org) have been reported as helpful in gaining interest in

CS (Wilson, 2014); however, sustaining that interest in the classroom may be challenging. The findings suggest

that teachers need to constantly define goals and benefits for students to retain their interest. Therefore, a place-

based education approach may be a successful strategy to define goals for students to serve their local communities

through service learning projects. Service learning projects in CS higher education provide long-term motivational

benefits for learning (Sanderson, 2003) while creating an engaging and motivating learning environment in K-

12 (Billig, 2000). However, K-12 CS education literature appears to be limited in this regard. Service learning

approaches may be promoted and further research should explore effective strategies to employ service learning

in K-12 CS education.

4.5 Teaching Students with Limited Math and Reading Background

The findings suggest that low abilities in Math and reading create challenging teaching environments for CS

teachers trying to manage and teach students with widely varying needs and learning goals. For example, CS

teachers reported that some students were unable to do simple calculations and read instructions to complete simple

programming tasks. These findings align with previous research regarding the importance of math background in

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 15

learning CS. In a study with 123 first-year introductory programming courses at a higher education institutions,

Bergin and Reilly (2005) found that mathematics ability is one of the important predictors of students' success

in programming classes. Grover, Pea, and Cooper (2016) reported correlation between middle school students'

prior reading and Math abilities, and learning computer programming. Regarding students' math and reading

comprehension, secondary CS teachers were looking for strategies to guide students with problems in those areas

before they register for CS classes. However, this goes against the national goal known as "CS for All" (Smith),

and would create bigger problems in the future. In fact, several teachers in the study mentioned that "CS for All"

may create classes that are difficult to manage. Teachers need strategies to help them deal with wide range of skills

in math and reading among their students. Further research may be helpful to develop student-centered practices

for teaching students with different math and reading skills in secondary CS classes.

5 Conclusion

In the present study, the data in the email listserv demonstrated a wide range of teachers' self-reported needs in a

natural community setting. Furthermore, rich discussions evolving from the listserv discussions allowed the

researchers to enrich the findings with the questionnaire and interview data. Similar studies were also conducted

to understand CS teachers’ needs in smaller samples. This study is important to validate the findings of previous

studies and start new discussions in the area with rich data. Similar to this study, previous studies recommended

using student-centered strategies for effective CS education (Hazzan et al., 2015). For example, current literature

discussed problem-based learning (Mills & Treagust, 2003) and pair programming (McDowell et al., 2006).

Furthermore, scaffolding and facilitating students' learning in student centered environments were discussed in the

CS education literature (e.g. (Caspersen & Bennedsen, 2007). However, this study provided evidence that

secondary CS teachers try to use pair programming, problem-based learning and scaffolding in their classes but

they were not satisfied with the outcomes of their efforts. Secondary teachers need feedback to improve their

practices.

Although this study represents a large population of secondary CS teachers, the participants in this study are U.S.

members of one international organization and do not represent all the CS teachers in the U.S. Furthermore, the

findings are not suggested to be generalized. The data represents teachers who are members of the CSTA and

were identified as secondary CS teachers in the email listserv based on available information. Although all the

efforts have been made to exclude them, there is a small risk that some elementary teachers or higher education

faculty might be included in the findings. This study suggests that future studies need to be conducted to explore

the following topics in CS classrooms:

• Successful student-centered learning strategies (e.g. PBL and pair-programming) in secondary CS classes

• The development of strategies to increase student interest and motivation in learning CS.

Furthermore, it would be helpful to develop research studies that observe successful teachers' practices in their

classrooms. Action research studies that allow teachers and researchers to work together (Lang et al., 2013) and

aim to address secondary CS teachers' needs in practice would create helpful information for practicing teachers.

Developing PD programs based on the suggestions of this study may promote and develop data-driven PD

programs for teachers. With the goal of CS for All, this study may be replicated to explore the needs of elementary

CS teachers.

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 16

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ally, M., Darroch, F., & Toleman, M. (2005). A framework for understanding the factors influencing pair

programming success. In Proceedings of the International Conference on Extreme Programming and Agile

Processes in Software Engineering (pp. 82-91). New York, NY. https://doi.org/10.1007/11499053_10

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational

thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology &

Society, 19(3), 47-57.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming. Transactions on

Computing Education, 14(4), 25. https://doi.org/10.1145/2677087

Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2005). Adaptive human scaffolding

facilitates adolescents’ self-regulated learning with hypermedia. Instructional Science, 33, 381-412.

https://doi.org/10.1007/s11251-005-1273-8

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the

role of the computer science education community? Inroads, 2(1), 48-54.

https://doi.org/10.1145/1929887.1929905

Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In Handbook of Research

on Educational Communications and Technology (pp. 505-518): Springer. https://doi.org/10.1007/978-1-

4614-3185-5_39

Bergin, S., & Reilly, R. (2005). Programming: Factors that influence success. ACM SIGCSE Bulletin, 37(1),

411-415. https://doi.org/10.1145/1047124.1047480

Bers, M. U., Ponte, I., Juelich, C., Viera, A., & Schenker, J. (2002). Teachers as designers: Integrating robotics

in early childhood education. Information Technology in Childhood Education Annual, 2002(1), 123-145.

https://www.learntechlib.org/primary/p/8850/article_8850.pdf

Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member checking: A tool to enhance

trustworthiness or merely a nod to validation?. Qualitative Health Research, 26(13), 1802-1811.

https://doi.org/10.1177/1049732316654870

Billig, S. (2000). Research on K-12 school-based service-learning: The evidence builds. Phi Delta Kappan,

81(9), 658-664. https://digitalcommons.unomaha.edu/slcek12/3

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology,

3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa

Brown, N. C. C., & Kölling, M. (2013). A tale of three sites: Resource and knowledge sharing amongst

computer science educators. In Proceedings of the Ninth Annual Conference on International Computing

Education Research (pp. 27–34). La Jolla, CA: ACM. https://doi.org/10.1145/2493394.2493398

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 17

Brush, T. A., & Saye, J. W. (2002). A summary of research exploring hard and soft scaffolding for teachers and

students using a multimedia supported learning environment. The Journal of Interactive Online Learning,

1(2), 1-12. http://www.ncolr.org/jiol/issues/pdf/1.2.3.pdf

Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming course: A learning theoretic

approach. In Proceedings of the 3rd International Workshop on Computing Education Research (pp. 111-

122). Atlanta, Georgia: ACM. https://doi.org/10.1145/1288580.1288595

Che, S. M., Kraemer, E. T., & Sitaraman, M. (2019). Prospective high school computer science teachers'

perceptions of inquiry pedagogy and equity. In Proceedings of the AERA Online Paper Repository.

Toronto, Canada: AERA. https://doi.org/10.302/1444296

Code.org. (2019). State Tracking 9 Policies. Retrieved from

https://docs.google.com/spreadsheets/d/1YtTVcpQXoZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubht

ml

Code.org Advocacy Coalitian. (2019). 2019 State of Computer Science Education. Retrieved from

https://advocacy.code.org/

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research: Sage

Publications.

Cutts, Q., Robertson, J., Donaldson, P., & O’Donnell, L. (2017). An evaluation of a professional learning

network for computer science teachers. Computer Science Education, 27(1), 30-53.

Davenport, D. (2000). Experience using a project-based approach in an introductory programming course. IEEE

Transactions on Education, 43(4), 443-448. https://doi.org/10.1109/13.883356.

DeLyser, L. A., & Wright, L. (2019). A Systems Change Approach to CS Education: Creating Rubrics for

School System Implementation. In Proceedings of the 2019 ACM Conference on Innovation and

Technology in Computer Science Education (pp. 492-498). Aberdeen, Scotland: ACM.

https://doi.org/10.1145/3304221.3319733

DeLyser, L. A., & Preston, M. (2015). A public school model of cs education. In Proceedings of the

International Conference on Frontiers in Education: Computer Science and Computer Engineering (pp.

233–238). Nevada, USA.

https://pdfs.semanticscholar.org/90fc/817b131253e2092e712aa1c78fd0f7778d68.pdf

Driscoll, M. P. (1994). Psychology of learning for instruction. Washington, DC: Allyn & Bacon.

Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2011). Improving teaching and learning of computer

programming through the use of the Second Life virtual world. British Journal of Educational Technology,

42(4), 624-637. https://doi.org/10.1111/j.1467-8535.2010.01056.x

Fessakis, G., & Prantsoudi, S. (2019). Computer science teachers' perceptions, beliefs and attitudes on

computational thinking in Greece. Informatics in Education, 18(2), 227.

https://doi.org/10.15388/infedu.2019.11

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a

computer programming environment: A case study. Computers & Education, 63, 87-97.

https://doi.org/10.1016/j.compedu.2012.11.016

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education. New

York: McGraw-Hill

https://docs.google.com/spreadsheets/d/1YtTVcpQXoZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubhtml
https://docs.google.com/spreadsheets/d/1YtTVcpQXoZz0IchihwGOihaCNeqCz2HyLwaXYpyb2SQ/pubhtml
https://advocacy.code.org/

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 18

Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A., & Harlow, D. B. (2016). Initialization in

Scratch: Seeking knowledge transfer. In Proceedings of the 47th ACM Technical Symposium on Computer

Science Education (pp. 217–222). Memphis, Tennessee, USA: ACM.

https://doi.org/10.1145/2839509.2844569

Giannakos, M. N., Doukakis, S., Pappas, I. O., Adamopoulos, N., & Giannopoulou, P. (2015). Investigating

teachers’ confidence on technological pedagogical and content knowledge: An initial validation of TPACK

scales in K-12 computing education context. Journal of Computers in Education, 2(1), 43-59.

https://doi.org/10.1007/s40692-014-0024-8

Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4), 436-445.

https://dx.doi.org/10.4135/9781412950558.n101

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational

Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051.

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in middle school. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 552–557).

Tennessee, USA: ACM. https://doi.org/10.1145/2839509.2844564

Guba, E. G., & Lincoln, Y. S. (1985). Naturalistic inquiry. New York, NY: Sage.

Guzdial, M. (2003). A media computation course for non-majors. ACM SIGCSE Bulletin, 35(3), 104-108.

https://doi.org/10.1145/961511.961542.

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone.

Synthesis Lectures on Human-Centered Informatics, 8(6), 1-165.

https://doi.org/10.2200/S00684ED1V01Y201511HCI033

Hazzan, O., Lapidot, T., & Ragonis, N. (2015). Guide to teaching computer science: An activity-based

approach. New York, NY: Springer. https://doi.org/10.1007/978-1-4471-6630-6.

Hmelo-Silver, C. E. (2003). Problem-based learning. In J. W. Guthrie (Ed.), Encyclopedia of Education (Second

ed., Vol. 4, pp. 1173-1175). New York: MacMillan Reference.

Hmelo-Silver, C. E. (2004). Problem-Based Learning: What and how do students learn? Educational Psychology

Review, 16, 235-266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

Hmelo-Silver, C. E., & Bromme, R. (2007). Coding discussions and discussing coding: Research on

collaborative learning in computer-supported environments. Learning and Instruction, 17(4), 460-464.

https://doi.org/doi:10.1016/j.learninstruc.2007.04.004

International Society for Technology in Education. (2011). NETS for Teachers. Retrieved from

https://www.iste.org/standards/for-educators

Kay, J., Barg, M., Fekete, A., Greening, T., Hollands, O., Kingston, J. H., & Crawford, K. (2000). Problem-

based learning for foundation computer science courses. Computer Science Education, 10(2), 109-128.

https://doi.org/10.1076/0899-3408(200008)10:2;1-C;FT109

Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle school girls to

learn computer programming. In the Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (pp. 1455–1464). California, USA: ACM. https://doi.org/10.1145/1240624.1240844

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 19

Lang, K., Galanos, R., Goode, J., Seehorn, D., Trees, F., Phillips, P., & Stephenson, C. (2013). Bugs in the

system: Computer science teacher certification in the US. Retrieved from

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CSTA_BugsInTheSystem.pdf

Mayer, R. E. (2003). Learning and instruction. New Jersey, NY: Pearson.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student retention,

confidence, and program quality. Communications of the ACM, 49(8), 90-95.

https://doi.org/10.1145/1145287.1145293

Menekse, M. (2015). Computer science teacher professional development in the United States: A review of

studies published between 2004 and 2014. Computer Science Education, 25(4), 325-350.

https://doi.org/10.1080/08993408.2015.1111645

Mills, J. E., & Treagust, D. F. (2003). Engineering education—Is problem-based or project-based learning the

answer. Australasian Journal of Engineering Education, 3(2), 2-16.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C., & Balik, S. (2003). Improving the CS1

experience with pair programming. ACM SIGCSE Bulletin, 35(1), 359-362.

https://doi.org/10.1145/792548.612006

Ni, L., & Guzdial, M. (2012). Who am I? Understanding high school computer science teachers' professional

identity. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (pp. 499–

504). North Carolina, USA: ACM. https://doi.org/10.1145/2157136.2157283

Nicol, D. J., & Macfarlane‐Dick, D. (2006). Formative assessment and self‐regulated learning: A model and

seven principles of good feedback practice. Studies in Higher Education, 31(2), 199-218.

https://doi.org/10.1080/03075070600572090

Outlay, C. N., Platt, A. J., & Conroy, K. (2017). Getting IT together: A longitudinal look at linking girls' interest

in IT careers to lessons taught in middle school camps. ACM Transactions on Computing Education, 17(4),

20. https://doi.org/10.1145/3068838

Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on

educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.

https://doi.org/10.1016/j.compedu.2008.06.004

Qian, Y., Hambrusch, S., Yadav, A., & Gretter, S. (2018). Who needs what: Recommendations for designing

effective online professional development for computer science teachers. Journal of Research on

Technology in Education, 50(2), 164-181. doi:10.1080/15391523.2018.1433565

Sadik, O. (2017). What do secondary computer science teachers need? Examining curriculum, pedagogy, and

contextual support[Doctoral dissertation, Indiana University]. ProQuest Dissertations Publishing.

Sancho-Thomas, P., Fuentes-Fernández, R., & Fernández-Manjón, B. (2009). Learning teamwork skills in

university programming courses. Computers & Education, 53(2), 517-531.

https://doi.org/10.1016/j.compedu.2009.03.010.

Sanderson, P. (2003). Where's (the) computer science in service-learning? Journal of Computing Sciences in

Colleges, 19(1), 83-89

Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-

supported learning environments. Educational Technology Research and Development, 50(3), 77-96.

https://doi.org/10.1007/BF02505026

https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CSTA_BugsInTheSystem.pdf

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 20

Schulte, C., & Knobelsdorf, M. (2007). Attitudes towards computer science-computing experiences as a starting

point and barrier to computer science. In Proceedings of the Third International Workshop on Computing

Education Research (pp. 27–38). New York, NY: ACM. https://doi.org/10.1145/1288580.1288585

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking

with K-12 science education using agent-based computation: A theoretical framework. Education and

Information Technologies, 18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x

Sentance, S., & Humphreys, S. (2018). Understanding professional learning for computing teachers from the

perspective of situated learning. Computer Science Education, 28(4), 345-370.

https://doi.org/10.1080/08993408.2018.1525233

Sentance, S., & Csizmadia, A. (2016). Computing in the curriculum: Challenges and strategies from a teacher’s

perspective. Education and Information Technologies, 1–27. https://doi:10.1007/s10639-016-9482-0

Shimazoe, J., & Aldrich, H. (2010). Group work can be gratifying: Understanding & overcoming resistance to

cooperative learning. College Teaching, 58(2), 52-57. https://doi.org/10.1080/87567550903418594

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research

Review, 22, 142-158. https://doi.org/10.1016/j.edurev.2017.09.003.

Smith, M. (2016). Computer science for all. Retrieved from

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

Tenenberg, J., & Fincher, S. (2007). Opening the door of the computer science classroom: The disciplinary

commons. ACM SIGCSE Bulletin, 39(1), 514-518. https://doi.org/10.1145/1227504.1227484

Tew, A. E., Fowler, C., & Guzdial, M. (2005). Tracking an innovation in introductory CS education from a

research university to a two-year college. ACM SIGCSE Bulletin, 37(1), 416-420.

https://doi.org/10.1145/1047124.1047481

Tucker, M. S. (1996). Skills, Standards, Qualification systems, and the american workforce. In L. B. Resnick &

J. G. Wirt (Eds.), Linking school and work: Role for standards and assessment (pp. 23-51). San Francisco

CA: Jossey-Bass.

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer programming

courses: Implications for educational practice. ACM Transactions on Computing Education, 17(4), 16.

https://doi.org/10.1145/2996201

Umbleja, K. (2016). Can K-12 students learn how to program with just two hours? In Proceedings of the

International Workshop on Learning Technology for Education Challenges (pp. 250-264). New York, NY:

Springer. https://doi.org/10.1007/978-3-319-42147-6_21

Vivian, R., Franklin, D., Frye, D., Peterfreund, A., Ravitz, J., Sullivan, F., ... & McGill, M. M. (2020).

Evaluation and assessment needs of computing education in primary grades. In Proceedings of the 2020

ACM Conference on Innovation and Technology in Computer Science Education (pp. 124-130). Trondheim,

Norway: ACM. https://doi.org/10.1145/3341525.3387371

Weber, R. P. (1990). Basic content analysis. Los Angeles, CA: Sage Publications.

Wilson, C. (2014). Hour of code: We can solve the diversity problem in computer science. Inroads, 5(4), 22.

https://doi.org/10.1145/2684721.268472

https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all

International Journal of Computer Science Education in Schools, August 2020, Vol. 4, No. 1

ISSN 2513-8359

 21

Wilson, C., & Guzdial, M. (2010). How to make progress in computing education. Communications of the ACM,

53(5), https://doi.org/35-37.10.1145/1735223.1735235

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child

Psychology and Psychiatry, 17(2), 89-100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in schools:

Understanding teacher experiences and challenges. Computer Science Education, 26(4), 235-254.

https://doi.org/10.1080/08993408.2016.1257418

Yadav, A., Subedi, D., Lundeberg, M. A., & Bunting, C. F. (2011). Problem‐based learning: Influence on

students' learning in an electrical engineering course. Journal of Engineering Education, 100(2), 253-280.

https://doi.org/10.1002/j.2168-9830.2011.tb00013.x

	Abstract
	1 Introduction
	1.1 Teachers’ Challenges and Needs in CS Education
	In spite of current efforts to offer high quality CS classes in K-12 schools, many teachers have challenges and needs to better teach CS in their classes. These challenges can be categorized as knowledge and skills needs, curricular needs, contextual ...
	In order to address and help CS teachers’ needs for content and curriculum, The Association for Computing Machinery (ACM), Code.org, the Computer Science Teachers Association (CSTA), the Cyber Innovation Center, National Math and the Science Initiativ...
	1.2 CS Pedagogy
	Teaching is a complex field that requires strong pedagogical knowledge for planning, leading and mentoring dynamic classroom environments and students' learning experience. The International Society for Technology in Education (ISTE) (2011) highlighte...
	Even though CS education research has provided evidence of learning gains with all these strategies, tools and contexts, recent research expressed the need for understanding in-service teachers’ explicit challenges in CS pedagogy, especially in studen...
	1. What pedagogical needs do U.S. secondary school teachers share to better teach computer science classes or content in their classes?
	2 Method
	2.1 Participants and Setting
	2.2 Data Collection and Analysis
	2.3 Issues of Reliability-Validity and Limitations of the Study
	3 Findings
	3.1 Need for Learning Student Centered Strategies for CS Education
	3.2 Need for Strategies Guiding Students Transfer Skills Between Programming Platforms and Languages
	3.3 Need for Strategies Guiding Students' Errors while Coding
	3.4 Need for Strategies to Facilitate Student Interaction and Collaboration
	3.5 Need for Strategies Teaching Students with Low Interest in CS
	3.6 Need for Strategies Teaching Students Who Lack Literacy and Math Skills
	4 Discussion
	4.1 Learning and Applying Scaffolding Strategies in CS Classes
	4.2 Creating a Collaborative Teamwork Environment in CS Classes
	4.3 Transferring Knowledge and Skills between Programming Languages and Platforms
	4.4 Increasing Students’ Interest in Learning CS
	4.5 Teaching Students with Limited Math and Reading Background
	5 Conclusion
	Disclosure statement
	References

