
International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Developing and Assessing Computational Thinking in Secondary

Education using a TPACK Guided Scratch Visual Execution

Environment

Raquel Hijón Neira1

Miguel García-Iruela1

Cornelia Connolly2

1Universidad Rey Juan Carlos, Madrid, Spain

2National University of Ireland Galway, Ireland

DOI: 10.21585/ijcses.v4i4.98

Abstract

Effective and reliable assessment approaches to computational thinking in secondary education are in

demand. This paper uses a guided technological pedagogical content knowledge (TPACK) framework,

incorporating a visual execution environment (VEE) and Scratch project for secondary school students as

a method to teach and assess computational thinking. The objective is to investigate if computational

thinking and programming concepts can be improved upon following this method, and if the K-12 children

are able to improve their computational thinking skills. The research study was conducted over 2 years in

a school setting using the guided VEE and project developed following the dimensions of Computational

Thinking process. The project participants came from two cohorts, an after-school programming camp and

an in-school environment. Data was collected over two academic years and a quasi-experimental procedure

with pre- and post-test was followed. The results demonstrate knowledge gain on computational and

programming concepts and encourages us to convey how students translate (as opposed to transfer) their

computational thinking experiences into reality. The results indicate the students achieved significant

improvement in their computational thinking development.

Keywords: TPACK; Computational Thinking; Assessment; VEE; Scratch.

1. Introduction

Computational Thinking will be a fundamental skill used by everyone in the world (Wing, 2011) and is

regarded as the thought processes, involving the formulation of problems and their solutions, characterised

as computational steps and algorithms (Aho, 2012). Much research demonstrates how to incorporate

computational thinking into classrooms (NRC, 2010; Weintrop et al., 2016; Yadav, Gretter, Good, &

McLean, 2017) and many national curriculums are introducing computational thinking through a Computer

Science curriculum at upper secondary school (Baron, Drot-Delange, Grandbastien, & Tort, 2014; Bell,

Andreae, & Lambert, 2010; Brown, Sentance, Crick, & Humphreys, 2014). Coding is a key way to enable

computational thinking (Lye & Koh, 2014) and development of related curriculum key in the enabling CT

in secondary education and assessment.

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Without attention to assessment, CT enactment in curriculum will have very little success (Grover & Pea,

2013). Assessment is intended to establish whether, and to what extent the curriculum intention has been

achieved (Malone, 2011) and efforts to integrate and develop relevant CT-based assessments though

developing are lacking (García-Peñalvo & Mendes, 2018; Grover & Pea, 2013). Assessment, and

particularly formative assessment (Walsh & Dolan, 2009) help us to identify and bridge the gap between

intended and the received curriculum. The two processes are not independent, but rather assessment follows

after the curriculum and at times dictates (Hargreaves, Earl, & Ryan, 1996).

This paper evaluates a TPACK Guided Scratch Visual Executing Environment for secondary school

students as a method to teach, develop and assess computational thinking. The study contributes to the body

of knowledge concerning development and assessment of computational thinking of visual programming

(Brennan & Resnick, 2012), having developed a TPACK Guided Scratch VEE and the CT Knowledge Gain

Test based on the environment. This work conveys how students translate (as opposed to transfer) their

computational thinking experiences into reality. To appreciate the positioning of assessment of

computational thinking in secondary education it is valuable to introduce the context and changes in the

current literature and we begin by describing the literature and policy pertaining to such developments.

2. Literature Review

In 2006 Jeanette Wing published her article "Computational Thinking" (Wing, 2006) which is understood

as fundamentally an analytical skill used to coordinate and interpret knowledge or data in order to

accomplish various practical goals or tasks (NRC, 2010). Computational thinking should teach students to

apply common CT elements to solve problems and discover new questions to explore within and across all

disciplines (Hemmendinger, 2010). It was understood that coding is a key way to enable computational

thinking (Lye & Koh, 2014) but CT may be applicable to a variety of unplugged problems that do not

directly involve coding tasks (Wing, 2008). In 2011 Wing revisited the topic and provided a new definition

“Computational thinking is the thought processes involved in formulating problems and their solutions so

that the solutions are represented in a form that can be effectively carried out by an information-processing

agent” (Wing, 2011, p. 3). It is important to focus on the importance of learners developing as

computational creators (Resnick & Robinson, 2017) and such computational fluency involves not only an

understanding of computational concepts and problem-solving strategies, but also the ability to create and

express with and through digital technologies.

Computational thinking student learning and assessment is an area of development and studies have been

quite varied. Some evaluated students engineering and programming skills as they debugged prebuilt faulty

e-textile projects and their deconstruction, reverse engineering, and debugging skills (Fields, Searle, Kafai,

& Min, 2012). Other studies presented a more systematic assessment of CT based science learning, using

CTSiMe a Computational Thinking based science learning environment (Basu, Kinnebrew, & Biswas,

2014); the identification of CT patterns which young students abstract and develop during the creation of

video-games in a controlled environment (Koh, Basawapatna, Bennett, & Repenning, 2010); the

development in the student use of CS literacy from engaging in computationally rich activities provides an

additional instrument for measuring the growth of CT (Grover, 2011). Moreno-León et al (2015) developed

a web application to analyse automatically Scratch projects and provide feedback to improve programming

and computational skills. SRI Education published reports providing principled approaches to designing

assessment tasks which can generate valid evidence of students’ abilities to think computationally exploring

CS (Bienkowski, Snow, Rutstein, & Grover, 2015; Snow, Tate, Rutstein, & Bienkowski, 2017) and studies

examined students usage of CT concepts and their awareness (Bower et al., 2017).

More recently, Lui et al (2019) demonstrated that CT literacy serves as a formative assessment tool,

providing students with feedback benefiting their learning. However, Fields, Lui and Kafai (2019)

presented findings revealing that assessment failed to capture the process of CT learning when they were

learning with electronic textiles. Nevertheless, many studies highlight the benefits of CT and developing a

CT integrated curriculum (Rich et al, 2019, Sung, 2019), CT-inspired teaching and learning tools (Grover

2017) and a CT-embedded learning environment (Muniz-Repiso, Caballero-Gonzálex, 2019).

2.1 Computational Thinking in Secondary Education

Coding is a key way to enable computational thinking (Lye & Koh, 2014) and so developing computer

science and programming curriculum is key in the enabling CT integration in secondary education. The

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

introduction of computing in secondary schools has been widely researched (Deek & Kimmel, 1999;

Yadav, Gretter, Hambrusch, & Sands, 2016). In many countries the focus of computer science education at

post-primary level has shifted from computer and ICT applications towards a more rigorous academic

discipline (Bell et al., 2010; Brown et al., 2013; Hubwieser, 2012). The pattern of interest – a basic

computing in the 1970s and 1980s, followed by a shift to digital literacies in the 1980s and 1990s, with a

resurgence of interest in Computer Science in the past decade seems to match what has happened in the

UK for example (Brown et al., 2013; Brown et al., 2014). The English national curriculum was changed in

2014, replacing Information Communication Technology (ICT) to a new subject of Computing which has

more emphasis on computer science and programming principles, facilitating computational thinking

(Csizmadia et al., 2015). New Zealand, similarly, introduced Computer Science in high schools nationally

in 2011 (Bell, Andreae, & Robins, 2012). The revised NZ Computer Science curriculum content focuses

on programming and gives students the chance to explore a range of computer science topics beyond

programming, including algorithms and complexity, human-computer interaction, encryption, artificial

intelligence, formal languages, computer graphics (Bell, Andreae, & Robins, 2014). In Ireland Computer

Science was introduced as part of the curriculum in 2017 (NCCA, 2017) and a major component of their

upper secondary specification is computational thinking. In Spain there is a computing curriculum in

secondary education (BOE, 2015) and the subject “Technology, Programming and Robotics” has been

taught from the 2014/15 academic year (INTEF, 2019). In reviewing the situation in Spain regarding

Computing Education in pre-university stages made by the Spanish Computing Scientific Society (SCIE),

with the support of the Spanish Board of Deans of Computing Schools (CODDI), it was recommended to

establish a subject titled “Informatics”, which was implemented as a mandatory course offered in both

primary and secondary education (Velázquez-Iturbide, 2018). In many countries the focus of visual

programming is primarily at primary level (Bell, Duncan, & Atlas, 2016; Duncan, Bell, & Atlas, 2017;

Sáez-López, Román-González, & Vázquez-Cano, 2016).

Understanding the impact of a block-based programming environment in high school classrooms has been

researched (Weintrop & Wilensky, 2017) and the work by Armoni et al (2015) focused on the transition

from learning CS in middle school with Scratch, to learning CS in secondary school using a “real”

programming language and a professional software development environment. Results demonstrated

evidence to justify learning CS in middle schools, although there were no significant differences in

achievements compared to students who had not studied Scratch (Armoni, Meerbaum-Salant, & Ben-Ari,

2015). This is consistent with the results of Levy et al. (2003), who showed that the use of the Jeliot program

animation system primarily benefited the students who are capable of learning but not outstanding.

2.2 Serious Games and MaKey MaKey as a Teaching Resources

Game is understood as a playful action without a concrete, free and voluntary purpose. The win-lose

dynamic is intrinsic. In this study, we use educational games (which have a specific purpose) where losing

is a new opportunity to learn. Through the game, skills are developed to study the environment or specific

problems and be creative looking for solutions (Granic, Lobel, & Engels, 2014), in this case computational

thinking. Structuralist theory considers that the game establishes the way of seeing the world and thinking

of the child as CT will be a new concept for many to discover. The absence of this “learn to think” prevents

further learning from having depth (they are not reflexive) and therefore do not activate the emotional part

that enables long-term learning (Piaget & Inhelder, 1999). On the other-hand the Fogg model (2009)

designed to change human behaviour, establishes that three elements are necessary to modify the behaviour

– motivation, skills and a trigger. An educational game facilitates dynamics in which these three

components converge simultaneously, being an optimal method for teaching-learning dynamics of new

concepts, in our case concepts related to programming and the development of computational thinking.

MaKey MaKey was developed at MIT and is a simple hardware platform for improvising tangible user

interfaces (Collective & Shaw, 2012). The Guided Scratch Visual Executing Environment (VEE) in this

study can be used with a MaKey-MaKey device. The use of Makey-Makey is closely related to the

constructivist conception of education, since it corresponds to the user, the design, construction and, where

appropriate, modification of the controls to be used. Interactive controls have proven to be a good tool for

the promotion of class interactivity (Álvarez Martínez & Llosa Espuny, 2010). In addition, the inclusion of

the design of tangible game controls which develop inventiveness in Makey-Makey broadens learning

opportunities (Lee et al., 2014). Martinez and Stager (2013) detail some of the main ideas that underlie the

didactic use of this device:

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

• Learn by doing: You learn more when learning is part of something that is interesting. You learn best

when we use what we learn to do something we really want.

• Technology as a building material: If you can use technology to do things, you can do more interesting

things. And you can learn much more by doing them.

• Fun is not easy: We learn and work better if we enjoy what we are doing. But enjoying is not

synonymous with easy. The greatest enjoyment occurs when the challenge is difficult.

• Learn to learn: The belief that you can only learn when someone teaches you is widespread. You don't

always have someone who can teach you what you want to learn.

• Take the time to do the job: It is important to learn how to manage time for yourself to achieve the

desired objectives.

• You cannot do well if you have not made a mistake: Complex things do not work at first.

• The only way to get it right is to analyze the problems that produced the previous failures.

Another important aspect of the MaKey-MaKey device is that it allows for easy adaptation to any need,

and this was particularly important for our study in interfacing with the VEE and assessing computational

thinking.

3. Research Design

This paper evaluates a TPACK Guided Scratch Visual Executing Environment for secondary school

students as a method to teach, develop and assess computational thinking. The two research questions are

as follows: Can computational thinking and programming concepts be improved with a TPACK Visual

Execution Environment and Scratch on K-12 students? And secondly, by using this TPACK Guided Scratch

VEE and Scratch are students able to improve their computational thinking skills?

3.1 Theoretical Foundation

The design of this study drew on the TPACK framework (Koehler & Mishra, 2009) in the integration of

the necessary knowledge and the development of a useful tool to transmit the concepts of computational

thinking which Scratch supports (Brennan & Resnick, 2012). The TPACK model defines the area in which

technology is consistently integrated in teaching and the transfer of knowledge to the student is enhanced.

The intersection of three fields of knowledge is that of Content Knowledge (concepts of computational

thinking); Pedagogical Knowledge (exhibition and serious games) and thirdly Technological Knowledge

(programming with scratch and development of web pages.) At the intersections of the fields of knowledge,

less significant areas of partial knowledge are generated, since they lack one of the areas.

According to Grover and Pea (2013), there is a consensus on the elements that should be included in a

computational thinking curriculum, such as abstractions and generalizations of patterns, including models

and simulations. The work carried out by the creators of Scratch was considered in the Creative Computing

document (Brennan, Balch, & Chung, 2014) whose objective is to explore computational thinking by the

Scratch programming language. This project is based on Brennan & Resnick (2012), which classifies

computational thinking into three dimensions: Concepts, Practices and Computational Perspectives

depicted in Table 1.

Table 1. Dimensions of Computational Thinking (Brennan & Resnick, 2012)

Computational Concepts (7):

• Sequences

• Loops

• Parallelism

• Events

• Conditional

• Operators

• Data

Computational Practices (4):

• Incremental and iterative development

• Test and debug

• Reuse and mix

• Abstract and modularize

Computational perspectives (3):

• Express yourself

• Connect

• Question

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

The use of metaphors for educational purposes consists of transferring a known concept from one object to

another to which it provides a new notion or intuition. In this study attempts have been made to make

metaphors evident and, where possible, graphic representations have been used to facilitate assimilation.

Below is a list of the main metaphors used (see Table 2). In the case of the "Operator" concept, it has not

been considered necessary to evoke a metaphor, since the notion of mathematical operator is widely

extended.

Table 2. Metaphors of Computational Concepts

Concept Metaphor

Sequence Cooking recipe

Variable Container with label

Conditional Detour on the road

Loop How a clock works

Event Traffic light operation

Synchronization Set the same time on two watches

Computational thinking NIM game

3.2 TPACK Scratch Visual Execution Environment

The TPACK Scratch Visual Execution Environment has pre-established programs, which include the

theory and practice corresponding to each of the proposed lessons. This separation allows the teacher

different sequencing from the one proposed, if necessary. Since some concepts are supported by prior

learning it is necessary (e.g., to explain the operation of conditionals, it is necessary to previously

understand logical operators). The order of topics proposed are presented in Table 3.

Table 3. Proposal for Sequencing Topics

Lesson 1. Sequences

Lesson 2. Variables

Lesson 3. Operators

Lesson 4. Conditionals

Lesson 5. Loops

Lesson 6. Events

Lesson 7. Parallelism

Lesson 8. Computational Thinking

The topics developed are closely related to the computational concepts implicit in Scratch, as a

programming initiation language (Brennan & Resnick, 2012) and the first seven themes are valid tools for

learning programming. The last concept includes the notion of computational thinking as an exercise of

recapitulation and reinforcement of the previous points. Computational thinking is a complex competence

that is related to the mental schemes of human beings, which allows to develop ideas and link abstraction

(ideas-concepts) with pragmatism (action). It is not synonymous with programming, since it requires

different degrees of abstraction and does not depend on computer equipment (unplugged). However, the

use of computer equipment allows us to undertake tasks that without them would be unapproachable

(Urbina Ramírez, 1999).

The TPACK Guided Scratch VEE has pre-established programs (Hernández Tijera & Perianes Rodriguez,

2018). It is a web application that allows accessing from any device apart from a PC (Smartphones, tablet,

etc). It can be used with a MaKey-MaKey device or with the mouse and enables interaction at the students

own pace. In order to access the Scratch applications embedded in the web pages, it is necessary to enable

Flash Player and click on the green flag to start the different Scratch programs (http://scratch-

tfm.000webhostapp.com/index.html).

In the development of each topic, the best way for the assimilation of the CT concept to be treated was

considered and decided to first develop an exhibition and then carry out several practices. To highlight this

separation, a visual key was used as a resource. The exhibition section has a classic slate background, and

the practical part has a grid notebook background (see Figure 1). In the theoretical section, thanks to the

interaction with the treated concept, students can interactively go at their own pace, allowing

personalization to understand the concepts being exposed, developed around metaphors. In the practical

section, thanks to the interaction with the treated concept, an instant feedback is showed, which allows both

the assimilation and the accommodation of the new concepts (Figure 2).

http://scratch-tfm.000webhostapp.com/index.html
http://scratch-tfm.000webhostapp.com/index.html

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Figure 1. Examples of exposure (left) and practice (right) in the TPACK Guided Scratch VEE

Figure 2. The TPACK Guided Scratch VEE with 7 computational Concepts and their serious games, last

option is Local Scratch

3.3 Research Participants

The participants (N = 32) were K-12 students from two sites, some from an after-school programming camp

(N = 6) and the others from a Madrid school (N = 26). The experience in both cases took place for 2 weeks

and 6 hours per week, in total 12 hours. The distribution by gender is as follows: 54.8% girls and 45.2%

boys. The experience took place in a computer room for 6 hours a week (2 hours a day) and no reward was

given in grades or otherwise, the only reward was the students' own increasing motivation.

3.4 Data Collection

The experiment took place during the 2nd semester of two academic years, 2017-2018 and 2018-2019. A

quasi-experimental procedure with pre- and post-test was followed. For the pre and post-tests, the same

evaluation tests were used for concepts of computational thinking and programming on the one hand, and

gains in computational thinking, on the other. Each test was completed individually by each student on their

computer in class.

In each class, the students completed two pre-tests. The first was to verify what they knew about Brenan

Resnick's 7 concepts of computational thinking (2012). The assessment consists of 12 free-text questions.

These questions refer to the 7 computational Concepts of the first dimension of Computational Thinking

(Sequence, variables, operators, conditionals, loops, events, parallelism, and the concept of computational

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

thinking). The second test was to measure their computational thinking with a validated test (Román-

González, Pérez-González, & Jiménez-Fernández, 2017). This test consisted of 28 multiple choice

questions, with 4 possible options in each. Questions which cover the CT concepts of Basic directions &

sequences, repeat times, repeat until, Simple conditional, complex conditional, while conditional and

simple functions. The students then received 12 hours of class for 2 weeks, and they took the two post-tests

to verify the improvements.

The tasks carried out by the students consisted of first an introduction to the theory and practice of each

concept in the TPACK Guided Scratch VEE and then continuing working on it in Scratch. The tasks carried

out were based on: algorithms, flow diagrams, operators, variables (Scratch's "ask" and "answer"),

conditionals, loops, and then they worked with everything learned with a project we called "Working

Geometry with Scratch ", students work on this project allowed them to incorporate the 2 dimensions of

Brennan & Resnick (2012) left: Computational Practices (Incremental and iterative development, test and

debug, reuse and mix, and abstract and modularize) and Computational perspectives (express yourself,

connect and question). In this project the students had to make little programs that painted polygons, for

example:

1. Draw an equilateral triangle of side 100

2. Draw a square of side 80

3. Draw a pentagon from side 50

4. Create a program that does the following:

• Set a suitable scenario and character (as if he were a school teacher)

• The character should say, “Hello, we are working with equilateral triangles. Equilateral triangles

are those that have their three equal sides and their three angles measure 60º. I am going to draw

the triangle that you want. How much do you want me to measure on your side?

• Then the program must draw a triangle aside the "answer" that the user enters on the keyboard.

5. We are going to do the same for a square.

• Modify the triangle program, it is very simple. Just change the number of laps and degrees.

6. The same for a pentagon

7. Same for n hexagon

8. Could you do it for a polygon with n sides?

4. Results and Discussion

4.1 Computational Thinking Concepts and Programming

A descriptive analysis of the results obtained is shown in Table 4, showing the minimum, maximum, mean

and standard deviation of each test (pre and post). The results show that there are significant results in the

results in the post-test. The minimum, maximum and mean values increase remarkably in the post-test

results, although the dispersion increases minimally.

Table 4. Mean and Typical Deviation in The Test of Computational Thinking Concepts

 (n=32)

 Min Max Media SD

P
re

0,688 4,063 2,160 0,660

P
o
st

6,125 9,750 8,867 0,931

The box-plots of the results in the evaluation of the Basic Computational Thinking Concepts, demonstrate

the pre- and post-test, where each is delimited by the values Q1 (first quartile) and Q3 (third quartile). Each

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

box groups 50% of the cases, highlighting the median. The lowest and highest value at the end of each

diagram correspond to the values that are not less than Q1-1.5 · (Q3-Q1) and are not greater than Q3 + 1.5

· (Q3-Q1). The Analysis of variance of a factor (Anova) has been carried out to study the pre-test and the

post-test and a value for F = 1105,31 and a p-value << 0,005 have been obtained, therefore it can be

concluded that the data are significantly different. Comparing the pre-test with the post-test, after analysing

the data, normality can be concluded for the study group (obtaining p> 0.05 significance using the Shapiro-

Wilk test), allowing us to use the t-Student test for paired samples (p> 0.05 using bivariate correlation tests).

In this test, it has been assumed that the null hypothesis can be established, since there are no differences

between the means. Therefore, a p-value greater than 0.05 will reveal homogeneity in the samples. As a

result, the difference between the pre-test and the post-test in the study of improvement in basic

programming knowledge (t test analysis -6.707 and p-value 0.0001) and therefore, it is deduced that the

students had a significant improvement in the test scores when following the course planning (p <0.0001).

In order to collect additional information on the magnitude of the change produced in the students following

the methodology explained in previous subsection, the size of the effect in the study group was calculated

by means of the variation (Cohen, 1988), obtaining a g value = 8.4, corresponding to a very large effect

(since it is> 0.5). According to these results, the students achieved a significant improvement in their global

learning in the 7 concepts of Computational Thinking, the size of the effect is very large.

4.2 Computational Thinking Results for Each Concept

To verify which CT concepts, demonstrate the greater or less improvement achieved, we proceed to analyse

which were more complicated or more affordable. The results show that there are significant results in the

results in the post-test. The minimum, maximum and mean values increase remarkably in the post-test

results, although the dispersion increases slightly in all concepts except for memory and sequence. Figure

3 shows the box-plots of the detailed results of each of the Computational Thinking Dimensions / concepts

worked with Guided Scratch VEE in the pre- and post-test broken down by the 8 Dimensions studied

(sequence, variables, operators, conditionals, loops, events, parallelism and the Computational Thinking

Nim Game). Each box is delimited by the values Q1 (first quartile) and Q3 (third quartile). Each box groups

50% of the cases, highlighting the median, lowest and highest value at the end of each diagram corresponds

to the values that are not less than Q1-1.5 · (Q3-Q1) and are not greater than Q3 + 1.5·(Q3-Q1). The

Analysis of variance of a factor (Anova) has been carried out to study the pre-test and the post-test and a

value for F = 1105,31 and a p-value of << 0,005 have been obtained, therefore it can be concluded that the

data are significantly different. Comparing the pre-test with the post-test, after analysing the data, normality

can be concluded for the study group (obtaining p> 0.05 significance using the Shapiro-Wilk test), allowing

us to use the t-Student test for paired samples (p> 0.05 using bivariate correlation tests). In this test, it has

been assumed that the null hypothesis can be established, since there are no differences between the means.

Therefore, a p-value greater than 0.05 will reveal homogeneity in the samples.

Figure 3. Box-plots for the group of students in pre- and post-tests in each of the CT dimensions worked

with the TPACK Guided Scratch VEE

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Table 5 shows the difference between the pre-test and the post-test in the study of improvement in each

concept worked on following the procedure studied. Therefore, it is deduced that the students had a

significant improvement in the knowledge of these dimensions of Computational Thinking at the end of

the interaction (p <0.0001). In order to collect additional information on the magnitude of the change

produced in the students following the TPACK Guided Scratch VEE methodology explained in previous

subsection; the effect size in the study group was calculated by variation (Cohen, 1988), obtaining a value

variables of g = 5,4 corresponding to a very large effect (since it is> 0.5), for operators of g = 6,9,

corresponding to a very large effect (since it is> 0.5), for conditionals of g = 1,2, corresponding to a large

effect (since it is> 0.5), for loops of g = 3,6, corresponding to a very large effect (since it is> 0.5), for events

of g = 4 corresponding to a very large effect (since it is> 0.5), for parallelism of g = 7,6 corresponding to a

very large effect (since it is> 0.5), for CT of g = 6,5 corresponding to a very large effect (since it is> 0.5).

Table 5. Study using t-Student and P-Value Analysis

 t test analysis p-value

Sequence -5,938 0,0001

Variables -5,188 0,0001

Operators -8,063 0,0001

Conditionals -3,406 0,0001

Loops -6,375 0,0001

Events -6,875 0,0001

Paralelism -9,375 0,0001

CT Nim Game -8,438 0,0001

According to these results, learning is significant for all CT dimensions worked with the TPACK Guided

Scratch VEE. At the beginning (pre-test) the newest or most unknown concepts for students are: parallelism

and the concept of computational thinking. On the other hand, the most familiar concepts are that of

sequence, loops and events, although they do not yet dominate. At the end of the intervention, all the

dimensions have achieved a significant improvement, we can say that the concepts of sequence, operators,

events and parallelism dominate; The rest of the concepts (variables, loops, computational thinking) are

dominated by more than 80% of the group of participating students, and in conditionals it is where there is

more dispersion, achieving more than 50% of the class to overcome it as well. On the other hand, the

concepts with the greatest effect on learning are (in that order): parallelism, operators, computational

thinking, variables, loops, events, sequence and conditionals.

4.3 Assessment of Computational Thinking

In regard to assessment of computational thinking we firstly provide a descriptive analysis of the results

obtained. Table 6 shows the minimum, maximum value, mean and standard deviation of each test (pre and

post). The results show that there are significant results in the results in the post-test. The minimum,

maximum and mean values increase remarkably in the post-test results, although the dispersion increases

minimally.

Table 6. Mean and Typical deviation in the assessment of Computational Thinking

 (n=32)

 Min Max Media SD

P
r
e

3,929 7,500 4,576 0,987

P
o
st

4,643 7,500 6,295 0,653

The box-plots of the results in the evaluation of the Computational Thinking Test in the pre- and post-test

and the analysis of variance of a factor (Anova) has been carried out to study the preTest and the postTest

and a value for F = 67,49 and a p-value < 0,005 have been obtained, therefore it can be concluded that the

data are significantly different. Comparing the pre-test with the post-test, after analyzing the data, normality

can be concluded for the study group (obtaining p> 0.05 significance using the Shapiro-Wilk test), allowing

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

us to use the t-Student test for paired samples (p> 0.05 using bivariate correlation tests). In this test, it has

been assumed that the null hypothesis can be established, since there are no differences between the means.

Therefore, a p-value greater than 0.05 will reveal homogeneity in the samples. The t-test analysis is -1.719

and therefore the difference between the pre-test and the post-test in the study of improvement in basic

programming knowledge. Therefore, it is deduced that the students had a significant improvement in the

test scores when following the course planning (p <0.0001). In order to collect additional information on

the magnitude of the change produced in the students following the methodology explained in previous

subsection, the size of the effect in the study group was calculated by means of the variation in Cohen's D

(Cohen, 1988), obtaining a g value = 2,1 corresponding to a very large effect (since it is> 0.5). According

to these results, the students achieved a significant improvement in their Computational Thinking, the size

of the effect is very large.

4.4 Assessment Computational Thinking Test by Concepts

In order to determine if by the intervention students improved differently and how on their Computational

Thinking, we proceed to study the concepts assessed to determine which had the most improvement and

which ones had the least. The results show that there are significant results in the results in the post-test.

The minimum, maximum and mean values increase remarkably in the post-test results, although the

dispersion increases slightly in all concepts except memory and sequence. Figure 4 shows the box-plots of

the detailed results on the Computational Thinking Test exploited by concepts (basic directions &

sequences, repeat times, repeat until, simple conditional, complex conditional, while conditional, simple

functions). The Analysis of variance of a factor (Anova) has been carried out to study the preTest and the

postTest and a value for F = 67,49 and a p-value of << 0,005 have been obtained, therefore it can be

concluded that the data are significantly different.

Figure 4. Box-plots for the group of students in pre- and post-tests in each CT concept assessed

Comparing the pre-test with the post-test, after analyzing the data, normality can be concluded for the study

group (obtaining p> 0.05 significance using the Shapiro-Wilk test), allowing us to use the t-Student test for

paired samples (p> 0.05 using bivariate correlation tests). In this test, it has been assumed that the null

hypothesis can be established, since there are no differences between the means. Therefore, a p-value

greater than 0.05 will reveal homogeneity in the samples. It is deduced that the students had a significant

improvement on these concepts of Computational Thinking at the end of the interaction (p <0.0001) but for

Simple Functions (p<0,018).

In order to collect additional information on the magnitude of the change produced in the students on each

concept, the effect size in the study group was calculated by variation in Cohen's D (Cohen, 1988), obtaining

a value for basic directions & sequence of g = 1,5, corresponding to a very large effect (since it is> 0.5),

for repeat times of g = 1.06, corresponding to a very large effect (since it is> 0.5), for repeat until of g =

0.79, corresponding to a large effect (since it is> 0.5), for simple conditional of g = 1.54, corresponding to

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

a very large effect (since it is> 0.5), for complex conditional of g = 1.16 corresponding to a very large effect

(since it is> 0.5), for while conditional of g = 1.37 corresponding to a very large effect (since it is> 0.5).

5. Conclusion

There is worldwide interest on finding ways to improve students Computational Thinking skills and ways

to assess it. This project uses a guided TPACK framework, incorporating a Scratch VEE for secondary

school students as a method to teach and assess computational thinking. The objective was to investigate if

computational thinking and programming concepts could be improved upon in applying this approach and

if the K-12 children are able to improve their computational thinking skills.

The use of the serious games in the Guided Scratch VEE enables creativity in looking for solutions, similar

to previous studies (Granic, Lobel, & Engels, 2014). The possibility of using a Makey-Makey can promote

class interactivity (Álvarez Martínez & Llosa Espuny, 2010) and learning opportunities (Lee et al., 2014).

Moreover, metaphors have been used to explain concepts (Pérez-Marín, et al., 2020; Pérez-Marín, Hijón-

Neira, Martín-Lope, 2018), as well as abstractions and generalization of patterns (Grover & Pea 2013)

presenting them as pre-established programs to guide the student in their learning. A balance of theory and

practice, combined with the ordering of topics, which follows the sequence proposed in studies to teach CT

(Brennan & Resnick, 2012). Furthermore, adopting user centred design (UX) the exhibition section and the

practical section have different backgrounds, offering instant feedback. The experiment also took part over

two academic years aligning to the validated test (Román-González, Pérez-González & Jiménez-Fernández,

2017). As mentioned previously, prior to the tasks being carried out by students, they first developed

understanding of each concept in the TPACK Guided Scratch VEE and the continued their learning with

Scratch, enabling them incorporate the 2 dimensions of computational practices and computational

perspectives (Brennan & Resnick, 2012)

The first Research Question, RQ1, asked: Can Computational Thinking and programming concepts be

improved with a Visual Execution Environment and Scratch on K-12 students? In concluding the study, it

has been observed that a TPACK Guided Scratch VEE, and an iterative incremental project based on

polygons, that the students created in Scratch at their own pace, incorporating computational practices

(incremental and iterative, test and debug, reuse and mix, and abstract and modularize) and computational

perspectives (express yourself, connect and question). The students achieved significant improvement in

their learning of the concepts of Computational Thinking. The students achieved a significant improvement

in their global learning in the seven concepts of Computational Thinking, the size of the effect is very large.

According to these results, learning is significant for all CT dimensions worked with the TPACK Guided

Scratch VEE. At the beginning (pre-test) the newest or most unknown concepts for students are: parallelism

and the concept of computational thinking. On the other hand, the most familiar concepts are that of

sequence, loops, and events, although they do not yet dominate. At the end of the intervention, all the

dimensions have achieved a significant improvement, we can say that the concepts of sequence, operators,

events, and parallelism dominate; The rest of the concepts (variables, loops, computational thinking) are

dominated by more than 80% of the group of participating students, and in conditionals it is where there is

more dispersion, achieving more than 50% of the class to overcome it as well. On the other hand, the

concepts with the greatest effect on learning are (in that order): parallelism, operators, computational

thinking, variables, loops, events, sequence, and conditionals.

The second Research Question, RQ2 investigated if by using this TPACK Guided Scratch VEE are students

able to improve their computational thinking skills? The students achieved a significant improvement in

their Computational Thinking and the size of the effect is very large. According to these results, learning is

significant for all CT concepts the test measured but for simple functions. At the beginning (pre-test) the

newest or most unknown concepts for students are: repeat until, simple and complex conditionals, while

conditional and simple functions. As in previous analysis, the most familiar concepts are that of basic

directions & sequence in the first place, followed by repeat times, they are all about to pass. At the end of

the intervention, all the concepts but functions have achieved a significant improvement, we can say that

the concepts of basic directions & sequence and repeat times students got it excellent; the rest of the

concepts (repeat until, simple and complex conditional, while conditional are also well understood. On the

other hand, the concepts with the greatest effect on learning are (in that order): simple conditions, basic

directions, while conditional, complex conditionals, complex conditional, repeat times, repeat until and

simple functions.

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

The results obtained on K-12 students for a total of 12 hours of classes using the TPACK Guided Scratch

VEE and developing guided projects with Scratch, the results of this experiment demonstrate that students

gained a significant improvement in the test scores when following the course planning. According to these

results, the students achieved a significant improvement in their global learning in the seven concepts of

computational thinking, the size of the effect is very large. Therefore, the use of such VEE provides an aid

to the teacher in introducing the CT concepts, and provides guidance specific to metaphors and serious

games. It provides a better introduction to just starting with Scratch from Scratch, offering well established

steps for explaining abstract concepts to young students.

When studying the results for each specific dimension, it is deduced that students had a significant

improvement in the knowledge of all dimensions of computational thinking at the end of the interaction,

and that is a good way for explaining such new concepts to students as parallelism or computational

thinking. Since at the end of the intervention, all dimensions have achieved a significant improvement, we

can say that using the Guided TPACK VEE and Scratch we can help teachers teach such complex and novel

concepts such as: Sequence, Variables, operators, conditionals, loops, events, parallelism and the CT

concept itself.

It has been proven that there is a significant improvement in students Computational Thinking. The

magnitude of change produced by students on each concept is a very large for all and ordered form more

to less are: basic directions & sequence, repeat times, repeat until, simple conditional, complex conditional,

while conditional. Therefore, by using the Guided TPACK VEE and Scratch teachers can teach CT

concepts in the classroom more smoothly and it will reduce preparation time providing very significantly

outcomes for their students.

While the results demonstrate a definite statement on improvement of CT skills when a TPACK Guided

Scratch VEE was used, the work is specific to one geographic location and pedagogic approach adopted.

The work, being a quasi-experimental research case study with one school and after school context, has the

primary limitation of a narrow focus. While such an approach does not facilitate the development of

generalisations, it can effectively point out possible results, which require further investigation and

validation.

This paper presented a study carried out with K-12 secondary students. A procedure was followed where

the computational concepts, practices, and perspectives, according to a TPACK Guided Scratch VEE were

adopted. The class built a project on Scratch where the concepts only worked combining computational

thinking perspectives and practices. To assess the computational thinking two tests were carried out to

answer to our research questions and the results demonstrate knowledge gained on computational and

programming concepts. The findings demonstrate that students managed to make complex programs

combining what they learned in an incremental way, which provides insight to CS educators in pedagogical

approaches.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835.

https://doi.org/10.1093/comjnl/bxs074

Álvarez Martínez, C., & Llosa Espuny, J. (2010). Formative evaluation with quick feedback using

interactive controls. Paper presented at the XVI Conference on University Teaching of Computing,

University of Santiago de Compostela. Escola Técnica Superior d'Enxeñaría.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming. ACM

Transactions on Computing Education (TOCE), 14(4), 1-15. https://doi.org/10.1145/2677087

Baron, G. L., Drot-Delange, B., Grandbastien, M., & Tort, F. (2014). Computer science education in French

secondary schools: Historical and didactical perspectives. ACM Transactions on Computing

Education (TOCE), 14(2), 1-27. https://doi.org/10.1145/2602486

Basu, S., Kinnebrew, J. S., & Biswas, G. (2014). Assessing student performance in a computational-

thinking based science learning environment. In International conference on intelligent tutoring

systems (pp. 476-481): Springer.

Bell, T., Andreae, P., & Lambert, L. (2010). Computer science in New Zealand high schools. Paper

presented at the 12th Australasian Conference on Computing Education, Brisbane, Australia.

https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1145/2677087
https://doi.org/10.1145/2602486

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Bell, T., Andreae, P., & Robins, A. (2012). Computer science in NZ high schools: the first year of the new

standards. . Paper presented at the 43rd ACM technical symposium on Computer Science Education.

Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer science in NZ

schools. ACM Transactions on Computing Education (TOCE), 14(2), 1-31.

https://doi.org/10.1145/2602485

Bell, T., Duncan, C., & Atlas, J. (2016). Teacher feedback on delivering computational thinking in primary

school. Paper presented at the 11th Workshop in Primary and Secondary Computing Education.

https://doi.org/10.1145/2978249.2978266

Bienkowski, M., Snow, E., Rutstein, D., & Grover, S. (2015). Assessment design patterns for computational

thinking practices in secondary computer science: A first look. Retrieved from

https://pact.sri.com/downloads/Assessment-Design-Patterns-for-Computational%20Thinking-

Practices-Secondary-Computer-Science.pdf

BOE. (2015). Orden ECD/65/2015 por la que se describen las relaciones entre las competencias, los

contenidos y los criterios de evaluación de la Educación Primaria, la Educación Secundaria

Obligatoria y el Bachillerat.

Bower, M., Wood, L. N., Lai, J. W., Highfield, K., Veal, J., Howe, C., ... & Mason, R. (2017). Improving

the computational thinking pedagogical capabilities of school teachers. Australian Journal of Teacher

Education, 42(3), 53-72.

Brennan, K., Balch, C., & Chung, M. (2014). Creative computing: Scratch curriculum guide. Retrieved

from https://creativecomputing.gse.harvard.edu/guide/

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. Paper presented at the American educational research association,

Vancouver, Canada.

Brown, N. C., Kölling, M., Crick, T., Peyton Jones, S., Humphreys, S., & Sentance, S. (2013). Bringing

computer science back into schools: Lessons from the UK. Paper presented at the 44th ACM Technical

Symposium on Computer Science Education (SIGCSE’13). New York.

https://doi.org/10.1145/2445196.2445277

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of computer

science in UK schools. ACM Transactions on Computing Education (TOCE), 14(2), 9.

https://doi.org/10.1145/2602484

Cohen, J. (1988). Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ, USA: Erlbaum.

Collective, B. M., & Shaw, D. (2012). Makey Makey: improvising tangible and nature-based user

interfaces. Paper presented at the Sixth International Conference on Tangible, Embedded and

Embodied Iinteraction.

Deek, F. P., & Kimmel, H. (1999). Status of computer science education in secondary schools: One state's

perspective. Computer Science Education, 9(2), 89-113. https://doi.org/10.1076/csed.9.2.89.3808

Duncan, C., Bell, T., & Atlas, J. (2017). What do the teachers think? Introducing computational thinking

in the primary school curriculum. Paper presented at the Nineteenth Australasian Computing

Education Conference.

Fields, D. A., Searle, K. A., Kafai, Y. B., & Min, H. S. (2012). Debuggems to assess student learning in e-

textiles. Paper presented at the 43rd ACM technical symposium on Computer Science Education.

https://doi.org/10.1145/2157136.2157367

Fields, D. A., Lui, D., & Kafai, Y. B. (2019). Teaching computational thinking with electronic textiles:

Modeling iterative practices and supporting personal projects in exploring computer science.

In Computational thinking education (pp. 279-294). Springer, Singapore.

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-

university education. Computers in Human Behavior, 80, 407-411.

https://doi.org/10.1016/j.chb.2017.12.005

García-Valcárcel-Muñoz-Repiso, A., & Caballero-González, Y. A. (2019). Robotics to develop

computational thinking in early Childhood Education. Comunicar. Media Education Research

Journal, 27(1).

https://doi.org/10.1145/2602485
https://doi.org/10.1145/2978249.2978266
https://doi.org/10.1145/2445196.2445277
https://doi.org/10.1145/2602484
https://doi.org/10.1076/csed.9.2.89.3808
https://doi.org/10.1145/2157136.2157367
https://doi.org/10.1016/j.chb.2017.12.005

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Granic, I., Lobel, A., & Engels, R. C. (2014). The benefits of playing video games. American psychologist,

69(1), 66. https://doi.org/10.1037/a0034857

Grover, S. (2011). Robotics and engineering for middle and high school students to develop computational

thinking. Paper presented at the American Educational Research Association, New Orleans, LA.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field.

Educational Researcher, 42(2), 38-43. https://doi.org/10.3102/0013189X12463051

Grover, S. (2017). Assessing algorithmic and computational thinking in K-12: Lessons from a middle

school classroom. In Emerging research, practice, and policy on computational thinking (pp. 269-

288). Springer, Cham.

Hargreaves, A., Earl, L. M., & Ryan, J. (1996). Schooling for change: Reinventing education for early

adolescents: Routledge.

Hemmendinger, D. (2010). A Plea for Modesty. ACM Inroads, 1(2), 4-7.

https://doi.org/10.1145/1805724.1805725

Hernández Tijera, I., & Perianes Rodriguez, B. (2018). Camino hacia la excelencia. Premios Trabajo Fin

de Máster en Formación del profesorado de Educación Secundaria. Retrieved from Colegio Oficial

de Docentes. Sial Pigmalión.

Hubwieser, P. (2012). Computer science education in secondary schools: The introduction of a new

compulsory subject. Transactions in Computing Education, 12(4), 161-164.

http://dx.doi.org/10.1145/2382564.2382568.

INTEF. (2019). Programación, robótica y pensamiento computacional en el aula: Situación en España.

Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary

Issues in Technology & Teacher Education, 9(1), 60-70.

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the automatic recognition of

computational thinking for adaptive visual language learning. IEEE Symposium on Visual Languages

and Human-Centric Computing, 59-66. https://doi.org/10.1109/VLHCC.2010.17

Lee, E., Kafai, Y. B., Vasudevan, V., & Davis, R. L. (2014). Playing in the arcade: Designing tangible

interfaces with MaKey MaKey for Scratch games. In Playful user interfaces (pp. 277-292). Singapore:

Springer.

Levy, R. B. B., Ben-Ari, M., & Uronen, P. A. (2003). The Jeliot 2000 program animation system.

Computers & Education, 40(1), 1-15. https://doi.org/10.1016/S0360-1315(02)00076-3

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D., & Jayathirtha, G. (2020). Communicating

computational concepts and practices within high school students’ portfolios of making electronic

textiles. Interactive Learning Environments, 28(3), 284-301.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior.

https://doi.org/10.1016/j.chb.2014.09.012

Malone, R. (2011). Curriculum Studies. In B. Walsh (Ed.), Education Studies in Ireland: the Key

Disciplines. Dublin: Gill & Macmillan Ltd.

Martinez, S. L., & Stager, G. (2013). Invent to learn. Making, Tinkering, and Engineering in the Classroom.

Paper presented at the Construting Modern Knowledge., Torrance, Canada.

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects.

Paper presented at the Workshop in primary and secondary computing education.

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch

projects to assess and foster computational thinking. Revista de Educación a Distancia, 46, 1-23.

NCCA. (2017). Leaving Certificate Computer Science Specification. Retrieved from

http://ncca.ie/en/Curriculum_and_Assessment/Post-

Primary_Education/Senior_Cycle/Consultation/LC-Computer-Science.pdf

NRC. (2010). Report of a Workshop on the Scope and Nature of Computational Thinking National Research

Council, Washington DC: National Academies Press.

https://psycnet.apa.org/doi/10.1037/a0034857
https://doi.org/10.3102%2F0013189X12463051
https://doi.org/10.1145/1805724.1805725
https://doi.org/10.1109/VLHCC.2010.17
https://doi.org/10.1016/S0360-1315(02)00076-3
https://doi.org/10.1016/j.chb.2014.09.012

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Pérez-Marín, D., Hijón-Neira, R., & Martín-Lope, M. (2018). A methodology proposal based on metaphors

to teach programming to children. IEEE Revista Iberoamericana de tecnologias del

aprendizaje, 13(1), 46-53.

Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C. (2020). Can computational thinking be

improved by using a methodology based on metaphors and scratch to teach computer programming

to children?. Computers in Human Behavior, 105, 105849.

Piaget, J., & Inhelder, B. (1999). The Child's Conception of Space. UK: Routledge.

Resnick, M., & Robinson, K. (2017). Lifelong kindergarten: Cultivating creativity through projects,

passion, peers, and play: MIT Press.

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in mathematical

and computational thinking: Implications for integrated instruction. Interactive Learning

Environments, 28(3), 272-283.

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities

underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers

in Human Behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages

integrated across the curriculum in elementary school: A two year case study using “Scratch” in five

schools. Computers & Education, 97, 128-141. https://doi.org/10.1016/j.compedu.2016.03.003

Snow, E., Tate, C., Rutstein, D., & Bienkowski, M. (2017). Assessment design patterns for computational

thinking practices in exploring computer science. Retrieved from

https://pact.sri.com/downloads/AssessmentDesignPatternsforComputationalThinking%20Practicesin

ECS.pdf

Sung, E. (2019). Fostering computational thinking in technology and engineering education: an unplugged

hands-on engineering design approach. Technology and Engineering Teacher, 78(5), 8-13.

Urbina Ramírez, S. (1999). Informática y teorías del aprendizaje. Píxel-Bit. Revista de medios y educación,

12, 87-100.

Velázquez-Iturbide, J. Á. (2018). Report of the Spanish Computing Scientific Society on Computing

Education in Pre-University Stages. Paper presented at the TEEM'18: Proceedings of the Sixth

International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca,

2018.

Walsh, B., & Dolan, R. (2009). A guide to teaching practice in Ireland: Gill & Macmillan Ltd.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining

computational thinking for mathematics and science classrooms. Journal of Science Education and

Technology, 25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school

computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 1-25.

https://doi.org/10.1145/3089799

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment:

measuring computational thinking in middle school. Paper presented at the 43rd ACM technical

symposium on Computer Science Education.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3).

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.

https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2011). Computational thinking. Paper presented at the 2011 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC).

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Emerging Research, Practice, and Policy on

Computational Thinking. In R. P. & H. C. (Eds.), Emerging Research, Practice, and Policy on

Computational Thinking. Educational Communications and Technology: Issues and Innovations (pp.

205-220): Springer, Cham.

https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/3089799
https://doi.org/10.1098/rsta.2008.0118

International Journal of Computer Science Education in Schools, April 2021, Vol. 4, No. 4

ISSN 2513-8359

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in

schools: understanding teacher experiences and challenges. Computer Science Education, 26(4), 235-

254. https://doi.org/10.1080/08993408.2016.1257418

https://doi.org/10.1080/08993408.2016.1257418

	Abstract
	1. Introduction
	2. Literature Review
	2.1 Computational Thinking in Secondary Education

	2.2 Serious Games and MaKey MaKey as a Teaching Resources
	3. Research Design
	3.1 Theoretical Foundation
	3.2 TPACK Scratch Visual Execution Environment
	3.3 Research Participants
	3.4 Data Collection

	4. Results and Discussion
	4.1 Computational Thinking Concepts and Programming
	4.2 Computational Thinking Results for Each Concept
	4.3 Assessment of Computational Thinking
	4.4 Assessment Computational Thinking Test by Concepts

	5. Conclusion
	References

