

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 2

International Journal of Computer Science
Education in Schools

August 2018, Vol 2, No 3

DOI:

Table of Contents
 Page

Mor Friebroon-Yesharim, Mordechai Ben-Ari
Teaching Computer Science Concepts through Robotics to Elementary School

Children

3 - 31

Serhat Altıok, Erman Yükseltürk1

Pre-Service Information Technologies Teachers' Views on Computer Programming

Tools for K-12 Level

32- 50

Kyungbin Kwon, Sang Joon Lee, Jaehwa Chung3
Computational Concepts Reflected on Scratch Program

51 - 70

https://doi.org/10.21585/ijcses.v2i3

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 3

Teaching Computer Science Concepts through Robotics
to Elementary School Children*1

Mor Friebroon-Yesharim1
Mordechai Ben-Ari1

1Weizmann Institute of Science

DOI:

Abstract
Studying computer science (CS) in elementary schools has gained become popular in recent years.

However, students at such a young age encounter difficulties when first engaging with CS. Robotics

has been proposed as a medium for teaching CS to young students, because it reifies concepts in a

tangible object, and because of the excitement of working with robots. We asked: What CS concepts

can elementary-school students learn from the participation in a robotics-based CS course? We used

two theoretical frameworks to explain possible difficulties in learning: the Jourdain effect, and

constructs vs. plans. A taxonomy of six levels was created to characterize levels of learning. The

levels were measured using four questionnaires that were based on the taxonomy. In addition, field

observations of the lessons were recorded. The population consisted of 118 second-grade students

(ages 7-8). Lessons on CS concepts using Thymio educational robot and its graphical software

development environment were taught during normal school hours, not in a voluntary extracurricular

activity. The syllabus was based on existing learning materials that were adapted for the young age of

the students. The analysis showed that the students were very engaged with the robotics activities.

They did learn basic CS concepts, although they found it difficult to create and run their own programs.

We concluded that the Jourdain effect was not demonstrated because the students understood concepts

and constructs of CS; however, they were unable to plan and construct their own programs from the

basic constructs.

Keywords: elementary school, computer science, Thymio robot, Braitenberg creatures

* Preliminary results of this research were presented at the International Conference on Robotics in
Education, April 2017, Sofia, Bulgaria.

10.21585/ijcses.v2i3.30

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 4

1 Introduction

1.1. Research goals and research framework
Studying computer science (CS) in elementary schools has gained become popular in recent years.

The goal of teaching CS at a young age is primarily to increase self-efficacy and motivation when

engaging with science and technology. However, students at such a young age face difficulties when

first engaging with CS. One approach to overcome these difficulties is to use robotics activities,

because they reify abstract CS concepts in a tangible object and because of the excitement of working

with robots. The goal of our research is to distinguish between the performance of a task and the

understanding of the concepts.

The phases of the research were:

1) The development of an age-appropriate syllabus partially based on existing learning materials for

the educational robot.

2) A quantitative and qualitative assessment to determine if the use of a robot-based syllabus enables

young students to understand CS concepts.

3) The development of taxonomy appropriate for specifying the levels of understanding of young

students who learn CS.

Section 1 presents a review of existing literature. The methodology, including the new taxonomy, is

described in Section 2. The findings are presented in Section 3, discussed in Section 4 and summarized

in Section 5.

1.2. Review of existing literature
The literature review is divided into five sections: (a) learning CS concepts by elementary school

students, (b) learning CS by robotics, (c) learning CS with robotics in elementary school, (d) the

Jourdain effect, (e) near transfer.

1.2.1. Learning CS concepts by elementary school students

Papert was among the first to propose teaching programming to young children (Papert, 1980). He

coined the term constructionism for learning by constructing artifacts such as computer programs.

Research has shown that CS studies had some positive effects on cognitive development, thinking

skills, problem-solving strategies, creativity, intrinsic motivation, or even social development

specifically at young ages (Liao & Bright, 1991; Clements, 2002; Clements & Sarama, 2003).

Duncan and Bell (2015) explored and analyzed CS curricula for elementary schools; they found that

some countries have already incorporated formal studies as part of the curriculum, while others are

limited to informal classes and clubs. Seiter and Foreman (2013) explored the development of

computational thinking by elementary school students using Scratch. They found that basic

proficiency of algorithmic thinking started in second grade. Clements and Sarama (1997) studied

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 5

learning with LOGO and concluded that it can provide an evocative context for young children’s

explorations of mathematical ideas and CS concepts.

Duncan et al. (2014) raised the question: Should eight-years-old students learn to code? They

proposed three parameters to establish effective learning: (1) the teachers must be confident and

motivated; (2) the learning objectives should be realistic for the age of the students; (3) the

development environment should be age-appropriate. They found that the age at which programming

should be taught depends on many factors among them the software tools and learning aids, the

context and the teachers' training. Armoni and Gal-Ezer (2014) and Duncan et al. (2014) claimed that

the advantages of learning CS at such a young age include the capability: to learn quickly, to shape

attitudes to programming, to support learning outside of just programming, and to prepare students for

future endeavors in computing. The disadvantages of engaging with CS at a young age include the

possibility that students will be less confident in their abilities regarding CS or will receive a negative

impression of the subject. Furthermore, the students may study fewer hours in core subjects such as

mathematics, science and language skills (Duncan & Bell, 2015). The limited time available and the

lack of resources could cause problems in the allocation of school resources (Duncan et al., 2014).

1.2.2. Learning CS via robotics

Since the 1980s, both curricular courses and outreach programs on robotics have been developed. A

pioneering successful tool for teaching CS with robotics was the environment Karel the Robot (Pattis,

1981). Anderson et al. (2011) claimed that robotic activities are very exciting for the students and that

they reify the abstract behavior of algorithms and programs. Robotics provides hands-on experience

with real-world problems and can also reduce the level of intimidation that students can encounter.

Ben-Bassat-Levy and Ben-Ari (2015) showed that robotic activities can influence both the motivation

and the self-efficacy of young students. They found that robotics encourages positive intentions to

choose STEM (science, technology, engineering, mathematics) subjects in high school. Markham

and King (2010) investigated attitudes and motivation among CS1 students, they found that students

who studied with robots had more positive experiences than those who studied without robots.

Kaloti-Hallak et al. (2015) investigated young students who participated in the FIRST® LEGO®

League competitions. Their research showed that students demonstrated meaningful learning in

computer science and engineering, and that most of the students demonstrated high positive attitudes

and motivation for learning robotics. Kay (2011) showed that CS learning by high-school and

undergraduate students really improve when robots are used.

1.2.3. Learning CS with robotics in elementary school

Barker and Ansorge (2007) taught 9–11 year-old students and found that the LEGO Mindstorms®

robotics kit was effective for teaching STEM concepts. Magnenat et al. (2014) ran a workshop for

students aged 8–9 using the Thymio educational robot. They found that while students successfully

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 6

used trial and error when writing programs that controlled the robot, they only understood a subset of

the CS concepts that appeared in their programs. Both these projects involved extracurricular activities.

Several research projects addressed learning with robotics by young children. Martinez et al. (2015)

taught robotics to students of a variety of age groups from 3 to 11. They showed that the older students

were capable of understanding and applying CS concepts such as loops, parameters, conditions and

sequencing, while preschool students understood fewer concepts. Sullivan and Bers (2016)

implemented a robotics curriculum in preschool through second grade. They found that younger

children were able to master basic concepts of robotics and programming, while older children were

able to master more complex concepts. Bers et al. (2014) engaged 4–6 year-old children in robotics

activities in order to guide age-appropriate curriculum development. Wyeth (2008) showed that

children can learn simple programming concepts related to input and output, and the impact of logic

on program behavior. Common to all these research projects is the use of robots specifically designed

for young children, in particular, Bers' group used tangible programming (programming using physical

blocks), which can no longer be used for older students.

1.2.4. The Jourdain effect

Guy Brousseau proposed the theory of didactic situations as a framework for investigating learning, in

particular, mathematics (Brousseau, 1997). We were influenced by his discussion of the Jourdain

effect, the conflation of the performance of a task with understanding the underlying concepts. Here is

an example from the New Math curriculum:

[A] Model of this group can be constructed using some transformations of the position of a

cup of yogurt … As children were playing with the cups of yogurt, they were performing such

transformations … from this, the ‘structurally minded’ observers were concluding that the

children ‘have constructed’ the group of Klein. But what the children were actually doing had

nothing to do with the identification of the group structure in their manipulations. … [T]hey

would not have been able to identify the part of their activity called ‘construction of the group

of Klein’ … and they would not be able to produce …, further examples of their activity, now

sanctified by a scientific term (Sierpinska, 2003, no page numbers).

1.2.5. Near transfer

It is frequently claimed that learning certain subjects results in transfer of knowledge: a general

improvement of cognitive and problem solving abilities. Such claims have recently been made for

computational thinking (see the analysis by Tedre and Denning (2016)). Such claims have been

repeatedly debunked (Guzdial, 2015) and we make no such claims for learning CS with robotics.

However, a classic investigation by Gick and Holyoak (1980) showed that learning in one domain can

aid in solving analogous problems in a different domain; this is called near transfer. While our

research is not a comprehensive study of near transfer, we did investigate whether the students were

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 7

able to transfer their knowledge of robotics commands to a hypothetical command somewhat different

from the actual commands.

2 Methodology

2.1. Rationale for the research

There were three aspects to the rationale for this research:

1) The robotics activities were taught in the non-voluntary, non-selective environment of a normal

classroom during school hours with just one teacher and one assistant. In previous work (Ber et al,

2014), several research assistants were able to help individual groups of students. Finally, a

general purpose educational robot was used, not one specifically developed for the project.

2) We developed a questionnaire based on a taxonomy of learning in order to attempt to distinguish

performance from understanding (the Jourdain effect).

3) We wanted to demarcate what this specific age group was able to learn from concepts that were

too difficult for them.

2.2. Research question

What CS concepts can elementary school students understand from participation in a robotics-based

CS course?

2.3. Population
The research was carried out in four second-grade classrooms of a public school (ages 7–8 years). All

the students in these classes participated during normal school hours, so we had no control over the

actual ages, genders or abilities of the students. There were 118 students, 72 boys and 46 girls. The

first author taught the lessons aided by a research assistant from our department. The class teachers

were present, but we did not have time to train them in robotics and CS so they were not involved in

teaching. However, they remained in the classrooms, primarily to deal with behavioral problems that

occasionally arose.

2.4. The robot and its software environment
The Thymio educational robot (Figure 1) is small, self-contained and very robust with differential

drive, nine infrared proximity sensors, five touch-sensitive buttons, a 3-axis accelerometer, dozens of

LEDs, a speaker and a microphone (https://www.thymio.org/en:thymio).

Figure 1. Thymio robot

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 8

The robot is programmed using the Visual Programming Language (VPL) environment (Figure 2)

(Shin et al., 2014). Programs are constructed by drag-and-drop of graphical blocks. VPL supports one

programming construct: event-action pairs. Event handling is a core CS concept, which has been

proposed as the basis of teaching introductory programming (Bruce et al., 2006). In addition to the

basic blocks shown in Figure 2, there is an advanced mode that supports additional blocks and

advanced versions of basic blocks.

Figure 2. The VPL environment. The events are on the left, the actions are on the right and the central

area is used for constructing programs

2.5. The robotics class
The course was taught for one hour a week for 21 weeks during normal school hours. Thirty students

shared ten robots. Each lesson began with a short video that introduced a concept. Then the students

received a worksheet.

The syllabus was based on existing learning materials for the Thymio (Ben-Ari, 2011; Magnenat et al.,

2012), by selecting age-appropriate activities from this material. The first tasks were based on the

predefined behaviors of the robot and were intended to familiarize the students with the events

generated by the proximity sensors and the buttons, and with the actions of changing the colors of the

LEDs. Then the students were introduced to the VPL graphical programming environment. Many of

their tasks were to implement Braitenberg creatures (Braitenberg, 1984), which were developed

during the Programmable Brick project (Hogg et al., 2000) that was the inspiration for LEGO

Mindstorms®. Later, the students explored combinations of several actions per event and blocks from

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 9

the VPL's advanced mode: timer events and actions, accelerometer events and music actions.

In addition to the concepts explicitly expressed in the Thymio robot and VPL, the following CS

concepts that appeared only implicitly were taught:

4) Concurrent execution of event-action pairs: for example, in the line-following program, the

program simultaneously checks if the robot is leaving the left edge or the right edge of the line.

5) Parameters: setting the color of the LEDs and the power applied to each motor.

6) Writing an algorithm and implementing it in a program.

Table 1 presents the topics and activities that took place in each lesson.

Table 1. The content of the lessons

Content Lesson

Pre-programmed behaviors. 1

Pre-programmed behaviors in groups. 2

The VPL user interface.

Events (buttons, sensors) and actions (top and bottoms colored LEDs).

First experience programming.

3

The VPL user interface.

Programming five exercises.

4

First questionnaire (four questions). 5

The motor action.

Programming the Braitenberg creatures.

6

First questionnaire (two questions).

Second questionnaire (two questions).

Checking the exercises from the previous class.

Multiple actions for one event.

7

Second questionnaire (two questions).

Braitenberg creatures with multiple actions per event.

8

Checking the Braitenberg creatures exercises. 9

The clap and tap sound events and the sound action. 10

Second questionnaire (two additional questions).

Bottom sensors.

11

Programming with the bottom sensors. 12

Programming with the bottom sensors. 13

Programming with the bottom sensors (summary). 14

Third questionnaire (two questions).

The advanced mode.

15

Accelerometers. 16

Fourth questionnaire (four questions). 17

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 10

Timer blocks.

Fourth questionnaire (two questions).

Exercises with the timer blocks.

18

Exercises with the timer blocks. 19

Group projects. 20

Group projects. 21

2.6. The taxonomy
Our method for investigating performance vs. understanding was based on a taxonomy of levels of

learning. We developed a new taxonomy appropriate for the context of learning CS concepts.

2.6.1. Justification for developing a new taxonomy

There are several existing taxonomies of levels of learning: SOLO (Biggs & Collis, 1982), Bloom

(Bloom et al., 1956), Lister et al. (2004) and the CS-specific taxonomy of Fuller et al. (2007).

Meerbaum-Salant et al. (2013) combined the Bloom and SOLO taxonomies, producing a new scale

with three categories (unistructural, multistructural and relational) each containing three

sub-categories (understanding, applying, and creating). Magnenat et al. (2014) based their work on

learning with the Thymio robot on the combined taxonomy. They investigated two age groups: 8-9

and 10-15 years old. They checked the levels of understanding using questionnaires. While most of the

students of the older group achieved the level of unistructural understanding, the young age group

found it hard to answer the questions because of their limited ability to read. The difficulties they

encountered led us to develop a new taxonomy.

2.6.2. The new taxonomy

A student demonstrating the follow behaviors will be considered to have achieved a corresponding

level of learning. In ascending order they are:

1) Predicting the behavior of a given program.

2) Choosing the program that gives rise to a given output of an algorithm.

3) Characterizing the difference in the behavior of two similar programs.

4) Completing a partial program in order to achieve a given output.

5) Using a modified programming construct to complete a program with a given goal.

6) Creating a program from scratch when the goal of the program is given.

The different types of behaviors can be classified into two categories (Table 2) based on Fuller et al.

(2007):

1) Interpreting: to give or provide the meaning of; explain.

2) Producing: to bring into existence by intellectual or creative ability.

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 11

The interpreting category includes only behaviors for which the code is given, as oppose to the

producing category whose behaviors require code completion. This enabled us to distinguish between

students who can only read and understand programs but cannot necessarily write or complete one on

their own.

Table 2. The classification into two categories

2.6.3. Secondary classification: The interpreting category

The ordering of the three behaviors in the interpreting category can be justified as follows.

Lister et al. (2004) claimed that the ability to predict the behavior of a given program while tracking

and following its instructions is the lowest cognitive level required for a CS student. The second type

of question differs from the first type in that the students are required to choose the right program from

several slight different programs. Lister et al. (2004) claimed that students showed less success in this

type of questions then in questions predicting the behavior of a program.

Differentiating between two programs is similar to comparing, but it adds the requirement to predict

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 12

the purpose of the programs. Differentiating also requires analytical skills to identify similarities and

differences, which is a higher cognitive process than just predicting, according to the revised Bloom’s

taxonomy (Anderson et al. 2001). Therefore, this is the most challenging behavior in this category.

2.6.4. Secondary classification: The producing category

In this category, the student is asked to complete a program. Even if the questions are multiple-choice,

this category requires the student to analyze the purpose of the program and to choose the most

suitable completion. The student must understand the functionality of the missing parts, and then to

understand how each possible completion will affect the program.

The second behavior and the question refer to it; the students are presented with modified block whose

functionality is explained. They need to complete a given segment of code correctly using this

modified block. The cognitive stages are very similar to the first behavior in this category, but, in

addition, the student needs to show proficiency in the material he has already learned in order to

understand the purpose of the modifications. We consider this process to be near transfer of

knowledge and this type of behavior is harder than the first one.

The most challenging type of behavior in this category asks the students to create a program from

scratch when the goal of the program is given. This requires the student to use all of the knowledge he

has gained so far and to create a new artificat. Both the Bloom (Bloom et al., 1956) and SOLO (Biggs,

& Collis, 1982) taxonomies rate this cognitive skill as the most challenging one.

2.6.5. Constructing questions according to the taxonomy

Magnenat el al. (2014) found that elementary school students had difficulty understanding long

passages of text; this led them to use graphics and video clips in their questionnaires. We followed

their lead in constructing our questionnaires. Graphics is particular appropriate in this context since the

VPL programming environment uses graphical elements only with no text. Here is a description of the

format of the questions associated with each level of the taxonomy:

7) Predicting the behavior of a given program: The students received a code segment and four photos

of the robot and they had to choose the photo that demonstrated the behavior of the robot caused

by the code segment.

8) Choosing the program that gives rise to a given output of an algorithm: The students received a

short video and had to choose the code segment that gives rise to this behavior.

9) Characterizing differences in the behavior of two similar programs: The students watched two

short videos displaying behaviors of the robot and they had to choose among four descriptions the

one that describes the difference between the behaviors.

10) Completing a partial program in order to achieve a given output: The students were given a short

segment of code and a goal that the program needs to achieve. The students had to complete the

missing parts of the code in order for the program to achieve the goal.

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 13

11) Using a modified segment of code to complete a program with a given goal: The students were

given a modified block whose meaning was explained in the question and they had to complete

the code segment in order to implement the behavior demonstrated in a short video or explained in

words.

12) Creating a program from scratch when the goal of the program is given: The students were given

several event-action blocks and they had to choose and arrange the blocks needed in order to

achieve a given goal.

2.7. Conjectures
We proposed three conjectures to explain why some students might achieve only lower levels of

learning, together with criteria to accept or reject the conjectures:

13) They really don’t understand The simplest possibility is that young students don’t understand

most of the CS concepts that they are exposed to, and that the success reported in previous

research has been misinterpreted. This conjecture will be supported if we find that less than 50%

of the students succeed in answering questions even for the lowest levels of learning.

14) Jourdain effect The students will demonstrate the Jourdain effect if they successful answer the

predicting and choosing types of questions, partial succeed in the answering difference questions,

and are unable to answer any of the questions from the second category.

15) Constructs vs. plans Soloway and Spohrer (1986) suggest that there is a gap between the ability

of novice programmers to understand individual constructs and their ability to plan and implement

a functioning program. This conjecture will be supported if students are only able to answer

questions from the interpreting category and the first question of the producing category. Students

demonstrating the ability to implement plans will be able to answer questions from all the

categories.

2.8. Research Instruments
Four questionnaires of six multiple-choice questions each were administrated during the regular

lessons. They looked like the usual worksheets and the students willingly participated in solving the

problems. After the first experience with the class assignments, it was decided that the maximum

number of questions that these young students could deal with in one lesson is four, so the

questionnaires were split over two or more lessons. The questionnaires can be found at

https://goo.gl/peKBpp.

The topics asked about in the questionnaires are as follows:

1) The first questionnaire

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 14

CS concepts: simple event-action pairs.

New events and actions blocks: sensors, buttons, top and bottom colors.

2) The second questionnaire

CS concepts: advanced event-action pairs.

New events and actions blocks: motors.

3) The third questionnaire

CS concepts: multiple actions in one event-action pairs.

New events and actions blocks: tap and clap detection.

4) The fourth questionnaire

CS concepts: line following, concurrent execution.

New events and actions blocks: ground proximity sensors.

After each lesson, the first author recorded her observations and solicited impressions from the

research assistant and the class teacher.

In order to fully investigate the ability of students to plan and implement a program, during the final

lessons they were asked to come up with their own ideas for writing a program. The programs and

observations of the programming process were recorded.

After the final lesson, the first author met with the teachers to discuss their impressions of the students'

ability to learn CS and robotics.

2.8.2 Example questions from the questionnaires

Question 2 from questionnaire 2

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 15

Watch the video: https://youtu.be/okoLamAY9ac. Which of the following programs causes the

behavior of the robot that is shown in the video?

Question 2 from questionnaire 3

Look at the video: https://youtu.be/Vhc33fxR3co. Which of the following programs causes the

behavior shown in the video?

Question 5 from questionnaire 1

We invented a new event: The center button is touched and at the same time an object is detected by

the center front sensor. Here is the block for the new event:

Use the new event to construct a program that does the following:

1) Detecting an object only by the front center sensor causes the top light to display blue.

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 16

2) Touching only the center button causes the top light to display yellow.

3) Touching the center button and at the same time detecting an object by the front center sensor

causes the top light to display green.

Choose the correct program:

Question 5 from questionnaire 4

We want a program that causes Thymio to follow the edge between a white area and a black area:

Here is a description of the program:

1) If Thymio detects white under the right bottom sensor and it detects black under the left bottom

sensor, then Thymio moves forwards.

2) If Thymio detects white under both bottom sensors, then Thymio turns left.

3) If Thymio detects black under both bottom sensors, then Thymio turns right

Choose the correct program:

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 17

2.9 Data Analysis
The findings from the observations will be integrated with a description of the syllabus, in order to

show how the students reacted to each individual topic. The analysis was influenced by Glaser and

Strauss (1967) and was done as follows:

1) Collate the observations of the four classes with the same lesson plan.

2) Identify the important events, and the similarities and differences among the four classes.

3) Unify similar events and important concepts.

4) Link the different categories in order to understand the students' capabilities.

The discussion of the focus group with the teachers was recorded and transcribed. The analysis of this

focus group was identical to the analysis of the observations of the students.

The project lessons were analyzed in order to find the CS concepts that the students used and to

discover the level of understanding that the students achieved.

The questionnaires were analyzed quantitatively using Pearson's chi-squared test, which is used to

determine whether there is a significant difference between the expected frequencies and the observed

frequencies in one or more categories. Since each question was asked in all of the four classes, and

every question had four options, we found the chi-squared test most appropriate for the research needs.

The chi-squared test was used to determine whether there was a significant difference between the

expected frequencies and the observed frequencies in one or more of the four classes. For each

questionnaire, a table is given which indicates the uniformity of the success rates of the four classes.

The first column is the question number and the second column is the success rates.

For every question of the questionnaires, the null hypothesis was that there were differences among

the four classes; the alternate hypothesis was that there were no differences in the success rates.

Questions that did not negate the null hypothesis were marked with a gray background, and the

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 18

success percentages for those questions will be presented separately for each of the four classes.

When the percentage of the students who answered a question correctly passed 50% were marked with

bold face, we took that as evidence that the level of the taxonomy corresponding to that question was

achieved by the majority of the students.

In the presentation of the findings, we will emphasize the questions that didn’t negate the expected

frequencies and provide explanations in cases of discrepancy.

2.9.1 Reliability
Since the students had no previous background in CS, there was no reason to administer a pre-test.

Colleagues were asked to judge that the curriculum and research methods involve well-known CS

concepts and are age-appropriate. To check the reliability of the knowledge questionnaires, both

colleagues and the teachers examined the questionnaires and expressed their opinions regarding their

difficulty.

3 Findings
3.1. Initial experience with the robot
The first two lessons with the robot were designed to give the students an easy start, so they were

conducted without a computer. During the lessons the students worked in groups. Each group had to

perform several activities using the robot's pre-programmed behaviors

(https://www.thymio.org/en:thymiostarting). In the second lesson, the students performed tasks with

the help of a discovery kit (https://www.thymio.org/en:thymiodiscoverykitotter).

The students were excited; some girls said that the robot was "cute," while the boys described it as

"cool" and indicated that Thymio is "fun." During the performance of the tasks, the students followed

the instructions while correcting each other. When they were given open questions, they kept asking

"what to write?" It seemed as if they wanted to be correct at every single question.

During class, the students managed to manipulate the robot and to switch between the robot's

pre-programmed modes, but they found it hard to describe the differences between the modes.

However, they were able to describe the different behaviors, as shown by their terminology: "it made

a sound when I put both of my hands," "Thymio drove forward in the direction of the doll!" The

students were not able to memorize the different modes, but they knew how to describe the modes

during the activities.

3.2. Initial experience with programming
During the third and fourth lessons the students started to program. They were introduced to the VPL

environment and used it to learn how to write programs.

The first worksheet with VPL included the following events: pressing the buttons, detecting objects

with the front and back sensors, and the following actions: turn on the top and the bottom LEDs. The

students were thrilled by their first experience writing programs, they were highly motivated to

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 19

succeed and readily proceeded from one exercise to the next. The students easily implemented the

three tasks with a single event-action pair in this lesson. All the students seemed engaged with the

class activities and the worksheet, asking questions and exploring the capabilities of the robot and

VPL.

The students frequently asked "where to put it?" with regard to an event or an action; sometimes they

used the buttons event without indicating which button, so they tended to ask many questions of the

form "why isn't it working?" or "what am I doing wrong?" All the students wanted to be the ones with

hands on the robot or the computer.

During the fourth lesson, the students were introduced to exercises that included more than one

event-action pair. Initially, the students had difficulty understanding that they should be placed one

after another on the screen. Although this was explained to the students, they found it unnatural, and

asked "where to put this event?" or they just started a new program for each event-action pair. After

sufficient practice they felt more confident with the concept of a program containing multiple

event-action pairs.

3.3. The first questionnaire
The success rates of the first questionnaire (administered during lessons 5 and 7) are shown in Table 3.

The first questionnaire investigated whether the students could associate an event with an action.

Table 3. First questionnaire, % of students who gave correct answers for each question

Question Success Rate

1 82

2 87

3 69

4 93

5 74

6 51

For question 1, the ! obtained from the chi-squared test was 0.0039; this result is greater than the

likelihood ratio chi-squared, which is 0.0009, therefore the null hypothesis (that there were differences

among the four classes as explained in section 2.9) cannot be rejected. Question 1 asked about the

behavior of a given program. Although different success rates were obtained for the three classes, the

success rates of all classes were greater than 50% (Table 4).

Table 4. The success rates of questionnaire number 1, question number 1 in the different classes

 Class A Class C Class D

Success

Rate

100 85 64

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 20

From Table 3 we see that the students answered questions at levels 1 to 5 quite easily: (1) they could

understand what a given program does, (2) match a program to an output, (3) characterize the

difference in the behavior of two similar programs, (4) complete a partial program, (5) use a modified

programming construct. However, for question 6, creating a program from scratch, their success rate

was relatively low, but still reached 50%.

3.4. Programming the Braitenberg creatures
During the sixth lesson the students explored the motor block on their own. They copied programs

given in the worksheet into the VPL environment, ran the programs and explained the behavior of

each program: moving forwards, moving backwards and turning right and left. After understanding the

motor block, the students wrote programs to implement the Braitenberg creatures. During the activities

with the creatures, it was observed that these exercises helped the students "bond" with the robot and

gave it some human qualities. The students began to refer to the robot as a living: "Thymio didn't do

what I asked him!", "I miss Thymio," "I love Thymio."

3.5. The second questionnaire
Questionnaire 2 (administered during lessons 7, 8 and 11) investigated if the students can associate an

event with an action, but this time they had more blocks at their disposal, which made the programs

more complex. The success rates for the second questionnaire are shown in Table 5.

Table 5. Second questionnaire, % of students who gave correct answers for each question

Question no. Success Rates

1 52

2 46

3 49

4 76

5 70

6 46

The first two questions of the questionnaires were given to the students just after their initial

experience with the new motor block, while the next four questions were given after they had much

more practice and experience with the robots.

The high success rates for questions four and five compared with those of questions one and two can

be explained by the additional practice that the students had, which enabled them to answer questions

at the higher levels. The students encountered difficulties answering question 3: it was hard for them

to identify the difference between a pair videos showing behaviors of the robot. Nevertheless, in three

of the four classes, a majority of the students successfully answered the question. The success rates for

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 21

question number 6 were low: the students found it difficult to write a program from scratch given the

desired behavior of the robot.

The heterogeneity between the four classes was more significant in this questionnaire. For questions 3,

5 and 6, the ! obtained from the chi-squared test were greater than the likelihood ratio chi-squared, so

the null hypothesis could not be rejected.

Table 6 shows the ! obtained from the chi-squared test and the likelihood ratio chi-squared for each

of the questions.

Table 6. ! from the chi-squared test and the likelihood ratio chi-squared for each of the questions in

questionnaire 2

Question The ! result obtained The likelihood ratio

chi-squared

1 0.1089* 0.05

2 0.0890 0.0862

3 0.0133 0.0105

4 0.5188* 0.5061

5 0.0506 0.05

6 0.0312* 0.05

*Because these three questions contained more than one section, the ! obtained is the average of the

differences between the four classes and actually represents the Generalized Linear Model (GLM) test.

It can be seen that the differences between the ! obtained and the likelihood ratio chi-squared

obtained are very small, so we unified the success rates of the four classes.

Table 7 shows the success rates of the different classes and where there were differences between the

! and the likelihood.

Table 7. The different success rates of questions 3,5 and 6 in the different classes

 Class A Class B Class C Class D

Question 3 63 52 58 22

Question 5 71 93 83 33

Question 6 42 64 58 26

The low success rates for class D can be explained by significant discipline problems that occurred.

3.6. Event handling with multiple actions
During lessons 7 through 9, the students were taught how to associate multiple actions with an event

using two simple examples. In lesson 8 the students practiced this construct by implementing

additional Braitenberg creatures. The students found the transition from one action to multiple actions

difficult. Frequently, they duplicated the event and associated it with the second action, asking: "where

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 22

to put it?" or "what to do with…?". They tended to associate the position of a button with the direction

of a movement, for example, they selected an event of touching the front button and then they were

disappointed that the robot didn't move forward.

 During the ninth lesson, the teacher solved questions together with the students. This facilitated

bringing most of the students to a uniform level of understanding and, furthermore, helped clear up the

difficulty of multiple actions associated with one event. They readily volunteered to come to the board

to solve questions and were proud when they gave correct answers.

During the tenth lesson, the students learned about tap detection, clap detection and the music event

blocks. They composed their own tunes and were enthusiastic about the feature of tapping and the

clapping, which this facilitated practicing more advanced event handling.

3.7. The third questionnaire
The third questionnaire (administrated in lessons 14 and 15) involved questions regarding multiple

actions per event. The success rates are shown in Table 8.

Table 8. Third questionnaire, % of students who gave correct answers for each question

Question no. Success Rates

1 75

2 61

3 68

4 34

5 61

6 48

The success rates of questionnaire 3 were mixed: while the students were relatively successful on

questions 1, 2, 3 and 5, they were less successful on questions 4 and 6, which required the students to

complete a partial program and to create a program from scratch. Question 4 was hard since it required

them to seek both an event and an action of a pair appropriate for the behavior that was given. The

distractors made it difficult because they involved an incorrect ordering of an action before an event,

incorrect direction of movement and irrelevant blocks. The fifth question investigated whether the

students can perform near transfer of their existing knowledge.

The fifth question investigated whether the students can perform near transfer of their existing

knowledge. The success rates in this question were not uniform for the four classes. The ! obtained

from the chi-squared test was 0.0467, which is greater than the likelihood ratio chi-Squared 0.0383;

therefore, the null hypothesis could not be rejected.

The success rates of the four classes on question 5 of questionnaire 3 are presented in Table 9. The

students achieved high success rates (>50%) in three of the four classes.

Table 9. The success rates of questionnaire number 3, question number 5 in the different classes

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 23

 Class A Class B Class C Class D

Success Rates 59 81 59 44

The table shows that class B obtained very good success rates, while the success rate of classes A and

D was much less though still greater than 50%. Class D did not achieve the desired success rate.

3.8. The bottom sensors and the line following algorithm
During lesson 11, the students explored the bottom sensors of the robot. The exploration activity

included painting stripes of different colors and experimenting to see how the robot reacted to the

different colors. The elementary physical principles of light sensitivity were explained. The

exploration activity prompted some creativity on the part of the students, but it would have been

preferable to supply the students with stripes in different colors, so that the students could readily

identify the differences between the robot behavior to bright colors and dark colors. They kept asking:

"Is it dark enough?" or "Is it bright enough?"

During lesson 12, the students received a detailed explanation of the bottom sensors and the

differences between them and the front and back sensors. The students were a bit confused on this

issue. The task required them to build a white track and a black track, and to execute different

line-following algorithms. While the students enjoyed constructing lines using white and black tapes,

they were confused by the execution of the algorithms. They kept asking questions regarding the

bottom sensors block such as: "Should it be black?" or "What does the red frame mean?" The students

invested much effort into building the tracks instead of attempting to understand the meaning of the

bottom sensors event.

Lesson 13 started with a review on how the bottom sensors operate and how to use the bottom sensors

event block in VPL. The students used the tracks they created during the previous lesson and once

again implemented the line-following algorithms. Additionally, the students executed a program in

which the robot had to stop at the edge of the table by sensing the edge with the bottom sensor. Again,

the students had difficulties executing these algorithms and they needed more assistance about

adjusting the bottom sensors.

During lesson 14 the students repeated the exercises they solved in the previous lessons; the repetition

was helpful because it summarized the topic and tied up loose ends.

The learning difficulties might have been avoided if each event-action pair had been written and

executed as a separate program before integrating them into a single concurrent algorithm.

3.9. The fourth questionnaire
The fourth questionnaire (administrated in lessons 17 and 18) contained questions on the line

following algorithm and the bottom sensors. The success rates are shown in Table 10.

Table 10. Fourth questionnaire, % of students who gave correct answers for each question

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 24

Question no. Success Rates

1 51

2 48

3 33

4 43

5 50

6 38

The success rates are significantly lower than the success rates of the the other questionnaires. The

questions asked about advanced concepts: concurrent execution of event action pairs, implementing a

relatively complex algorithm, and using the bottom sensors, which were confusing because of their

similarities and differences with the front and back sensors.

In this questionnaire, there were no differences in the success rates on all question among the four

classes. Therefore, the null hypothesis is rejected and we could accept the alternate hypothesis that the

classes were similar.

3.10. The advanced mode lessons
The students were enthusiastic about learning and understanding the new blocks in the advanced mode

and they were curious regarding the new possibilities that the blocks provided.

During lesson 16 the students studied the accelerometer events. In order to explain the functionality of

the accelerometers, the teacher showed them a short video that illustrated how the robot was able to

maintain its balance on a moving ball. The initial lesson on the accelerometers took place in their

normal classroom, not in the computer lab. During the lesson they learned about left/right tilt and

forward/backward tilt, and explored how to detection falling by using the accelerometers. Moreover,

they explored how different angles can be identified by the accelerometers. The students loved to

guess the number of the angles that the robot can detect. The robot was programmed to display a

different color for color for each angle and the students grasped the idea rapidly.

In lesson 17 the students practiced exercises with the accelerometers. One problem we encountered

was that in advanced mode the events are associated with states, a topic that was not taught, and this

caused them to ask a lot of questions and to make mistakes. They solved the exercises quite easily and

understood the functionality of the accelerometers.

During the lesson 18, the students learned about the timer event and the timer action. They found the

concept exciting and learned how to use the timer to cause the robot to change its color and the

direction of its motion after a period of time.

During the next two lessons, the students practiced with these blocks. They encountered some

problems and were a little confused on how to write programs that used the timer event and action. It

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 25

was unnatural for them to put the blocks in different event-action pairs and they kept asking where to

put the timer blocks.

During the last class they received an exercise that summarized the entire content of the syllabus. The

exercise was not easy for the students and they didn't always volunteer to come to the board to help

find a solution.

3.11. The teachers' focus group
The principal and the four teachers of the classes were very receptive to our suggested activities,

because the school had been established only a few years previously and the staff was open to new

initiatives. The teachers were cooperative and helped us understand the cognitive abilities and the

affective aspects of the students. The focus group was held after the classes ended, so that the teachers

would have a perspective on the entire course.

The first question was: What do they think about the content of the syllabus? The teachers agreed that

the students understood the content of the lessons; they succeeded in their tasks and were able to

answer the questionnaires. Moreover, they mentioned that the subject was "fun and cool for the

students, and helped the students to bond and to perform the tasks." The teachers believed that the

level of understanding students increased throughout the course and that they fully cooperated with us.

As in every class, the students showed different levels of understanding, but they helped each other

overcome the obstacles they encountered.

The second question was: How did the students profit from the course beyond learning the CS

concepts? The teachers indicated that the students cooperated while working in groups. The students

had to know how to share their work. The teachers indicated that while most of students were

enthusiastic about the class, there were some who were not so excited. Unexpectedly, the teachers

noted that most of the students who didn’t like the robotics class were boys, while the girls were more

enthusiastic and curious.

The teachers added that the classes helped the students become more motivated about CS and robotics.

The opportunity to work by trial and error helped them overcome difficulties and study the subject in a

"fun way."

3.12. The project lesson
During the project lesson the students had to come up with their own ideas for programs they wanted

to create. The first step was for them to think about the purpose of the program they wanted to create.

The second step was to specify the program's steps, which required the students to analyze the purpose

of the program and then to decompose it small steps of event-action pairs. We provided a worksheet

with several ideas; however, they did not use these ideas and insisted on creating something of their

own. The problem was that they wanted to create a program from scratch, but they didn’t look at it as

an opportunity to make a program with a purpose; instead they looked at it as a just fun activity. The

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 26

result was that they created programs that showcased the VPL constructs, for example by using a large

variety of blocks, but that had no purpose.

Most of the groups managed to create event-action pairs and to explain what the program performs

when asked, but some used the advanced blocks incorrectly. For example, they used the states

incorrectly, or used the timer event and action in the same pair, which is not meaningful. Most of the

students included in their programs "cool" blocks (in their words), such as music, tapping and clapping.

They tended to use buttons more than sensors, which are more fundamental in robotics. Most students

managed to create a program that functioned correctly.

4 Discussion

The research goal was to characterize the learning outcomes of young second-grade students who took

part in a CS through robotics course. We first discuss the findings from the observations and then

discuss the achievement of the students in terms of the new taxonomy. Finally, we discuss the three

conjectures and present the students' capabilities as measured by the questionnaires.

4.1. Observations
After the 21 lessons that included both frontal instruction and computer labs, the students appeared to

like their experience with robotics. Most of the students seemed engaged throughout the lessons and

were motivated to succeed in their assignments. They willingly participated in the class

demonstrations and worked on the lab assignments, creating meaningful programs.

The robot was perceived by the students as an integral part of the learning, making their first

experience with CS a positive one. The robot made CS more tangible, allowing the students to have

hands-on interaction with the abstract concepts that they learned. The students tended to imagine that

the robot had human qualities. They bonded with the robot, which helped them to overcome

difficulties and to be even more engaged during the lessons. In particular, the Braitenberg creatures

formed a bridge between the abstract and the tangible, allowing the students to implement complex

event handling even with multiple actions.

4.2 Learning of CS concepts
The students had difficulties with the transitions between one event-action pair and several

event-action pairs, and between one action per event and multiple actions per event. These difficulties

were resolved up with more practice. As they learned more blocks, confusion arose as to which block

should be used for which purpose. Furthermore, there was confusion between the bottom sensors and

the horizontal sensors, which impaired the students' ability to understand the line following algorithm.

A partial explanation of these difficulties could be that they arose from the sharing of a robot by

groups of three students, which resulted in friction within the groups. The students were not allowed to

take the robots home, so they were not able to practice creating and executing programs on their own.

The latest version of the VPL environment can be run in a software-only simulation, so that

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 27

programming can be practiced even in the absence of a physical robot.

When compared with previous work such as Bers et al. (2014), which only checked the success of the

assignments that the students worked on in class, our work investigated their ability to go beyond what

was presented within the framework of the class in order to demarcate what the students of this age

can learn.

4.2. The taxonomy
Question 1 showed that the students are capable of correctly predicting the output of a given program.

In all of the questionnaires most of the students answered this question correctly, in particular, the

success rates were very high in the first and third questionnaires. This shows that even young students

are able to analyze programs.

Question 2, which required the students to choose the program that gives rise to a given output,

showed that the students are also capable of identifying a program that can give rise to a given output.

Most of the students correctly answered this question in questionnaires 1 and 3, but had difficulties

with questionnaire 2. This was probably due to premature testing of the students' capabilities, before

they had enough experience with the blocks and with multiple event-action pairs. The low success

rates for questionnaire 4 will be discussed in section 4.3.

The students encountered difficulties coping with questions of type 3, which required the students to

watch two videos and to choose the statement that correctly described the difference between them.

The low success rates were significant for questionnaires 1, 2 and 4. They found it difficult to identify

behaviors shown in the videos and memorize them in order to answer the question. It is possible that if

the two programs were given in addition to the two videos, the students would not have had to

memorize the content of the videos and their success rates would have been higher.

The success rates of the students for questions of type 4 were high in both the first and second

questionnaires, but were low in the third and the fourth questionnaires. This question required the

students to complete a partial program in order to achieve a given output; this is the first type of

question in the producing category. The results indicated that the students knew how to use the

different blocks and they understood the functionality of the blocks, in addition to being able to

analyze the given code, understand the functionality of the missing parts and how to use them to

complete a program.

The success rates of the students were high for questions of type 5 except in the fourth questionnaire.

This result is interesting because it means that the students were capable of using the knowledge they

gained during the lessons in order to build new knowledge. This is consistent with near transfer of

knowledge (Gick & Holyoak, 1980).

Question 6, which required the students to create a program from scratch when the goal of the program

is given, showed low success rates in all of the questionnaires. While the students were able to write

programs during class using trial and error, and with the help of the teaching staff, they found it

difficult to write programs outside the context of the robot and the VPL environment. (Recall that the

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 28

questionnaires were administered offline.) Moreover, when asking the students to build a program of

their own during the project lesson, the students were not able to give a purpose to the programs;

instead, they just paired events and actions.

4.3. Interpreting the results in terms of the conjectures
The students' success in the class assignments where they wrote programs for the robot, together with

the results of the first, second and third questionnaires, showed that the students are reaching relatively

high levels of the taxonomy. This provides evidence that the students are capable of understanding and

execute simple programs. In addition, the teaching staff observed the success of the students on the

assignments. The students showed proficiency in using the relatively advanced construct of multiple

actions per event. Given that event handling is considered to be a relatively advanced core concept of

computer science, we conclude that the students were capable of understanding CS constructs.

On the other hand, when the students were asked about these concepts in the questionnaires or the

worksheets (in particular in the fourth questionnaire), they encountered many difficulties and struggled

to answer the questions and to describe the goal of a program. These difficulties also appeared during

the project phase. The contrast between the performance in class and the difficulties with the

questionnaires leads me to conclude that the students demonstrated the Jourdain effect: performance

does not necessarily imply understanding.

The inability of the students to specify and implement their own projects showed that while the

students were able to understand constructs, they were not capable of creating plans as defined by

Soloway and Sphorer (1989).

5 Conclusions
Robotics activities enable even young students to learn basic CS concepts and they are capable of

writing and running programs. Students performed well in answering questions on basic programming

constructs and the VPL environment enabled the students to create programs graphically, thus

overcoming the linguistic barriers to programming. Robotics activities can be successfully used with

very young students to increase their interest and possibly motivation to become engaged with STEM

in general and CS in particular.

However, our results showed that young students find it difficult to go from learning concepts and

individual programming constructs to being able to create programs of more than a few lines. Another

important conclusion is that students only functioned well when using the physical robot and with the

help of the teaching staff.

Further research is needed in order to map CS concepts to the cognitive capabilities of students at

various ages, in order to guide age-appropriate curriculum development for elementary schools.

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 29

Acknowledgements

We would like to thank Stella Khazina for assisting in the classroom throughout the entire course, and

the teachers and principal of the school where the research was carried out.

References
Anderson, L. W., Krathwohl, D. R., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., ... &

Wittrock, M. (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s

taxonomy. New York. Longman Publishing.

Artz, A. F., & Armour-Thomas, E.(1992). Development of a cognitive-metacognitive framework for

protocol analysis of mathematical problem solving in small groups. Cognition and

Instruction, 9(2), 137-175.

Anderson, M., McKenzie, A., Wellman, B., Brown, M., & Vrbsky, S. (2011). Affecting attitudes in

first-year computer science using syntax-free robotics programming. ACM Inroads, 2(3), 51-57.

Armoni, M. (2012). Teaching CS in kindergarten: How early can the pipeline begin? ACM

Inroads, 3(4), 18-19.

Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal

learning environment. Journal of Research on Technology in Education, 39(3), 229-243.

Ben-Ari, M. (2013). First Steps in Robotics with the Thymio Robot and the Aseba/VPL Environment.

https://aseba.wdfiles.com/local--files/en:visualprogramming/thymio-vpl-tutorial-en.pdf

(last accessed 11 January 2018).

Ben-Bassat Levy, R., & Ben-Ari, M. (2015). Robotics Activities: Is the Investment Worthwhile?

In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives,

Ljubljana, Slovenia. (pp. 22-31).

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and

tinkering: Exploration of an early childhood robotics curriculum. Computers & Education 72, (pp.

145-157).

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy

(Structure of the Observed Learning Outcome). Academic Press.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of

educational objectives, handbook I: The cognitive domain (Vol. 19). New York: David McKay.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA: MIT Press.

Bruce, K. B., Danyluk, A. P., & Murtagh, T. P. (2006). Java: An Eventful Approach. Pearson.

Brousseau, G. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques,

1970–1990 (Vol. 19). Springer.

Clements, D. 2002. Computers in early childhood mathematics. Contemporary Issues in Early

Childhood, 3(2), 160-181. Available from:

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 30

 http://www-tc.pbskids.org/read/brochure/powerpoint/Clements_Computers_Math.pdf. Accessed

October 25, 2017.

Clements, D. H., & Sarama, J. (1997). Research on LOGO: A decade of progress. Computers in the

Schools, 14(1-2), 9-46.

Clements, D., & Sarama, J. 2003. Strip mining for gold: Research and policy in educational

technology—a response to “Fool’s Gold”. Educational Technology Review, 11(1), 7-69.

Druin, A., & Hendler, J. A. (Eds.). (2000). Robots for kids: Exploring new technologies for learning.

Morgan Kaufmann.

Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school

students. In Proceedings of the 10th Workshop in Primary and Secondary Computing Education,

London, UK (39-48).

Duncan, C., Bell, T., & Tanimoto, S. (2014). Should your 8-year-old learn coding?. In Proceedings of

the 9th Workshop in Primary and Secondary Computing Education, Berlin, Germany (60-69).

Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science.

In ACM SIGCSE Bulletin 35(1), 307-311).

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada, I., Jackova, J., ... &

Thompson, E. (2007). Developing a computer science-specific learning taxonomy. In ACM

SIGCSE Bulletin 39(4), 152-170.

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology 12(3),

306-355.

Glaser, B. (2017). Discovery of grounded theory: Strategies for qualitative research. Routledge.

Guzdial M., (2015) Learner-Centered Design of Computing Education: Research on Computing for

Everyone, San Rafael, CA: Morgan & Claypool.

Hogg, D. W., Martin, F., & Resnick, M. (1991). Braitenberg creatures. Cambridge: Epistemology and

Learning Group, MIT Media Laboratory.

Liao, Y. C., & Bright, G. W. 1991. Effects of computer programming on cognitive outcomes: a

meta-analysis. Journal of Educational Computing Research, 7(3), 251-266.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., ... & Simon, B. (2004). A

multi-national study of reading and tracing skills in novice programmers. In ACM SIGCSE

Bulletin 36(4), 119-150.

Kaloti-Hallak, F., Armoni, M., & Ben-Ari, M. (2015). Students' attitudes and motivation during

robotics activities. In Proceedings of the 10th Workshop in Primary and Secondary Computing

Education, London, UK, 102-110.

Kay, J. S. (2011). Contextualized approaches to introductory computer science: the key to making

computer science relevant or simply bait and switch? In Proceedings of the 42nd ACM technical

symposium on Computer science education, Dallas, TX, 177-182.

Magnenat, S., Riedo, F., Bonani, M., & Mondada, F. (2012). A programming workshop using the

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 31

robot “Thymio II”: The effect on the understanding by children. In Advanced Robotics and its

Social Impact, Munich, Germany, 24-29.

Magnenat, S., Shin, J., Riedo, F., Siegwart, R., & Ben-Ari, M. (2014). Teaching a core CS concept

through robotics. In Proceedings of the 19th Conference on Innovation & Technology in

Computer Science Education, Uppsala, Sweden, 315-320.

Markham, S. A., & King, K. N. (2010). Using personal robots in CS1: experiences, outcomes, and

attitudinal influences. In Proceedings of the Fifteenth Annual Conference on Innovation and

Technology in Computer Science Education, Bilkent, Turkey, 204-208.

Martinez, C., Gomez, M. J., & Benotti, L. (2015). A comparison of preschool and elementary school

children learning computer science concepts through a multilanguage robot programming

platform. In Proceedings of the 15th ACM Conference on Innovation and Technology in

Computer Science Education, Vilnius, Lithuania, (pp. 159-164).

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with

Scratch. Computer Science Education, 23(3), 239-264.

Papert, S. 1980. Mindstorms: Children, Computers, and Powerful Ideas, 2nd ed. New York: Basic

Books.

Pattis, R. E. (1981). Karel the robot: A gentle introduction to the art of programming. John Wiley &

Sons.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of

primary grade students. In Proceedings of the Ninth Annual International ACM Conference on

International Computing Education Research, 59-66.

J. Shin, R. Siegwart, and S. Magnenat. Visual Programming Language for Thymio II Robot.

Interaction Design and Children (IDC), 2014.

Sierpinska, A. (2003). Lectures on the Theory of Didactic Situations in Mathematics, Lecture 4.

http://annasierpinska.rowebca.org/pdf/TDSLecture%204.pdf (last accessed 11 January 2018).

Spohrer, J.C. & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms

correct?. Communincations ACM 29(7), 624-632.

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes

from an 8-week robotics curriculum in pre-kindergarten through second grade. International

Journal of Technology and Design Education, 26(1), 3-20.

Tedre, M. & Denning, P.J. (2016). The long quest for computational thinking. In Proceedings of the

16th Koli Calling International Conference on Computing Education Research, 120-129.

Wyeth, P. (2008). How young children learn to program with sensor, action, and logic blocks. The

Journal of the Learning Sciences, 17(4), 517-550.

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 32

Pre-Service Information Technologies Teachers' Views

on Computer Programming Tools for K-12 Level

Serhat Altıok1

Erman Yükseltürk1

1Kırıkkale University

DOI:

Abstract

The purpose of the study is to analyze pre-service IT teachers' views on a five day seminar which is

related to current methodologies and tools in K-12 computer programming education. The study

sample consisted of 44 pre-service IT teachers who study as 3rd or 4th undergraduate program at

Department of Computer Education and Instructional Technology in 21 different universities. The data

is collected through a Students’ Perceptions about Kid’s Programming Language Questionnaire

consisting of 27 five-point Likert-type items, grouped under three factors. The collected quantitative

data were analyzed using descriptive statistics such as means, standard deviations. The results of the

study indicated that almost all visual programming tools have positive effects on students’ views,

Small Basic is not as effective as other tools. It could be concluded that Small Basic tool is text-based

in contrast to the other block-based features.

Keywords: Programming Education, Visual Programming Tools, Pre-Service IT Teachers, Scratch,

Small Basic, Alice, App Inventor

1. Introduction

In recent years, best practices of technologies have found new audiences with increasingly children

from smartphones and tablet computers to electronic learning toys (Bers, Flannery, Kazakoff, &

Sullivan, 2014). Therefore, the children in the 21st century children need to be versatile and adaptable

not only modern and future technologies but also need to improve the ability of understand and work

with these technologies (Saeli, Perrenet, Jochems, & Zwaneveld, 2011). In other words, it is expected

that today’s children have the knowledge and skills about these technologies and also use them

10.21585/ijcses.v2i3.28

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 33

effectively in their life (Günüç, Odabaşı & Kuzu 2013). In addition to these knowledge and abilities,

today’s children are expected to have basic skills such as critical thinking, analyzing and synthesizing

ability, some requirements related to the rapid development of technology such as information

literacy, media literacy, technology literacy and code literacy etc. and personal qualities work

collaboratively, being innovative and being productive (Kay & Greenhill, 2011). Programming is one

of the common techniques that provides students to developing these knowledge, skills, requirements

and competencies for solving real-world problems of the 21st century (Grover & Pea, 2013). There are

several research studies in the literature which demonstrate the importance of programming since it

enables children to become active producers of interactive digital environments and its positive effects

(Fesakis & Serafeim, 2009; Kalelioğlu & Gülbahar, 2014) on academic success (Fessakis, Gouli, &

Mavroudi, 2013), problem solving performance (Fesakis & Serafeim, 2009) and building children’s

computational thinking skills etc. (Bers et al., 2014; Brennan & Resnick, 2012).

Despite the benefits and importance of computer programming, it is considered to be difficult to

master and understand the core concepts. The reason of this consideration is programming performed

in several steps such as generate a solution to a problem, reflect on how to communicate the solution

to the machine and using syntax and grammar through an exact way of thinking (Szlávi & Zsakó,

2006). In other words, programming performed in three steps (Pears et al., 2007): problem solving,

learning a particular programming language and code/system production. Most students have

difficulties in these steps of programming (Lister et al., 2004; Robins, Rountree, & Rountree, 2003).

There are also numerous difficulties for students in programming learning and teaching in the

literature (Du Boulay, 1986):

• Orientation (What programming is useful for and what the benefits to learn to program are)

• The notional machine (Understanding the general properties of the machine and how the
behavior of the physical machine relates to the notional machine)

• Notation (Includes the problems of aspects of the various formal languages such as syntax and
semantics)

• Structures (The schemas or plans that can be used to reach small-scale goals (e.g., using a

loop))

Moreover, studies found in literature show that many problems in learning programming originate

from abstract and complexity of the concepts such as variables, loops, arrays, functions, and syntax of

programming languages. These difficulties may become barriers for learning programming skills

(Ozoran, Cagiltay, & Topalli, 2012), especially for novices.

Actually, all programmers are novice at the beginning, and it has to know that learning to

programming is hard and has to overcome from a wide range of difficulties and deficits (Winslow,

1996). However, turn a novice into an expert programmer takes roughly 10 years (Winslow, 1996) and

this continuum has five breakdowns into stages (Dreyfus, 1986): novice, advanced beginner,

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 34

competence, proficiency, and expert. Just because an expert must be mastered on five specialties (Du

Boulay, 1986): general program knowledge, hardware components and their relationship with

programs, syntax and semantics of a particular programming language, structures (e.g., schemas,

plans), and approaches or theories (that includes continuums such as planning, developing, testing and

debugging etc.)

Unlike the experts, novices limited superficially knowledge, lack detailed mental models, fail to apply

relevant knowledge, and approach programming ‘‘line by line’’ rather than using meaningful program

‘‘chunks’’ or structures (Winslow, 1996). Novice programmers hold misunderstanding and

misconceptions (Saeli et al., 2011). Thus, novices’ incomplete prior knowledge such as

misconceptions, deficits in planning, developing and testing of code can be a source of errors, and

more (Spohrer & Soloway, 1989). This information shows that students should be coached in the

process of programming and teaching programming in early steps in personal training should be

provided with facilitating methods and tools.

1.1. Programming Education

A simple definition of programming is the process of writing, testing,

debugging/troubleshooting, and maintaining the source of code of computer programs

(Wikipedia, 2017). Another definition of programming is the process of developing and implementing

various sets of instructions to enable a computer to perform a certain task, solve problems, and provide

human interactivity (ECDL Foundation, 2015). Similarly, Moström (2011, p9) defined that

“programming is the act of understanding a problem, formulating a solution, and writing down the

solution in such a way that a computer can use the solution to solve the problem”. Saeli et al. (2011)

analyzed what the reasons to teach programming and their results are enhancing students’ problem

solving skills and offering the students a subject, which includes aspects of different disciplines; use of

modularity and transferability of the knowledge/skills; and the opportunity to work with a

multi-disciplinary subject.

Programming education that has been realized and researched extensively through different methods,

languages, tools and methodologies at different levels from primary education to university level have

been increased its importance more and more every day. In recent years, there have been a growing

number of countries which are focusing their Information and Communications Technology (ICT)

curricula on developing students’ computer programming and coding skills that facilitates building

higher-order thinking skills. For example, computer programming and coding became an important

part of the curriculum in 12 Europe countries: Bulgaria, Cyprus, Czech Republic, Denmark, Estonia,

Greece, Ireland, Italy, Lithuania, Poland, Portugal and the UK (Johnson et al., 2014). Similarly, eight

countries integrate coding in the ICT curriculum, some countries such as United Kingdom, Estonia,

Greece, and Lithuania integrate programming not only in the general ICT course, but also as a specific

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 35

standalone course in primary curricula (Johnson et al., 2014). Despite most of the countries

introducing computing in K-12 curriculum as a whole, some countries in Europe have been applied

introducing computing in either K–9 or grades 10–12 (Heintz, Mannila, & Färnqvist, 2016).

Moreover, well-known efforts in the US are the “Computer Science Principles” that aims to develop

effective high school computing curricula enacted in 10,000 high schools taught by 10,000

well-prepared teachers by 2016, “The Beauty and Joy of Computing” that exposes students to the

beauty and joy of programming by engaging them in meaningful projects using the Snap!

Programming language, and “Code.org” that is a high school course with lessons and programming

projects (Angeli et al., 2016; Astrachan, Briggs, Diaz, & Osborne, 2013; desJardins, 2015). The main

purpose of introducing computing in primary education is to produce thinkers, as opposed to coders

(Repenning, Basawapatna, & Escherle, 2016). In spite of the fact that the coders write codes in any

programming languages for solving any problems through produce software that can be divide into

application and system, thinkers develop patterns to solve all problems of that type instead of solving

any problem by produce generalizable solutions (Selby & Woollard, 2013).

In Turkey, primary education involves core and track subjects at first and second level in primary

education such as mathematics, science, social science, language and communication (Ministry of

Education, 2012; Sağlam, 2014). Although these lecture-based subjects provide to students knowledge

and skills (e.g. thinking, understanding and reasoning), they need to developed higher-order thinking

skills such as critical, logical, reflective, metacognitive, and creative thinking (King, Goodson, &

Rohani, 2010). For improve these skills, not only should core subjects should be integrated with each

other but also Information Technologies (IT) lesson with properties such as student-centered,

problem-based, or project-based must be utilized more effectively. Because of this requirement,

Ministry of National Education of Turkey initially updated to Information Technologies course as

Information Technologies and Software course in 2012, after defined IT lesson that was an elective

subject as a compulsory subject at 5th and 6th grade levels of primary education in 2013. Moreover, a

regulatory commission was formed by the ministry for include more coding training into the IT lesson

curriculum that is compulsory at 5th and 6th grades and elective at 7th and 8th grade for developing

algorithmic and computational thinking skills in students. In addition to public institutions,

non-governmental organizations have also implemented various projects and activities in order to

provide programming and software skills to the students (e.g. Informatics Association of Turkey (IAT)

organized an event entitled "Computer Programming is as Easy as Pie " in May, 2014). Association of

Information Technology Educators have been realized numerous organizations that including coding,

robotics and physical programming trainings to teachers of Information Technologies for bringing to

students more programming skills (e.g. Manisa City is Coding, Antalya City is Coding etc.) in recent

years. These organizations have been carried through the contributions of the academicians in the

departments of Computer Education and Instructional Technology of the universities in these cities.

Additionally, academicians in this department realized numerous seminars and workshops through the

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 36

agency of support from public institutions to introduce alternative pedagogic approaches and visual

programming tools that are used for teaching programming to students by teachers or pre-service

teachers in recent years (e.g. "How to Teach Programming to Children" seminar and “Programming

my Own Game” seminar, CEIT, Kırıkkale University). Besides all these institutional efforts,

thousands of students from all grades of education from primary school to university participate

individually web-based organizations such as “All Can Code”, “Hour of Code”, “Code Monkey” etc.

1.2. New Applications for Programming Education

Visual programming affect novice programmers' performance and require them to manipulate visual

elements to formulate and test of problem (Gouws, Bradshaw, & Wentworth, 2013; Maloney, Resnick,

Rusk, Silverman, & Eastmond, 2010). In recent years, there are several visual programming tools

allows users who has limited or no programming background to create interactive media-rich projects

such as games, simulations, and animations. These tools have demonstrated their particular benefits to

assist learning programming and problem solving (Lye & Koh, 2014), and help novice programmers

to construct their programs and understand the process of program execution (Kelleher & Pausch,

2005). In brief, visual programming tools help novice programmers to improve programming skills

and allows creating and demonstrating digital artifacts through problem solving strategies (Lye & Koh,

2014). Therefore, many visual programming tools available provide children to develop different types

programs such as games, animations, interactive stories, mobile applications, or robotic applications.

Researchers identified 113 different visual programming tools in many different types in the literature

such as block-based, text-based or tile-based.

• Block-based visual programming tools (e.g., Scratch) allow users to construct scripts by

dragging-and-dropping code blocks and provide visual feedback to comprehend how code

blocks work (Maloney et al., 2010).

• Text-based visual programming tools (e.g., Small Basic) provide a simplified programming

environment with syntax highlighting and code completion facility (Microsoft, 2017).

• Tile-based visual programming tools (e.g., Kodu Game Lab) enable users to create and play
video games and animated stories through placement of tiles in a meaningful sequence

(Fowler, Fristoe, & MacLaurin, 2012).

Furthermore, these tools are very different from the various features (e.g. purpose of use, age level,

level of difficulty, whether or not paid, pedagogical effectiveness and platform type). Therefore,

choosing the most effective and purposeful appropriate visual programming tool is directly related to

have deep knowledge about features of these tools. In this study, researchers selected Scratch, Small

Basic, Alice, and App Inventor because of their different properties such as types of product platform,

coding styles, and 2D/3D structures. Another reason for researchers to choose these visual

programming tools is age ranges proposed by the person (s), institution (s) or organization (s) that

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 37

developed these tools are appropriate. Appropriate age ranges of visual programming tools that

recommended by the official producer are shown in Figure 1 below (Microsoft, 2017; MIT, 2017b).

Figure 1. The Appropriate Age Ranges Recommended by the Official Producer of Visual

Programming Tools

Although research groups that produce visual programming tools have made suggestions that they are

more appropriate at specified age ranges, this age range can be expanded in the direction of need or

level of knowledge and use as bidirectional (reducing lower age limit or increasing upper age limit).

1.2.1. Scratch

Scratch (https://scratch.mit.edu/) is a free educational programming tool that was developed by the

Lifelong Kindergarten group at the Massachusetts Institute of Technology (MIT) Media Laboratory.

The Scratch project began in 2003, and its software and website were publicly launched in 2007.

Nowadays, it hosts over 15 million shared projects and almost 80 million comments have been posted

Figure 2. The Distribution of Scratchers' Ages

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 38

about projects by 12 million registered users (MIT, 2017b). The distribution of users’ registration age

is shown in Figure 2 below.

Scratch provides users create games, animations and simulations by dragging and dropping instead of

coding that requires understanding or knowing some concepts such as variables, loops, arrays or

functions. Because visual and enjoyable, scratch is preferred by especially young people (MIT,

2017b).

1.2.2. Small Basic

Small Basic (http://smallbasic.com/) is a free educational programming tool that was announced in

October 2008, and the first stable version was released in July 2011 by Microsoft. This tool makes

programming easy, approachable and funny because it supports conditional branching, loop structures,

variables which are weakly typed and dynamic, and subroutines for event handling. Small Basic has

two important components: coding screen that allows using codes very simply and a library that

provides rich and engaging set of components. This tool also associated with Integrated Development

Environment (IDE) which consists of code editor, automation tools and debugger that provides

facilitating to software development (Microsoft, 2017).

1.2.3. Alice

Alice (http://www.alice.org) is a free and object-based educational programming tool that was

developed on the programming language Python (http://www.python.org) by the Stage 3 Research

Group at Carnegie Mellon University led by Randy Pausch in 1997. This tool makes programming

easy to learn and create an animation, an interactive game, or a video by drag and drop graphic tiles.

By manipulating the objects, Alice also allows to see running of animation, game or a video and

facilitates to understand the relationship between programming and objects (Carnegie Mellon

University, 1997).

1.2.4. App Inventor

MIT App Inventor (http://appinventor.mit.edu/) is a free and open-source educational programming

tool that for designing and building mobile applications that can run on Android devices. App Inventor

uses simple graphical interface that very similar to Scratch, which allows drag and drop building to

create a basic, fully functional application within an hour or less. This tool was developed by the team

was led by Hal Abelson, Mark Friedman, Eric Klopfer and Mitchel Resnick in March 2012. Nowadays,

it hosts over 12 million applications have been built by 4 million registered users in 195 countries

(MIT, 2017a).

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 39

2. Method

This is a descriptive study conducted with a quantitative basis. Descriptive studies, as the name

implies, are carried out to describe the characteristics and views of the studied subject (Fraenkel &

Wallen, 2009). In this study, the pre-service IT teachers' views were analyzed about computer

programming teaching tools especially for K-12 level.

2.1. Participants

The sample of this study was selected from the participants who attended a five day seminar program

at a university in Turkey. They were 44 pre-service IT teachers who study as 3rd or 4th undergraduate

student at Department of Computer Education and Instructional Technology in 21 different

universities.

Table 1. The characteristics of the participants

 N %

Gender

 Male 19 43.18

 Female 25 56.82

Weekly Hours of Computer Use

 0-2 hours 9 20.46

 3-5 hours 12 27.27

 6-8 hours 23 52.27

Computer Programming Knowledge

 Low 21 47.73

 Intermediate 17 38.63

 High 6 13.64

As it is showed in Table 1, nineteen (43.18%) of them were male and twenty five (56.82%) of them

were female. 79.54% of the pre-service IT teachers use computer more than 3 hours in one day. In

regard to computer programming knowledge, almost half of the participants (48%) rated their

programming knowledge level as low.

2.2. Settings

This is a seminar program for pre-service IT teachers about alternative methods and tools in computer

programming for K-12. It was supported by Scientific Meetings Grant Programs. Throughout the

program, several seminars were organized to present pre-service IT teachers with pedagogical

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 40

information specifically for programming instruction for elementary school students and to

demonstrate the practical use of current tools used to teach programming to students. The program was

started with the introduction of basic pedagogical concepts that have an important place in the

education of children and continued with pedagogical examination of how to teach children

programming. Later, the tools used for programming teaching were described and the four most

common tools used in teaching programming to children in recent years were mentioned. Basic

programming principles with Scratch and Small Basic, 3D graphics programming with Alice, Android

based mobile programming with App Inventor were discussed with practical examples at computer

laboratories. Eight academicians from different universities participated as educators to give seminars

for the program. Participants throughout the program were hosted by the University and all costs of

the participants (e.g. road, accommodation and meals) were covered.

2.3. Instrumentation

To collect relevant data in this study, researchers used quantitative method. The following instrument

helped us to collect quantitative data: Students’ Perceptions about Kid’s Programming Language

Questionnaire (SPKPL-Q). It was developed by Akcay (2009) to obtain the students’ perceptions

about Small Basic. In this study, it was adapted for Scratch, Alice and App Inventor in addition to

Small Basic. It is a 5-point Likert-type scale, consisting of 27 items, grouped under three factors

(Perceived Motivation, Perceived Usefulness and Perceived Ease of Use). The Cronbach-Alpha

reliability coefficient of the scale was found to be between 0.806 and 0.865.

2.4. Data Collection and Analysis

In the first day of the seminar program, the participants were mentioned about the pedagogy of

programming education, programming tools and alternative methodologies. Later, the participants

were taught about Scratch, Small Basic, Alice and App Inventor interface, usage and developed

applications. At the end of seminars, researchers collected the quantitative data through the

questionnaire which included four programming tools (Scratch, Small Basic, Alice and App Inventor).

During analyzing of the collected data, the descriptive statistics such as mean and standard deviations

of pre-service IT teachers’ views about four programming tools were calculated based on the

SPKPL-Q scale scores. Also, one way analysis of variance test (ANOVA) was conducted to test the

mean differences of pre-service IT teachers’ views about four programming tools. ANOVA was

considered to be appropriate for the analysis of the data in the study because there is an analysis

method which is used to test whether the difference between the averages of two or more unrelated

samples is significantly different from zero (Büyüköztürk, 2004). Before the analysis of results, the

assumptions of ANOVA have been tested. Each group has a normal distribution and the variances of

the groups are homogenized (p>0.05).

International Journal of Computer Science Education in Schools, August 2018, Vol. 2, No. 3
ISSN 2513-8359

 41

3. Results

The findings of this study related with pre-service IT teachers’ views about four programming tools

are given in the Table 2 and Table 3. According to the Table 2, the percentage strongly agree or agree

of pre-service IT teachers’ views about Scratch programming in regard to perceived motivation,

perceived usefulness and perceived ease of use were 92.2, 94.7 and 92.6 respectively. The percentage

strongly agree or agree of pre-service IT teachers’ views about Small Basic programming in regard to

perceived motivation, perceived usefulness and perceived ease of use were 77.4, 77.6 and 55

respectively. The percentage strongly agree or agree of pre-service IT teachers’ views about Alice

programming in regard to perceived motivation, perceived usefulness and perceived ease of use were

88.1, 90.5 and 87.1 respectively. The percentage strongly agree or agree of pre-service IT teachers’

views about App Inventor programming in regard to perceived motivation, perceived usefulness and

perceived ease of use were 92.8, 96.2 and 88.2 respectively. According to the results, the pre-service

IT teachers’ views about programming tools were generally positive. The lowest ratio related to

percentage of pre-service IT teachers’ views about programming tools were Small Basic

programming.

International Journal of C
om

puter Science Education in Schools, A
ugust 2018, V

ol. 2, N
o. 3

ISSN
 2513-8359

42

Table 2. The percentages of pre-service IT teachers' view
s on program

m
ing tools

Scratch

Sm
all B

asic
A

lice
A

pp Inventor

SD

D

N

A

SA

SD

D

N

A

SA

SD

D

N

A

SA

SD

D

N

A

SA

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

Perceived M
otivation

Interest
/

Enjoym
ent

0.7
6

1.5
2

3.7
9

21.9
7

71.9
7

3.79
6.06

21.2
1

34.8
5

34.0
9

2.2
7

2.2
7

2.27
32.5
8

60.6
1

1.5
2

1.5
2

5.3
0

21.9
7

69.7
0

Perceived
C

om
petence

2.2
7

0.0
0

4.5
5

31.8
2

61.3
6

0.00
6.82

6.82
54.5
4

31.8
2

4.5
5

0.0
0

6.82
36.3
6

52.2
7

0.0
0

0.0
0

0.0
0

36.3
6

63.6
4

W
illingness

4.5
4

3.0
3

1.5
1

29.5
4

61.3
6

3.79
10.6
1

14.3
9

33.3
3

37.8
8

5.3
0

3.7
9

6.82
31.8
2

52.2
7

5.3
0

3.0
3

0.7
6

28.7
9

62.1
2

Participation
0.0
0

2.2
7

6.8
2

37.5
0

53.4
1

3.41
3.41

18.1
8

39.7
7

35.2
3

1.1
4

1.1
4

11.3
6

38.6
4

47.7
3

1.1
4

2.2
7

7.9
5

30.6
8

57.9
5

A
verage

30.2
1

62.0
3

40,6
2

34,7
6

34.8
5

53.2
2

29.4
5

63.3
5

Perceived U
sefulness

W
ork

M
ore

Q
uickly

2.2
7

2.2
7

1.1
4

26.1
4

68.1
8

2.27
3.41

15.9
1

32.9
5

45.4
5

3.4
1

1.1
4

2.27
29.5
4

63.6
4

3.4
1

0.0
0

1.1
4

30.6
8

64.7
7

Job
Perform

ance
1.1
4

0.0
0

3.4
1

31.8
2

63.6
4

5.68
4.55

7.95
39.7
7

42.0
4

2.2
7

2.2
7

3.41
35.2
3

56.8
2

1.1
4

1.1
4

1.1
4

32.9
5

63.6
4

Increase
Productivity

0.0
0

0.0
0

2.2
7

36.3
6

61.3
6

2.27
4.55

13.6
4

45.4
5

34.0
9

2.2
7

0.0
0

6.82
34.0
9

56.8
2

0.0
0

0.0
0

2.2
7

38.6
4

59.0
9

Effectiveness
0.0
0

0.0
0

6.8
2

29.5
4

63.6
4

0.00
9.09

18.1
8

36.3
6

36.3
6

2.2
7

0.0
0

9.09
31.8
2

56.8
2

0.0
0

0.0
0

6.8
2

31.8
2

61.3
6

International Journal of C
om

puter Science Education in Schools, A
ugust 2018, V

ol. 2, N
o. 3

ISSN
 2513-8359

43

M
akes

Job
Easier

0.0
0

2.2
7

2.2
7

38.6
4

56.8
2

0.00
11.3
6

15.9
1

47.7
3

25.0
0

0.0
0

2.2
7

13.6
4

34.0
9

50.0
0

0.0
0

2.2
7

0.0
0

40.9
1

56.8
2

U
seful

0.0
0

1.1
4

6.8
2

34.0
9

57.9
5

1.14
5.68

12.5
0

42.0
4

38.6
4

0.0
0

0.0
0

5.68
43.1
8

51.1
4

0.0
0

0.0
0

3.4
1

38.6
4

57.9
5

A
verage

32.7
7

61.9
3

40.7
1

36.9
3

34.6
6

55.8
7

35.6
1

60.6
1

Perceived E
ase of U

se

Easy to Learn
1.1
4

1.1
4

1.1
4

39.7
7

56.8
2

11.3
6

17.0
4

26.1
4

23.8
6

21.5
9

1.1
4

4.5
5

10.2
3

46.5
9

37.5
0

0.0
0

3.4
1

4.5
5

45.4
5

46.5
9

Easy to U
se

2.2
7

2.2
7

4.5
5

25.0
0

65.9
1

4.55
6.82

27.2
7

43.1
8

18.1
8

0.0
0

2.2
7

0.00
50.0
0

47.7
3

0.0
0

0.0
0

9.0
9

31.8
2

59.0
9

Easy
to

B
ecom

e
Skillful

0.0
0

0.0
0

6.8
2

40.9
1

52.2
7

6.82
9.09

36.3
6

25.0
0

22.7
3

0.0
0

4.5
5

11.3
6

43.1
8

40.9
1

0.0
0

2.2
7

9.0
9

38.6
4

50.0
0

C
lear

and
U

nderstandabl
e

4.0
9

5.4
5

0.9
1

29.5
4

60.0
0

6.36
10.4
5

17.7
8

30.9
1

34.5
4

1.8
2

8.6
4

7.27
35.4
5

46.8
2

3.1
8

5.9
1

9.5
5

28.1
8

53.1
8

A
verage

33.8
1

58.7
5

30.7
4

24.2
6

43.8
1

43.2
4

36.0
2

52.2
2

N
ote. SD

: Strongly D
isagree, D

: D
isagree, N

: N
eutral, A

: A
gree, SA

: Strongly A
gree.

According to the Table 3, the overall means of pre-service IT teachers’ views about Scratch

programming in regard to perceived motivation, perceived usefulness and perceived ease of use were

4.49, 4.55 and 4.45 respectively. The overall means of pre-service IT teachers’ views about Small

Basic programming in regard to perceived motivation, perceived usefulness and perceived ease of use

were 3.98, 4.04 and 3.54 respectively. The overall means of pre-service IT teachers’ views about Alice

programming in regard to perceived motivation, perceived usefulness and perceived ease of use were

4.33, 4.42 and 4.24 respectively. The overall means of pre-service IT teachers’ views about App

Inventor programming in regard to perceived motivation, perceived usefulness and perceived ease of

use were 4.51, 4.55 and 4.36 respectively. The post-hoc test results indicated that there is a significant

differences about pre-service IT teachers’ views about four programming tools (p<0.05). In other

words, pre-service IT teachers’ views were generally positive, but, the means of their views related to

Small Basic programming were lower when comparing with other programming tools.

Table 3. The mean differences of pre-service it teachers' views on programming tools

 Scratch Small Basic Alice App Inventor

M SD M SD M SD M SD F p

Perceived Motivation

Interest /

Enjoyment

4.63 0.54 3.89 0.83 4.47 0.60 4.57 0.58 11.99 0.00*

Perceived Competence 4.50 0.79 4.11 0.81 4.32 0.96 4.64 0.49 3.70 0.01*

Willingness 4.40 0.62 3.91 0.91 4.22 0.70 4.39 0.63 4.46 0.00*

Participation 4.42 0.59 4.00 0.85 4.31 0.69 4.42 0.66 3.51 0.02*

Overall Mean 4.49 0.64 3.98 0.85 4.33 0.74 4.51 0.59

Perceived Usefulness

Work More Quickly 4.56 0.69 4.16 0.83 4.49 0.66 4.53 0.67 2.96 0.03*

Job Performance 4.57 0.56 4.08 0.89 4.42 0.69 4.57 0.56 4.96 0.00*

Increase Productivity 4.59 0.54 4.05 0.94 4.43 0.82 4.57 0.55 5.23 0.00*

Effectiveness 4.57 0.62 4.00 0.96 4.41 0.84 4.55 0.63 5.03 0.00*

Makes Job Easier 4.50 0.66 3.86 0.93 4.32 0.80 4.52 0.63 7.02 0.00*

Useful 4.49 0.54 4.11 0.85 4.45 0.55 4.55 0.52 4.23 0.01*

Overall Mean 4.55 0.60 4.04 0.90 4.42 0.73 4.55 0.59

Perceived Ease of Use

Easy to Learn 4.50 0.60 3.27 1.16 4.15 0.72 4.35 0.61 20.54 0.00*

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 45

Easy to Use 4.50 0.88 3.64 1.01 4.43 0.62 4.50 0.66 11.91 0.00*

Easy to Become Skillful 4.45 0.63 3.48 1.15 4.20 0.82 4.36 0.75 11.73 0.00*

Clear and Understandable 4.36 0.54 3.77 0.86 4.17 0.59 4.22 0.58 6.57 0.00*

Overall Mean 4.45 0.66 3.54 1.05 4.24 0.69 4.36 0.65

Note. M: Mean, SD: Standard Deviation, *: p<0.05

4. Discussion

Programming is the most functional way for supporting to developing higher-order thinking skills and

algorithmic problem-solving skills (Grover & Pea, 2013; Weintrop et al., 2016). There are numerous

programming languages in the literature such as Python, C, C++, C#, Java, JavaScript, PHP, Assembly

language, Visual Basic .NET, Perl, Delphi, Ruby, Scala, Haskell, Swift etc. (Pierce, 2002). These

structured (conventional) programming languages are widely adopted by educators to teach general

purposes of any programming (Pears et al., 2007; Robins et al., 2003; Xinogalos, 2012). The first step

in all programming languages is to learn or teach what the core elements such as condition, array, loop,

variable, constant, and functions are, what they do, and how they are used. Studies found in literature

showed that many problems in learning programming originate from using of these core elements

(Choi, 2012). Since learning these core elements is difficult and tedious process, various projects and

activities are organized with the support of non-nonprofit companies, non-governmental organizations

and governments in order to make students love programming by making coding easy and fun. One of

these widespread efforts is the use of visual programming tools (e.g. Scratch, Alice) in programming

education. In this study, a seminar program was organized about teaching alternative methods and

tools in computer programming for K-12 level in order to reach similar aims. The pre-service IT

teachers’ views who attended this seminar program were analyzed based on four visual programming

tools and the results showed that they have positive views on the use of these programming tools in

programming education in terms of motivation, usefulness and ease of use.

In the last decade, there have been developed several visual programming tools that make students

more effective producer through some features such as simplified syntax, drag and drop ability to

compose programs, immediate execution of commands. Also, these visual programming tools help

novice programmers to improve programming skills and allow creating and demonstrating digital

artifacts through problem solving strategies (Lye & Koh, 2014). In other words, visual programming

environments have been developed like Scratch, Small Basic, Alice, Lego Mindstorm, in order to

make them more compatible to information technology beginners to minimize the learning disabilities

and difficulties of the programming. Similarly, almost all visual programming tools have positive

effects on pre-service IT teachers' views in this study.

Computer programming skills and learning these skills become more important in the 21st century.

However, programming lessons which are given by traditional methods do not attract to students

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 46

attention and various problems occur. These problems cause to check the teaching method used in the

programming education. Alternative visual programming tools have been developed to minimize the

problems in programming education. Even though the text-based programming is still common

method for teaching programming skill, it has several drawbacks. Similarly, Small basic is more

unsuccessful than other visual programming tools such as Scratch, Alice, and App Inventor since it

contains tasks likewise in the conventional programming in this study. The results showed that

scripting has a negative effect on the pre-service teacher’s attitudes towards programming when

comparing visual programming tools.

5. Conclusion

Programming is becoming increasingly a key competence which will have to be supported generating

computer-based solutions for problems such as program, application, animation, simulation, or game

by all students since it improves computational thinking skills as well as high-level thinking skills

such as developing creative, critical, strategic, analytical, multidimensional, solution-focused.

Developing individuals who have these high-level thinking skills that cannot be developed in a short

time and develop as experience grows depends on the provision of programming education as

long-term and product-focused to individuals from a young age. However, different requirements of

programming languages such as syntax, constructs etc. cause problems in developing individual

products. Because of these problems, individuals drop out from their programming education.

Instructors prefers visual programming tools in programming education to overcome these problems.

Especially at primary education level, it is even more difficult to learn the text codes and use the

syntax properties of the programming language without any problems that should be written in

languages other than native languages because of the low level of foreign language skills at small age

levels. In addition to developing the solutions to problems easier with visual programming,

independently testable of code blocks for sub-problems that provided with tools like Scratch provides

more effective process on develop algorithms for solving sub-problems for primary students.

In recent years, various summer camps, seminars, educational and social projects have been

challenged in order to bring several skills to the students at an early age. One of these has been studied

in this study. The aim of this seminar program is to develop the knowledge and skills of IT teacher

candidates to update the information about programming education for elementary school students in

particular, to demonstrate the practical use of current tools used to teach programming to students, to

prepare classroom teaching activities using these applications and to adapt them to laboratory

activities. This study analyzed pre-service IT teachers' views on this five day seminar which is related

to current methodologies and tools in K-12 computer programming education. The research results

showed that pre-service IT teachers have positive views on the use of visual programming tools in

programming education. However, it is noteworthy that the views on Small Basic are less positive

than the other three tools. According to this information, when pre-service IT teachers begin their

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 47

professional career, it may be less likely to prefer Small Basic because of its text-based programming

requirements. Nevertheless, it is important that pre-service IT teachers will use even three of the four

tools which are trained to use as a trainer. If pre-service IT Teachers are taught a greater variety of

visual programming tools then they can specialize in the use of one specific tool that can be more

appropriate and effective for them. For this reason, pre-service IT teachers should be provided

numerous trainings that includes alternative tools and methodologies.

All of these conditions also drives the development of several educational programming tools

especially for novices and young students. On the contrary, we have to think that the availability of

software programming environments is not enough for the utilization of the learning potential of

programming. Experimentally validated teaching/learning approaches, documented best practices,

learning resources, curriculum standards, professional development and support for teachers are also

needed (Fessakis et al., 2013). In addition, pre-service teachers want to be aware of advanced

technology and current pedagogical information and they need training to improve themselves.

Increasing the number of such events will be important in terms of updating teacher candidates'

information and informing them of new developments. Some potential limitations of this study also

should be taken into consideration while discussing the results since only four visual programming

tools were analyzed in a seminar program. The study population consisted of only 44 pre-service IT

teachers attending in this seminar, which limits the generalizability of the results. Extending the

population to various activities, programs and universities could produce different results.

Acknowledgments

This study was conducted with financial support of The Scientific and Technological Research

Council of Turkey (Project No: Scientific Meetings Grant Programmes-2229-2016/1).

References
Akçay, T. (2009). Perceptions of students and teachers about the use of a kid’s programming language

in computer courses. Unpublished MS Thesis. Middle East Technical University, Ankara,
Turkey.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6
computational thinking curriculum framework: implications for teacher knowledge. Educational
Technology & Society, 19(3), 47-58.

Astrachan, O., Briggs, A., Diaz, L., & Osborne, R. B. (2013). CS principles: development and
evolution of a course and a community. Paper presented at the Proceeding of the 44th ACM
technical symposium on Computer science education. Retrieved June 15, 2018, from
https://doi.org/10.1145/2445196.2445382

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72,
145-157. Retrieved June 15, 2018, from http://doi.org/110.1016/j.compedu.2013.1010.1020

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 48

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. Paper presented at the Proceedings of the 2012 annual meeting of the
American Educational Research Association, Vancouver, Canada. Retrieved June 15, 2018, from
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Büyüköztürk, Ş. (2018). Sosyal Bilimler için Veri Analizi El Kitabı (24. Baskı). Pegem Yayıncılık,
Ankara.

Carnegie Mellon University. (1997). About Alice. Retrieved June 15, 2018, from
http://www.alice.org/index.php?page=what_is_alice/what_is_alice

Choi, H. (2012). Learners’ reflections on computer programming using Scratch: Korean primary
pre-service teachers’ perspective. Paper presented at the 10th International Conference for
Media in Education 2012 (ICoME).

desJardins, M. (2015). Creating AP® CS principles: let many flowers bloom. ACM Inroads, 6(4),
60-66. Retrieved June 15, 2018, from http://doi.org/10.1145/2835852

Dreyfus, S. E. (1986). Dynamic programming The Bellman Continuum (pp. 13-70): World Scientific.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1), 57-73. Retrieved June 15, 2018, from
http://journals.sagepub.com/doi/pdf/10.2190/2193LFX-2199RRF-2167T2198-UVK2199

Fesakis, G., & Serafeim, K. (2009). Influence of the familiarization with scratch on future teachers'
opinions and attitudes about programming and ICT in education. Paper presented at the ACM
SIGCSE Bulletin. Retrieved June 15, 2018, from http://dl.acm.org/citation.cfm?id=1562957

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten
children in a computer programming environment: A case study. Computers & Education, 63,
87-97. Retrieved June 15, 2018, from
http://www.sciencedirect.com/science/article/pii/S0360131512002813

Fowler, A., Fristoe, T., & MacLaurin, M. (2012). Kodu Game Lab: a programming environment. The
Computer Games Journal, 1(1), 17-28. Retrieved June 15, 2018, from
https://pdfs.semanticscholar.org/d998/d996a997e934bc952f996e279037c263781a279035f279037
a275467a.pdf

Fraenkel, J., & Wallen, N. (2009). The nature of qualitative research. How to design and evaluate
research in education, seventh edition. Boston: McGraw-Hill, 420.

Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013). Computational thinking in educational
activities: an evaluation of the educational game light-bot. Paper presented at the Proceedings of
the 18th ACM conference on Innovation and technology in computer science education.
Retrieved June 15, 2018, from http://dl.acm.org/citation.cfm?id=2466518

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State of the Field.
Educational Researcher, 42(1), 38-43. Retrieved June 15, 2018, from
http://journals.sagepub.com/doi/abs/10.3102/0013189X12463051

Günüç, S., Odabaşı, H. F., ve Kuzu, A. (2013). 21. yüzyıl öğrenci özelliklerinin öğretmen adayları
tarafından tanımlanması: Bir Twitter uygulaması. Eğitimde Kuram ve Uygulama, 9(4), 436-455.

Heintz, F., Mannila, L., & Färnqvist, T. (2016). A review of models for introducing computational
thinking, computer science and computing in K-12 education. Paper presented at the Frontiers in
Education Conference (FIE), 2016 IEEE. Retrieved June 15, 2018, from
http://doi.org/10.1109/FIE.2016.7757410

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 49

Johnson, L., Adams Becker, S., Estrada, V., Freeman, A., Kampylis, P., Vuorikari, R., & Punie, Y.
(2014). Horizon Report Europe: 2014 Schools Edition. Luxembourg: Publications Office of the
European Union, & Austin, Texas: The New Media Consortium.

Kalelioğlu, F. & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem
solving skills: A discussion from learners’ perspective. Informatics in Education. 13(1), 33-50.

Kay, K. & Greenhill, V. (2011). Twenty-first century students needs 21st century skills. In G. Wan &
D. M. Gut (Eds.), Bringing Schools into the 21st Century (pp. 41–66). Dordrecht, Germany:
Springer. Retrieved June 15, 2018, from https://doi.org/10.1007/978-94-007-0268-4

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing Surveys
(CSUR), 37(2), 83-137. Retrieved June 15, 2018, from http://dl.acm.org/citation.cfm?id=1089734

King, F., Goodson, L., & Rohani, F. (2010). Higher order thinking skills: Definition, teaching
strategies, assessment. Publication of the Educational Services Program, now known as the
Center for Advancement of Learning and Assessment. Retrieved June 15, 2018, from
www.cala.fsu.edu

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., . . . Seppälä, O. (2004). A
multi-national study of reading and tracing skills in novice programmers. Paper presented at the
ACM SIGCSE Bulletin. Retrieved June 15, 2018, from https://doi.org/10.1145/1044550.1041673

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.
Retrieved June 15, 2018, from
http://www.sciencedirect.com/science/article/pii/S0747563214004634

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
Retrieved June 15, 2018, from http://dl.acm.org/citation.cfm?id=1868363

Microsoft. (2017). About Small Basic. Retrieved June 15, 2018, from,
http://smallbasic.com/about.aspx

Ministry of Education. (2012). 12-Year Compulsory Education Questions - Answers. Retrieved
June 15, 2018, from http://www.meb.gov.tr/duyurular/duyurular2012/12Yil_Soru_Cevaplar.pdf

MIT, M. I. o. T. (2017a). About App Inventor. Retrieved June 15, 2018, from
http://appinventor.mit.edu/explore/about-us.html

MIT, M. I. o. T. (2017b). About Scratch. Retrieved June 15, 2018, from
https://scratch.mit.edu/about

Ozoran, D., Cagiltay, N., & Topalli, D. (2012). Using scratch in introduction to programming course
for engineering students. Paper presented at the 2nd International Engineering Education
Conference (IEEC2012).

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., . . . Paterson, J. (2007). A
survey of literature on the teaching of introductory programming. ACM SIGCSE Bulletin, 39(4),
204-223.

Pierce, B. C. (2002). Types and programming languages. Retrieved June 15, 2018, from
http://robotics.upenn.edu/~bcpierce/tapl/contents.pdf

Repenning, A., Basawapatna, A., & Escherle, N. (2016). Computational thinking tools. Paper

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 50

presented at the Visual Languages and Human-Centric Computing (VL/HCC), 2016 IEEE
Symposium. Retrieved June 15, 2018, from http://ieeexplore.ieee.org/abstract/document/7739688/

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and
discussion. Computer science education, 13(2), 137-172.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in secondary
school: a pedagogical content knowledge perspective. Informatics in Education-An International
Journal, 10(1), 73-88.

Sağlam, M. (2014). The 4+ 4+ 4 in the Educational Experiences of the the Teachers Teaching the First
Grade Students in Turkey: Yozgat City as an Example. Journal of History School, 7(18),
377-396.

Selby, C., & Woollard, J. (2013). Computational thinking: the developing definition. Retrieved June
15, 2018, from https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf

Spohrer, J. C., & Soloway, E. (1989). Simulating student programmers. Ann Arbor, 1001, 48-109.
Received from http://ijcai.org/Proceedings/189-101/Papers/087.pdf

Szlávi, P., & Zsakó, L. (2006). Programming versus application. Paper presented at the International
Conference on Informatics in Secondary Schools-Evolution and Perspectives. Retrieved June 15,
2018, from http://doi.org/10.1007/11915355_5

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

Wikipedia. (2017). Programming. Retrieved June 15, 2018, from
https://en.wikipedia.org/wiki/Computer_programming

Winslow, L. E. (1996). Programming pedagogy—a psychological overview. ACM SIGCSE Bulletin,
28(3), 17-22.

Xinogalos, S. (2012). An evaluation of knowledge transfer from microworld programming to
conventional programming. Journal of Educational Computing Research, 47(3), 251-277.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 51

Computational Concepts Reflected on Scratch Programs

Kyungbin Kwon1

Sang Joon Lee2

Jaehwa Chung3

1Indiana University

2Mississippi State University
3Korea National Open University

DOI:

Abstract

Evaluating the quality of students’ programs is necessary for better teaching and learning. Although

many innovative learning environments for computer science have been introduced, the scarcity of

program evaluation frames and tools is a demanding issue in the teaching practice. This study

examined the quality of students’ Scratch programs by utilizing Dr. Scratch and by analyzing codes

based on four computational concepts: conditions, loops, abstractions, and variables. Twenty-three

Scratch programs from two classes of pre-service teachers from a university were examined. Dr.

Scratch results revealed that Scratch programs demonstrated a middle level of competency in

computational thinking. The analysis of computational concepts suggested that students had a

sufficient understanding of the main concepts and demonstrated computing competency by applying

the concepts into their programs. The study also discussed inefficient programming habits,

instructional issues utilizing Scratch, and the importance of problem decomposition skills.

Keywords: Scratch, block-based programming, computer science education, novice programmer,

computational thinking

10.21585/ijcses.v2i3.33

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 52

1. Introduction

Since President Obama addressed the importance and urgency of Computer Science (CS) education in

K-12, many stakeholders including education administrators, scholars, teachers, and government

agencies, such as NSF, have tried to develop a sustainable curriculum that encourages more students

to learn to program earlier. However, the deficiency of CS education in K-12 is not getting better in

the US. Although nine out of ten parents surveyed want their children to learn computer science, only

40% of middle and high schools teach computer programming (Google & Gallup, 2015).

It is well known that there are several barriers to overcome, such as 1) insufficient professional

development for in-service teachers (Buss & Gamboa, 2017; Reding et al., 2016), 2) students’

negative attitude, high anxiety and low self-efficacy toward CS (Arraki et al., 2014; Google & Gallup,

2017; Simsek, 2011), and 3) the lack of evidence proving the effect of teaching practice utilizing

innovative learning environments, such as code.org and Scratch (Kalelioğlu & Gülbahar, 2014;

Moreno-León, Robles, & Román-González, 2016).

To resolve the issues, nowadays, many schools have been suggested to adopt block-based

programming (BBP) environments, for example, Scratch (https://scratch.mit.edu/) where students

develop a program by “dragging and snapping blocks.” Researchers have proved that the BBP

makes learning the programming vocabulary easier by providing recognizable commands in a block

form. It also eliminates syntactic errors by constraining the structures of a program using different

shapes and combining commands into chunks (Bau, Gray, Kelleher, Sheldon, & Turbak, 2017).

Although many teachers and researchers have introduced Scratch to their classrooms, not many

attempts have been made to evaluate the quality of Scratch programs and provide tailored feedback to

students based on the results. There is a common question many teachers want to answer: How can I

assess the quality of students’ Scratch programs?

As Chao (2016) suggested, we can assess computational concepts (conditions for decision-making,

iterations with specified cycle, data representation, etc.), computational designs (decomposition of

problems, sequences of tasks, etc.), and computational performances (identification of goals,

optimization of programs, usability, etc.) to evaluate students’ programming competency and

strategies reflected on Scratch programs. The size and complexity of a program can be the quantitative

indicators of Scratch programs (Aivaloglou & Hermans, 2016). Utilizing a web tool like Dr. Scratch

also enables us to evaluate Scratch programs automatically (Moreno-León, Robles, &

Román-González, 2015).

Although these evaluation concepts and methods are available, the lack of an assessment rubric or

evaluation frame results in the scarcity of code evaluations in the teaching practice (Moreno-León et

al., 2015). There is also a need for studies exploring the validity of the assessment across the

evaluation tools (Buffum et al., 2015; Grover & Pea, 2013). The need to examine the characteristics of

Scratch programs has increased because it will reveal the status of students’ computational thinking

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 53

(Moreno-León et al., 2015).

The primary purpose of the current study is to examine the quality of students’ Scratch programs by

utilizing Dr. Scratch and by analyzing codes based on computational concepts. The close evaluation of

Scratch programs will reveal weak areas that students struggle in and provide instructional insight to

design learning activities. The following research questions were addressed:

Q1. What was the general quality of students’ Scratch programs based on Dr. Scratch’s evaluation?

Q2. What computational concepts were reflected on students’ Scratch programs?

2. Literature Review

2.1 Block-based programming

Novice programmers often lose their cognitive capacity while figuring out the surface features of

programming, such as syntax rules, and easily fail to apply programming concepts to develop effective

solutions (Lahtinen, Ala-Mutka, & Järvinen, 2005; Winslow, 1996). Considering the limitation of

novice programmers, BBP excludes the chances of syntactical errors, uses commands similar to

spoken languages, provides immediate feedback, and visualizes abstract concepts, such as variables,

which reduces the cognitive load (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010). These

features of BBP allow novice programmers to grab the fundamental programming concepts easily

(Buitrago Flórez et al., 2017). BBP also provides novice programmers with “fun” components by

allowing them to create authentic programs, such as games, interactive stories, and animations that

demonstrate their problem solving skills (Resnick et al., 2009).

Since BBP provides a visual programming environment, which is suitable for teaching programming

concepts, the use of BBP has increased in introductory programming education courses (Aivaloglou &

Hermans, 2016). Scratch is one of the most commonly used BBP and provides a media-rich interactive

programming environment. Developed by the MIT Media Lab, Scratch was intended to make

programming accessible and engaging for everyone (Resnick et al., 2009). With Scratch, not only is it

easy for people with limited or no programming background to begin learning programming concepts,

but it is also possible to create increasingly complex programs over time (Sáez-López,

Román-González, & Vázquez-Cano, 2016; Su, Yang, Hwang, Huang, & Tern, 2014). Because of its

visual nature and an intuitive drag and drop method of programming, Scratch is ideal for young people

and expected to be a potential language for K-12 computer science (Sáez-López et al., 2016). The

visual programming allows young students to create scripts easily by playing and interacting with

blocks. While working on interactive stories, games, and animations individually and collaboratively

with peers, users are able to learn mathematical and computational concepts as well as 21st century

skills, including critical thinking, creativity, communication, and collaboration (Maloney et al., 2010;

Resnick et al., 2009).

BBP has enabled computer science educators to implement computational problem-solving (e.g., Liu,

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 54

Cheng, & Huang, 2011; Topalli & Cagiltay, 2018). Computational problem-solving integrates real-life

issues, which students can solve by developing a program. Because computer science requires

problem-solving skills for broad issues, computational problem-solving is one of the core

competencies of computer science (Liu et al., 2011). It is also aligned with the current CS education

paradigm of “teaching computer science in context” to encourage students to learn computing in a

concrete and personal way (Cooper & Cunningham, 2010). The benefits of computational

problem-solving include (1) an enhanced understanding of programming concepts, logic, and

computational practices (Sáez-López et al., 2016), (2) better performances on designing software

system (Topalli & Cagiltay, 2018), and (3) decomposition of computational problems and adoption of

design strategies (Chao, 2016).

2.2 Evaluation of program competence

2.2.1 Dr. Scratch

Moreno-León et al. (2015) introduced Dr. Scratch (http://www.drscratch.org): a web application that

analyzes Scratch programs. Dr. Scratch evaluates student’s computational-thinking competence based

on seven criteria: abstraction and problem decomposition, logical thinking, synchronization,

parallelism, algorithmic notions of flow control, user interactivity, and data representation. When users

submit their Scratch programs, Dr. Scratch displays numeric scores of the criteria (zero to three) as

well as the overall level of mastery in terms of basic, developing, and master. By utilizing Dr. Scratch,

students as well as instructors can easily evaluate their Scratch programs and get immediate feedback

(see Moreno-León et al. (2015) paper for more information regarding the rubric of the assessment.).

2.2.2 Computational concepts

Although Dr. Scratch provides quantitative scores, it is not enough to evaluate students’ understanding

of computational concepts. Developing Scratch programs involves several computational concepts.

For example, making a sprite move predetermined paths repeatedly until a particular event occurs

requires the understanding of loops and conditions at least. In other words, Scratch allows students to

demonstrate the understanding of computational concepts through their programs and learning

activities (Grover, Pea, & Cooper, 2015; Lee, 2010). Main computational concepts include loops,

conditions, sequence, event handling, Boolean logic, variables, message passing, algorithmic flow of

control, problem decomposition, abstraction, and so on.

Although all of the concepts are crucial and interact with each other for a program, the current study

focuses on four main concepts (loops, conditions, variables, and abstraction) that novice programmers

easily find difficulty understanding and applying to their Scratch programs (Grover et al., 2015; Kwon,

2017; Shi, Cui, Zhang, & Sun, 2018). While many students understand the concept of simple loops,

for example, they struggle with loops that involve variables (Grover & Basu, 2017). Usually, loops

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 55

need to be specified how many times instructions will run or when the repeat will stop. This

specification involves arithmetic or conditional expressions integrating variables. In some cases, the

value of variable changes as the loop runs, which students often misunderstood (Grover & Basu,

2017).

As Wing (2006, p. 35) emphasized while defining computational thinking, thinking like a computer

scientist requires “thinking at multiple levels of abstraction”. By using the concept of abstraction,

students can decompose a complex problem into manageable steps and modularize solutions (Wing,

2006). Thus, students can generalize and transfer a solution to other similar problems when they use

the power of abstraction (Yadav, Hong, & Stephenson, 2016). Scratch allows students to define their

own blocks, which enables them to customize complex codes into a “reusable” block. Although this

method demonstrates the power of abstraction, students often fail to use the user-defined blocks

(Moreno & Robles, 2014).

There are several trials to measure students’ computational thinking through tests (e.g., Grover & Basu,

2017; Meerbaum-Salant, Armoni, & Ben-Ari, 2013). Considering that understanding concepts is

necessary but not sufficient to develop an effective program, analyzing students’ programs is crucial in

evaluating the internalization of computational concepts (Arzarello, Chiappini, Lemut, Malara, &

Pellerey, 1993). In this sense, the current study aimed to reveal students’ computational concepts by

analyzing their Scratch programs.

3. Method

3.1 Participants

Twenty-three students were recruited from two of the same undergraduate courses offered in a large

Midwest university in the US. They were pre-service teachers taking the Computer Educator License

(CEL) program in addition to their major. The majority of participants were female (21) with no or at

most little computer programming experience before taking the course. They were not given

compensation for their participation in the study. The study was approved by the University

Institutional Review Board (#1701722036).

3.2 Context of Learning

The final goal of the course was to train pre-service teachers to develop simple programs to solve

authentic problems, such as printing a receipt for cashiers, calculating tips in a restaurant, and creating

a quiz. The students learned the basic concepts of programming and syntax of Python throughout a

semester and developed the programs as the final project. At the early period of instruction (Week

2~7), the instructor utilized Scratch to let students practice programming concepts without being

distracted by syntax issues. In Week 7, students submitted their Scratch programs as the midterm

projects that were the artifacts we analyzed in this study.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 56

Students were required to use variables, conditional blocks, repeating blocks, and user-defined blocks.

The instructor also emphasized the importance of the logical procedure of computing. Students

selected their program topic.

3.3 Data

Students’ Scratch programs were collected and the files were uploaded to researcher’s Scratch account

to be analyzed. We captured the screens of each individual sprite’s code and saved it to image files for

analysis. A total of 23 programs were collected.

3.4 Identifying the quality of programs

To evaluate the quality of Scratch programs, we utilized Dr. Scratch and analyzed code manually. As

discussed, Dr. Scratch provides scores (0 to 3) regarding the level of seven computational thinking

competencies, which ranges 0 to 21. The current study presents the quantitative results of Scratch

programs to describe the overall quality.

To have an in-depth understanding of students’ Scratch programs, we analyzed them, while

considering computational concepts: conditions, loops, abstractions, and variables. The first author

analyzed the programs and the other authors validated the analysis. Different interpretations among the

authors were resolved after negotiating. The unit of analysis was a semantic unit including one or

several code blocks that executed a certain task. For example, the following code represents three

semantic units (see Figure 1).

Figure 1. Example of the units of analysis

4. Results

In the following sections, the analysis of Scratch programs is presented. First, the results of Dr.

Scratch evaluation suggest the overall quality of the programs. Then, the manual analysis of codes

identifies the strengths and areas for improvement regarding computational concepts reflected on the

programs.

Unit 1: Event triggering the following instructions
Unit 2: Setting the value (0) to the variable (score)
Unit 3: Repeating the instructions “forever”

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 57

4.1 Overview of programs

Table 1 describes the descriptive information of Scratch programs organized by its types. There were

two types of programs: game and quiz. Because the types of programs might affect the number of

sprites and user interactivities, we categorized programs according to the types and coded them

accordingly. Overall, games, except drawing, added multiple sprites that included a main character

and some obstacles. In contrast, quizzes involved fewer sprites mainly asking and answering questions

and some objects indicating correct answers (Q03) or levels of difficulty (Q04). Except for a few

programs, most used only one backdrop, which suggests they were mostly made up of one mission or

one theme. The number of block clusters (sets of blocks attached together) and block codes (individual

blocks) indicated the complexity of the programs. Relatively, quizzes created more clusters of blocks

as well as blocks. It is noteworthy that there are considerable variations among programs regarding the

number of clusters and individual blocks developed. The higher number of clusters and blocks implies

the higher complexity of the program in this study. We also found significant positive correlations

between the scores evaluated by Dr. Scratch and the number of clusters, r(22) = .53, p = .01 and the

number of blocks r(22) = .56, p = .005.

Table 1

Descriptive information of programs by type

Type Code # Sprites #

Backdrops

Block Clusters # Block

Codes

Dr. Scratch

Score

GAME 4.7 1.4 14.3 70.2 13.2

Maze G01 7 1 7 55 12

 G02 5 1 8 46 12

 G03 4 1 14 49 12

 G04 2 1 7 28 9

 G05 5 1 24 90 15

 G06 10 5 50 191 17

Catch G07 5 1 15 105 16

 G08 4 1 7 46 13

Dance G10 4 1 7 46 11

Drawing G09 1 1 4 46 15

QUIZ 4.0 1.8 20.7 114.2 13.8

Quiz Q01 2 1 5 47 14

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 58

 Q02 2 1 11 75 13

 Q03 7 2 14 129 15

 Q04 16 3 101 419 15

 Q05 3 1 6 73 14

 Q06 1 1 3 70 14

 Q07 2 1 5 62 13

 Q08 4 1 9 53 15

 Q09 1 1 2 29 9

 Q10 1 1 2 45 11

 Q11 1 1 6 62 12

 Q12 4 1 21 121 17

 Q13 8 8 84 299 17

TOTAL 4.3 1.6 17.9 95.0 13.5

Note: G stands for game and Q does quiz in the code. # stands for number of.

4.2 Dr. Scratch evaluations

The evaluations of Dr. Scratch revealed that students demonstrated the middle level of competence

(Total score =13.5 out of 21, the average score of all criteria = 1.9 out of 3). Regarding individual

criteria, programs showed similar results on data representation, abstraction, interactivity,

synchronization, and logic. All programs, except one, demonstrated higher than level 2 on the flow

control. Regarding the parallelism, while seven programs received level 3, twelve received level 0 or 1,

which showed considerable variations among programs. Regarding the overall level of competence, 14

programs received the developing level, and the rest of the projects earned the master level.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 59

Table 2

Descriptive statistics of Dr. Scratch evaluations of programs

 Overall

score

Flow Data Abstractio

n

Interactivit

y

Synchronizatio

n

Parallelism Logic

Mean 13.5 2.4 2.0 2.0 2.0 1.8 1.4 1.9

SD 2.31 0.58 0.21 0.00 0.00 1.11 1.16 0.73

Note: N = 23

4.3 Analysis of Scratch codes

In the following sections, students’ computational concepts reflected on the Scratch programs are

presented. The descriptive analysis of computational concepts aimed to reveal students’ computing

competency focused on conditions, loops, abstractions, and variables.

4.4 Conditions

To make a decision, students need to consider conditions. The condition is integrated into if-blocks as

well as repeat-blocks in Scratch. In this section, we examine only if-blocks. The if-blocks can be

specified into three types: (1) simple if-block that considers only one condition (if), (2) if-else block

that considers two conditions: true and an alternative, and (3) nested if-block that considers multiple

conditions by integrating multiple if or if-else blocks.

In developing Scratch programs, students need to define conditions logically so they can tell in which

condition a particular instruction will execute. The condition can be expressed with an event, such as

touching, or with multiple operators, such as logical expression and arithmetic comparisons. The

ability to utilize if-blocks is related to the competence of logical thinking. We examined students’

Scratch programs based on the structure of if-blocks and their conditional statements.

4.4.1 Students seemed to use if-blocks properly according to the purpose of program.

G01, for example, used if-blocks to see whether a sprite “touch” a line or obstacles (other sprites). So

the structure was simple as “if touching color or sprite then.” G01 also used nested if-blocks to

consider three conditions: age = 25, age < 25, and the other condition (age > 25). The structure was

logically valid and clear to make the decision (see Figure2-a).

Q04 developed a nested if-block to control the flow of the program. Q04 asked questions and updated

scores according to the answers. The if-block added (or subtracted) scores once the answer was correct

(or incorrect) and switched the level of difficulty once the score reached a certain point.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 60

Q05 developed a quiz where a sprite tried to catch up with a shark. When a user answered a question

correctly, the sprite reduced the distance with the shark and vice versa. Q05 also used the nested

if-blocks to decide the flow of the program according to the distance and the user’s intention to beat

the shark as illustrated in Figure2-b. Q05 demonstrated an effective way to use if-blocks to control the

program flow based on multiple conditions.

Q08 updated the “high score” using the if-block as Figure2-c. The code demonstrated how the student

updated the value in consideration of the condition. (Please note that the forever-block inside the

if-block was not necessary. We will discuss it later.)

All programs expressed conditional statements appropriately, which demonstrated that students fully

understood how to develop the conditional expressions.

4.4.2 Students considered an alternative condition that was not necessary.

G07 considered the highest score users got and updated its value whenever it was broken (see

Figure2-d). The first if part compared the current user score (Fish Eaten) and the highest score

(Highscore) and updated the Highscore with the Fish Eaten in case the Fish Eaten is bigger than the

Highscore. The following else part, however, updated Highscore with the same value (Highscore). The

update with the value of itself was unnecessary in that context.

Q04 created a quiz that asked users to match words and pictures. Q04 used nested if-blocks to check

correct matches first and incorrect matches in the else structure as nested (see Figure2-e). However,

the alternative matches were all the incorrect answers and were not necessary to be specified. This

suggests that students need to be trained to decide which condition should be defined and which

conditions can be treated as an alternative without the specification.

a

c

d

e

g

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 61

b

 f

Figure 2. Codes representing the concepts of conditions

4.4.3 A student considered the same conditions twice unnecessarily.

G02 created a game: “Traveling without touching obstacles.” The first if-block checked an occasion

when a sprite touched the obstacles (Paddle, Paddle2, and Paddle3) as Figure2-f illustrates. A close

examination of the user-defined blocks revealed that the three if-blocks rechecked the “touching”

condition that could be removed, so the hosting if-block checked three conditions at once.

4.4.4 A student used the nested if-blocks inefficient way.

Q07 nested multiple conditions in order. It seemed the student developed the nested if-block as she/he

drew a decision tree as Figure2-g. However, Q07 solution made the code complex and difficult to

trace. Because the results of the conditions were independent, there was no reason for nesting multiple

conditions. It seemed the students did not fully understand the logic of if-blocks and simply followed

the decision tree process.

4.4.5 Usages of if-blocks

While most game programs used the simple if-blocks (8 out of 10), most quiz programs used the

if-else or nested if-blocks (11 out of 13). It suggests that students selected the types of conditions

according to the purpose of programs, such as checking correct answers that required at least if-else

blocks or touching objects that used simple if-blocks.

4.5 Loops

In order to use a loop properly, students need to identify which instructions repeatedly run until a

certain condition is reached. Thus, the purpose of a loop and a condition to stop the loop are critical

elements to evaluate its effectiveness. In Scratch, there are three types of loops: forever (repeat

without stop), repeat <times>, and repeat until <condition>. The ability to utilize the repeat block is

related to the competence of flow control.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 62

a

b

c

d

e

Figure 3. Codes representing the concepts of loops

4.5.1 To control the flow of the program, students used repeat-blocks and checked conditions to stop

the loop.

In many quiz programs, students used repeat block to give users multiple chances to answer questions.

In this case, students could give unlimited trials or set amount of trials. Regarding unlimited trials,

students simply used a “repeat until” block with the specification of the correct answer. To set times of

trials, students needed to use variables to count the trials. Q13 defined a variable, Trials, to trace times

of trials and stopped the loop once the value reached three as Figure3-a describes. A student also

stopped the loop using a “break” method. For example, Q11 gave three chances to answer a question.

It used the “stop this script” block to stop the loop when a user answered correctly (see Figure3-b).

4.5.2 Students used forever-block to wait until a particular event occurred.

In maze game programs, students used the forever-block to make the code be responsive to a certain

event such as “touching” a color or a sprite. For example, G03 set the forever-block in conjunction of

“when flag clicked” block so the event specified within the forever-block could be detected

continuously (see Figure3-c). This usage of forever-blocks should be guided to students because it is

the unique way of Scratch utilizing loop for that purpose.

In common program language, such as JavaScript, an event handler covers this method. Scratch

provides major event handlers like mouse clicked or keyboard inputs as a form of built-in functions.

For example, Scratch has “When right-arrow-key pressed” which was identical to “Forever if ‘key

right arrow pressed’ then” (compare Figure3-d and Figure3-e). However, the usage of forever-block

for the event handling, called user-defined event handlers, requires a deeper understanding of event

handling for the students to apply it to their program code than that of using built-in functions (Lee,

2010).

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 63

4.5.3 Usages of loops

While most game programs used the forever-blocks (8 out of 10), most quiz programs used the repeat

<times> or repeat until <conditions> (11 out of 13). One quiz program did not use the repeat-block. In

general, this result suggests that students selected the types of loops according to the purpose of the

program.

4.6 Abstractions

Scratch allows students to create their own blocks by defining a set of blocks, so-called user-defined

blocks. It is noteworthy there are efficient as well as inefficient ways to create the user-defined blocks.

To decide the efficiency we reviewed how many times a user-defined block was reused and whether it

used an argument. The ability to utilize the user-defined block is related to the competence of

abstraction and problem decomposition.

a

b

c

d

e
 f

Figure 4. Codes representing the concepts of abstractions

4.6.1 Most efficient user-defined blocks

Q05 demonstrated the most efficient way to create blocks and use them in the code. The blocks were

defined to generate quizzes and respond to user inputs accordingly. Q05 analyzed the pattern of

quizzes (asking a question, receiving a user input, deciding whether it is correct or not, updating a

score) and defined the blocks according to the pattern. It was impressive that Q05 used variables

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 64

(arguments) to generate multiple questions by updating the values of the variables, which reduce the

code complexity as well as the length (see Figure4-a and Figure4-b).

Q09 also defined a modifiable user-defined block. In this case, Q09 used variables to save user inputs

and display an outcome accordingly. In this way, Q09 allowed the block to be reusable according to

user inputs (see Figure4-c).

As Q09 did, other quiz programs also used variables to update specific values in a user-defined block.

The purpose of the user-defined block was to create a quiz based on predefined question and correct

answer. For this purpose, one used variables out of the block while the other used arguments within

the user-defined block.

4.6.2 Efficient but limited user-defined blocks

Q03 defined a six-line code as a block that played drum sounds (see Figure4-d). A5 used the block

whenever a user answered a question correctly. So, it reduced the complexity of the code and made it

more manageable. However, close examination of Q03 codes revealed that asking a question and

responding to it were the repeating construct that could be defined as a block (see Figure4-e). If two

blocks, asking quiz and playing a drum, had been defined, the code would be much simpler and

efficient.

Q04 and G09 also demonstrated the same issue in defining a block. In contrast to the efficiently

programmed programs, they repeatedly used sets of blocks sharing same structure that could be

replaced with user-defined blocks. This suggests that students should be trained to analyze patterns of

codes and define a block to make the code simple and reusable.

Q11 used the user-defined block to control the flow of the program. After running a block, it called the

next block at the end. Using this way, each block called the next block until the required flow ended.

This way allowed Q11 to make the code “segmented” and easy to maintain. However, it required lots

of inefficiently repeated codes.

4.6.3 Inefficient user-defined blocks

G03 demonstrated the most common inefficient way to create the user-defined block. G03 defined a

simple loop (moving sprite in a certain route) as a block and used it once for the sprite. This method

failed to use the benefits of the user-defined block and even increased the complexity of the code

unnecessarily (see Figure4-f). A total number of 13 programs demonstrated the same inefficient way

other than to create the user-defined block: defining a simple code as a block and use the block once.

A few game programs, such as G03, G06, G07, and G08, duplicated the same structure of a block to

other sprites. Although they can apply this concept in a common programming language by defining a

function, it is not allowed in Scratch. This limitation may need to be explained to the students, so they

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 65

do not overgeneralize that the scope of the user-defined block (function in other program languages) is

limited to a certain sprite (file).

4.7 Variables

Using variables is one of the most crucial skills in computing. A variable is a tricky concept to grab

(Kohn, 2017a, 2017b; Samurcay, 1989; Shi et al., 2018). Overall students defined variables and used

them appropriately according to the purpose of the program. G01, for example, defined a variable

named “Gift Money Left” and updated its value whenever a user used the money for a gift. Many

game programs defined a score to update the points a user got or lost during the games. The variable

had been used to decide whether a user succeeded or failed. Programs using variables to make a

decision as well as to update values demonstrated competence regarding data representation.

a

b

c

d

Figure 5. Codes representing the concepts of variables

4.7.1 Efficient use of variables

Half of the programs demonstrated competence to use variables effectively to set game times and trials,

update scores, receive user inputs, and identify the highest scores (e.g., Figure5-a). They often

integrated variables into repeat-blocks or if-blocks and controlled the flows of the program according

to the values of variables.

G10 used a variable to calculate a sum of numbers, which is one of the most common usages of

variables in arithmetic formulas. Q02 used a variable to present random choices. The variable was

assigned a random number and was integrated into an if-block, so a specific instruction ran randomly.

Some programs also used join-blocks to combine multiple values of different variables into one.

As mentioned in the abstractions (section 4.6), students used variables to specify certain values used in

user-defined blocks. By integrating variables and user-defined blocks, students created reusable blocks

that could be tailored by variables, which reduced the volume of code. Many quiz generating programs

used this method.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 66

4.7.2 Inefficient use of variables

Students sometimes never used defined variables. G03, G05, and Q03, for example, defined a variable

that counted a success of a trial. Although they updated its value whenever a user completed a mission

or answered a question correctly, no other code used the variable. So, the values of variables were

never used for the programs meaningfully. For another example, Q04 defined “Difficulty” to identify

the level of the quiz. Although it updated its values: HARD, MEDIUM, and EASY accordingly, the

variable never cooperated with the other codes.

A few students were confused with the value and name of variables. Q01 did not seem to figure out

the difference between the value of a variable and its name. As Figure5-b illustrates, the ‘blue’

variable saved ‘answer’ in it. (Please note the code was not correct because the first “answer” kept the

previous user input rather than the current one as the program intended.) And the following repeat-

and if-blocks used the static text “blue” to check whether the answer was correct. In this case, the

correct answer was “blue” which was the same as the variable’s name. To fix the code, Q01 might

define “correctAnswer,” set its value to blue, and used it in the following blocks. In the similar context,

Q12 used the variable correctly by using the variable after assigning a correct answer (see Figure5-c).

In a few cases, students assigned a value to a variable after it was called, which suggests the flow of

program was not appropriately considered. G04 defined “Name” to save a user’s name. As figure5-d

describes, the user input was used to make a greeting, “Hello answer.” The “Name” variable received

the input after the process, but G04 never used the variable in any other codes.

5. Discussion

The current study presents the evaluation results of two different approaches. Dr. Scratch provided a

quick assessment for the Scratch programs. The comparisons between the quantitative complexity of

the programs and the scores Dr. Scratch provided revealed strong positive correlations. In general, Dr.

Scratch evaluations suggested that the students demonstrated the developing level rather than the

proficient level. The assessments also revealed that there were considerable variations regarding the

quality of the Scratch programs, especially in parallelism and synchronization. These two criteria

emphasize the logical organization of events to make things happen in the order as designed. There are

efficient and less efficient ways to achieve the task on Scratch. Considering that Scratch allows

multiple ways to program a particular task, students should be guided to review various methods and

evaluate their effectiveness while developing programs. It seems to be beneficial if students utilize Dr.

Scratch during the programming processes to see the evaluations for a formative evaluation purpose.

Although it does not suggest a solution for the program, students will be motivated to consider other

ways to program.

The manual analysis of the Scratch programs revealed students’ computational concepts in the context

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 67

of their programming goals and tasks. Considering the short period of training sessions, students

demonstrated a sufficient understanding of the main concepts and computing competency by applying

the concepts into their programs. However, several issues needed to be improved. First, students

should be able to eliminate unnecessary codes. The common mistakes observed in the study were

related to redundant codes. For example, if there is one correct answer and three options are wrong,

one will use if-else block and define else as all the wrong answers. In this case, one does not need to

specify the conditions of three wrong answers if tailored feedback will not be given to each option.

The analysis revealed students often added redundant codes that may increase the complexity and the

chance for errors.

Second, students need to understand the program’s specific characteristics. Many teachers utilize

Scratch for introductory computing education because Scratch’s features facilitate conceptual

understandings by adopting a visual programming environment (Maloney et al., 2010). There are,

however, some concepts and usages that students need to understand. The use of forever-blocks for an

event handler is a unique feature of Scratch. Students often forget to include the infinite loop to make

event-handling codes active (Lee, 2010). For this, teachers need to explain the function of loops in that

particular context. As discussed, Scratch also provides built-in event-handlers, like detecting a

keystroke from a user. Thus, it is recommended to provide a clear demonstration of how the built-in

event-handlers are equivalent to other ways of making the function, so students can evaluate various

methods of computing (Lee, 2010).

Repeat-until-blocks, for example, also need to be compared with another programming syntax, such as

a while loop. In Scratch, the repeat-until-block executes its code until the condition becomes true. In

other words, the repeat-block runs codes when the specified condition is “false” and stops the

execution once the condition becomes “true.” In contrast, while loops run their code when the

specified condition is “true” and stop their execution once it becomes “false.” To utilize Scratch for

the transition to common text-based program languages, teachers need to emphasize the unique

features of Scratch.

Third, teachers need to emphasize the ability to decompose problems and design solutions. The ways

user-defined blocks were utilized revealed students’ competence of problem decomposition. Those

who figured out the pattern of codes could define new blocks efficiently. They even used variables and

arguments in conjunction with the blocks so they could reuse them with different contexts. However,

students who did not break down their problems or could not identify the patterns of solution

processes developed inefficient and repeating codes. Program design needs to be taught with

computational thinking.

Although the current study contributes to the literature by presenting multiple approaches to the

evaluation of computational concepts, there are some limitations to be considered. As discussed, the

two assessment methods, Dr. Scratch and manual evaluations, have unique strengths and weaknesses.

The comparisons of two methods will validate the evaluation framework of computational concepts.

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 68

Due to the small number of participants and the mismatch of the evaluation frameworks, the current

study could not carry out the comparisons. Considering the potential contribution of mapping multiple

evaluations of programming competency, further research exploring and validating various evaluation

frameworks is highly recommended.

References
Aivaloglou, E., & Hermans, F. (2016). How Kids Code and How We Know: An Exploratory Study on

the Scratch Repository. Paper presented at the Proceedings of the 2016 ACM Conference on
International Computing Education Research, Melbourne, VIC, Australia.

Arraki, K., Blair, K., Bürgert, T., Greenling, J., Haebe, J., Lee, G., . . . Hug, S. (2014). DISSECT: An
experiment in infusing computational thinking in K-12 science curricula. Paper presented at
the 2014 IEEE Frontiers in Education Conference (FIE).

Arzarello, F., Chiappini, G. P., Lemut, E., Malara, N., & Pellerey, M. (1993). Learning Programming
as a Cognitive Apprenticeship Through Conflicts. In E. Lemut, B. du Boulay, & G. Dettori
(Eds.), Cognitive Models and Intelligent Environments for Learning Programming (pp.
284-298). Berlin, Heidelberg: Springer.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: blocks and
beyond. Communications of the ACM, 60(6), 72-80. doi:10.1145/3015455

Buffum, P. S., Lobene, E. V., Frankosky, M. H., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2015). A
Practical Guide to Developing and Validating Computer Science Knowledge Assessments
with Application to Middle School. Paper presented at the Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, Kansas City, Missouri, USA.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017).
Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through
Programming. Review of Educational Research, 87(4), 834-860.
doi:10.3102/0034654317710096

Buss, A., & Gamboa, R. (2017). Teacher Transformations in Developing Computational Thinking:
Gaming and Robotics Use in After-School Settings. In P. J. Rich & C. B. Hodges (Eds.),
Emerging Research, Practice, and Policy on Computational Thinking (pp. 189-203). Cham:
Springer International Publishing.

Chao, P.-Y. (2016). Exploring students' computational practice, design and performance of
problem-solving through a visual programming environment. Computers & Education, 95,
202-215. doi:10.1016/j.compedu.2016.01.010

Cooper, S., & Cunningham, S. (2010). Teaching computer science in context. ACM Inroads, 1(1), 5-8.
doi:10.1145/1721933.1721934

Google, & Gallup. (2015). Searching for Computer Science: Access and Barriers in U.S. K-12
Education. Retrieved from https://goo.gl/oX311J

Google, & Gallup. (2017). Encouraging students toward computer science learning. Results from the
2015-2016 Google-Gallup study of computer science in U.S. K-12 schools. Retrieved from
https://goo.gl/iM5g3A

Grover, S., & Basu, S. (2017). Measuring Student Learning in Introductory Block-Based
Programming: Examining Misconceptions of Loops, Variables, and Boolean Logic. Paper

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 69

presented at the Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, Seattle, Washington, USA.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field.
Educational Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education, 25(2), 199-237.
doi:10.1080/08993408.2015.1033142

Kalelioğlu, F., & Gülbahar, Y. (2014). The effects of teaching programming via Scratch on problem
solving skills: A discussion from learners’ perspective. Informatics in Education-An
International Journal(Vol13_1), 33-50.

Kohn, T. (2017a). Variable Evaluation: an Exploration of Novice Programmers' Understanding and
Common Misconceptions. Paper presented at the Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, Seattle, Washington, USA.

Kohn, T. (2017b). Variable Evaluation: an Exploration of Novice Programmers' Understanding and
Common Misconceptions. Paper presented at the ACM SIGCSE Technical Symposium on
Computer Science Education, Seattle, Washington, USA.

Kwon, K. (2017). Novice programmer's misconception of programming reflected on problem-solving
plans. International Journal of Computer Science Education in Schools, 1(4), 14-24.
doi:10.21585/ijcses.v1i4.19

Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice
programmers. ACM SIGCSE Bulletin, 37(3), 14-18. doi:10.1145/1151954.1067453

Lee, Y. (2010). Developing computer programming concepts and skills via technology-enriched
language-art projects: A case study. Journal of Educational Multimedia and Hypermedia,
19(3), 307-326.

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on the learning of
computational problem solving. Computers & Education, 57(3), 1907-1918.
doi:10.1016/j.compedu.2011.04.002

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming
Language and Environment. ACM Transactions on Computing Education, 10(4), 1-15.
doi:10.1145/1868358.1868363

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with
Scratch. Computer Science Education, 23(3), 239-264. doi:10.1080/08993408.2013.832022

Moreno, J., & Robles, G. (2014, 22-25 Oct. 2014). Automatic detection of bad programming habits in
scratch: A preliminary study. Paper presented at the 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings.

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of
scratch projects to assess and foster computational thinking. RED. Revista de Educación a
Distancia(46), 1-23.

Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to Learn: Where Does It Belong
in the K-12 Curriculum? Journal of Information Technology Education, 15, 283-303.

Reding, T. E., Dorn, B., Grandgenett, N., Siy, H., Youn, J., Zhu, Q., & Engelmann, C. (2016).
Identification of the Emergent Leaders within a CSE Professional Development Program.
Paper presented at the the 11th Workshop in Primary and Secondary Computing Education,

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 70

Münster, Germany.
Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., . . . Kafai, Y.

(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.
doi:10.1145/1592761.1592779

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case study using
“Scratch” in five schools. Computers & Education, 97, 129-141.
doi:10.1016/j.compedu.2016.03.003

Samurcay, R. (1989). The concept of variable in programming: Its meaning and use in
problem-solving by novice programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the
novice programmer (pp. 161-178). Hillsdale, NJ: Lawrence Erlbaum.

Shi, N., Cui, W., Zhang, P., & Sun, X. (2018). Evaluating the Effectiveness Roles of Variables in the
Novice Programmers Learning. Journal of Educational Computing Research, 56(2), 181-201.
doi:10.1177/0735633117707312

Simsek, A. (2011). The Relationship between Computer Anxiety and Computer Self-Efficacy.
Contemporary Educational Technology, 2(3), 177-187.

Su, A. Y. S., Yang, S. J. H., Hwang, W., Huang, C. S. J., & Tern, M. (2014). Investigating the role of
computer-supported annotation in problem-solving-based teaching: An empirical study of a
Scratch programming pedagogy. British Journal of Educational Technology, 45(4), 647-665.
doi:10.1111/bjet.12058

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through
problem-based game projects with Scratch. Computers & Education, 120, 64-74.
doi:10.1016/j.compedu.2018.01.011

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
doi:10.1145/1118178.1118215

Winslow, L. E. (1996). Programming pedagogy - a psychological overview. ACM SIGCSE Bulletin,
28(3), 17-22. doi:10.1145/234867.234872

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical
Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends,
60(6), 565-568. doi:10.1007/s11528-016-0087-7

International Journal of Computer Science Education in Schools, September 2018, Vol. 2, No. 3
ISSN 2513-8359

 71

