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Abstract 

This study employs a potential outcomes modeling approach to estimate the effect of Code.org’s 

Professional Learning Program on Advanced Placement (AP) Computer Science Principles test taking 

and qualifying score earned for a recent cohort of 167 schools compared to a matched group of 

comparison schools. Results indicate substantial and significant increases in both Computer Science AP 

test taking and qualifying score earning for all students. In addition, the significant effects were even 

greater for Computer Science AP test taking and qualifying score earned by female and minority students 

when impact ratios are analyzed separately. This study provides evidence of a teacher training program 

that is having a significant and important impact on preparing more students to succeed in computer 

science and improve the future of computer science education in this country. 

Keywords: computer science, professional development, teacher training 

 

1. Introduction 

Despite the growing need for qualified workers in STEM fields, there remains a significant under-

representation of females in STEM fields (Beede, et al., 2011) and specifically in Computer Science 

careers (Sax, et al., 2017).  Similar gaps exist for minority students.  Research has shown that targeted 

training of teachers to provide Computer Science courses can increase the number of minority students 

enrolled in advanced Computer Science courses (Goode, 2007).  Goode argues that there is a critical 

need to provide professional development to support and encourage minority participation in Computer 

Science coursework.  This study employs a potential outcomes modeling approach to estimate the 

causal effect of Code.org’s Professional Learning Program. 

 

Code.org, a nonprofit 501(c) (3), works across the education spectrum to expand access to computer 

science and increase participation by women and underrepresented minority populations in computer 

science coursework. Code.org believes that every student in every school should have the opportunity 

to learn computer science, just like biology, chemistry or algebra. In addition to developing curricula for 

grades K-12, Code.org provides professional development for high school educators. The Code.org 

Professional Learning Program offers both in-person and online support for teachers before and during 

their first year teaching the Code.org curriculum. To date, several thousand teachers completed the 

program, with the majority ranking it as among the best professional development of their careers. 

 

The Code.org Professional Learning Program is a multi-pronged approach to ensure the quality and 

sustainability of the program at scale. The program represents a coordination of three major Code.org 

efforts -- Regional Partners, Facilitator Development, and Professional Development Workshops -- all 

built upon the foundations and principles of Code.org curricula which has been designed to meet 

learning objectives through engagement with equitable classroom practices. 

 

Taken altogether, the Professional Learning Program can be summarized as a year of ongoing 

Professional Development Workshops for teachers with agendas and activities designed specifically for 

the Code.org CS Principles Curriculum and teaching philosophies. Workshops are run by Code.org 

Professional Development Facilitators who receive training in a separate, year-long program devoted to 

PD leadership development specifically designed to support the Code.org CS Principles Curriculum. 
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Teachers are supported from the beginning of the program to the end by Code.org Regional Partners 

who collaborate with facilitators to deliver high quality workshops. Code.org Regional Partners are 

developed through a multi-year partnership with the aim of building local, sustainable hubs of high 

quality PD for computer science teachers. Teachers also have additional ongoing supports such as the 

Code.org Forum, an online professional learning community. 

 

 

 

Figure 1. Code.org Professional Learning Program Logic Model 

 

1.1. Goals 

The primary goal of the Code.org Professional Learning Program is to support implementation of the 

Code.org CS Principles Curriculum in schools such that it leads to more students, and a more diverse 

group of students, taking and earning qualifying scores on the AP Computer Science Principles Exam. 

Other student goals include generating positive attitudes, self-efficacy, sense of belonging in computer 

science classrooms, and positive expectation about computer science in their future. A residual outcome 

would be to increase the number and diversity of students who pursue computing-related opportunities 

after AP Computer Science Principles, such as taking more computer science classes or seeking 

employment that requires computer science skills. 

 

The curriculum and associated professional development enable teachers with very little background 

knowledge in computer science to deliver the course via equitable teaching practices to engage all 

students. Other goals for teachers include positively affecting teachers’ attitudes and self-efficacy toward 

teaching computer science, as well as their belief-systems about equity in computer science classrooms. 

The theory underlying these goals is that teachers who engage students with equitable teaching practices 

coupled with a curriculum rich with resources and activities that support and encourage enactment of 

those practices will lead to (1) better student learning overall (2) more equitable student engagement 

and learning. 

 

1.2. Timeline & Implementation 

The Code.org Professional Learning Program begins with teachers applying to the program through a 

Regional Partner starting with January of the year they enter the program. Regional Partners work with 

Code.org to approve admission to the program based on a number of criteria, the most influential being 

a stated commitment from the district, or teacher and school principal to offer and teach the course in 

the upcoming school year. It is important to note that even though the curriculum is designed to support 

implementation of the AP course, teachers are not required to offer it as an AP course for admission into 
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the Professional Learning Program. In 2016-17 roughly half of the teachers in the program self-reported 

that they offered CS Principles as an AP course at their school. 

 

The teacher training begins in earnest during the summer with a five-day in-person workshop in which 

teachers explore the Code.org curriculum and learning tools, practice and discuss classroom 

management and teaching strategies, and build a community of educators. Modeled after the “five 

requirements of transformative learning” outlined in Louckes-Horsley, Stiles, Mundry, Love, & Hewson 

(2010), a major focus of the professional development program is to practice new teaching strategies as 

part of workshop activities. In the workshop, teachers deliver lessons from the curriculum to an audience 

of peers that highlight these teaching practices. Afterward teachers debrief the lesson, allowing them 

time to reflect with peers about how implementation should be tailored for their own classrooms. 

Teachers also reflect on enacting equitable teaching practices in light of the historic inequities faced by 

underrepresented groups in computer science. The workshops devote time to developing strategies for 

computer science advocacy and student recruitment strategies with a goal of enrolling students in 

computer science classes that are representative of their school’s population in terms of race, gender, 

and other demographic factors. 

 

The program continues to support teachers throughout the academic school year though workshops 

hosted locally by Code.org Regional Partners and run by trained Code.org Professional Development 

Facilitators. Each academic-year workshop combines further curriculum exploration and planning, and 

revising goals set during the summer (for example: recruiting and retaining a representative set of 

students, supporting student needs, assessing student learning, etc.). The workshops focus on elements 

of the curriculum that are essential for effectively teaching the course, such as exploring new computer 

science content, developing pedagogical strategies to keep the classroom environment equitable and 

engaging, and doing AP preparation. 

 

 

Figure 2. Code.org Timeline of Events 

 

2. Methodology 

2.1. Data Sources 
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Advanced Placement test data from a total of 167 treatment schools from the most recent Code.org 

cohort plus 167 non-treatment schools were analyzed for this study. Data for treatment and matched 

comparison schools was provided by the College Board by matching the Code.org treatment schools on 

the state in which the school is located, total school enrollment, percent of students receiving free or 

reduced priced lunch, and percentage of minority students at each school.  The original list of program 

schools included 383 schools, of which 167 were matched (43.6%). The lower than anticipated match 

percentage resulting from stringent matching criteria.  Matching criteria required that the comparison 

school be located in the same state as the treatment school and be within +/- 20% of the total student 

enrollment of the treatment school.  Further, each comparison school must also be within one standard 

error of the mean of the target treatment school in terms of percentage of minority students and percent 

of students qualifying for free or reduced priced lunch.  Thus, all four criteria had to be met to identify 

an acceptable comparison school.   

 

2.2. Research Design 

This study employs a potential outcomes modeling approach (Rubin, 2005) to estimate the causal effect 

of program participation on first year improvements in AP test taking and AP qualifying score earning 

in computer science AP subjects. The potential outcomes model, also called the Rubin Causal Model 

(RCM) (Holland, 1986), allows for the formal identification for causal inference.  This approach 

estimates the average difference between observed outcomes and potential outcomes (counterfactuals) 

for each unit in the analysis.  This is known as the causal estimand. Potential outcomes modeling has 

been widely used in a number of social science fields, including education, politics, and public health to 

estimate causal effects of programs or policies (Glass, Goodman, Hernan, & Samet, 2013; Keele, 2015).  

In fact, Keele (2015) states, “The RCM is the dominant model of causality in statistics at the moment” 

(p. 315), while acknowledging there are many other approaches to estimating causality in a statistical 

framework (e.g., Dawid, 2000; Pearl, 2009). 

 

The goal of propensity score matching within the RCM is to construct a sample of comparison schools 

that are similar to the treatment schools (Rosenbaum & Rubin, 1985) in terms of their likelihood of 

selection into treatment. This model has gained popularity in recent years and is frequently used to make 

causal estimates from observational studies. Rubin (2005) has argued, “the potential outcomes 

formulation of causal effects, whether in randomized experiments or in observational studies, has 

achieved widespread acceptance” (p. 329). A propensity score is a scalar value that summarizes the 

likelihood for a unit to receive a treatment, often based on a large set of variables. In this study, we 

estimate the propensity score and causal estimands using a weighting approach applied in the Toolkit 

for Weighting and Analysis of Nonequivalent Groups (“twang”) package written in the R programming 

language (Ridgeway, McCaffrey, Morral, Burgette, & Griffin, 2015). 

 

Previous literature suggests that propensity score models should include all confounding variables, that 

is, variables that are related to the treatment assignment as well as to the outcome (Rubin, 2007; Rubin 

& Thomas, 1996; West & Thoemmes, 2010), or all variables that are related to the outcome (Rosenbaum, 

2002). Stuart (2010) also argues that one should be generous in including predictors in the propensity 

score model, because the cost of omitting a variable that might predict the outcome is greater than the 

cost of including a variable that in fact did not predict the outcome (increase in bias versus slight increase 
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in standard errors of propensity scores). In this study, school demographic data such as total enrollment, 

percent minority enrollment, and percent of enrollment qualifying for free or reduced priced lunch 

provide ample information that may predict the outcomes of this study (i.e., number of students taking 

Computer Science AP tests and student performance on Computer Science AP tests). Thus, these three 

variables will be used to balance the treatment and control conditions. 

 

2.3. Data Analytic Approach 

The twang approach to propensity score estimation uses generalized boosted models (GBMs), a 

multivariate nonparametric regression technique, introduced in McCaffrey, Ridgeway, and Morral 

(2004). This approach is argued to allow for flexible, nonlinear relationships as well as a large number 

of variables, and shown to perform well under certain settings (see, e.g., Imai & Ratkovic, 2014). In the 

GBM approach, instead of matching, a weighting approach is used to estimate the treatment effect. One 

of the advantages of propensity score approaches is that once non-experimental data are used to “design 

an observational study” the study achieves balance between treatment and control groups as if it were 

based on an experimental study (Rubin, 2007). Then, the outcome analysis can proceed in the same way 

as the analysis that would have been done in an experimental study.  

 

However, note that the effects we seek to obtain can either be the average effect of the treatment on the 

treated (ATT) or the average treatment effect (ATE). Generally, when we use matching strategies based 

on the estimated propensity scores, we estimate ATT instead of ATE, because we intentionally select 

and match control group schools that are like treatment schools. However, when we use weighting 

strategies (as is done with the twang package), depending on weights that are used, either ATT or ATE 

can be obtained. For this study, we estimated the effects of the program for both ATT and ATE in order 

to get a sense of not only what the effect of the program was the participating schools, but also what the 

effect would have been had the program been provided to the control schools as well.  

 

3. Results 
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The first step in reviewing the results is to check on the extent to which the propensity score weighting 

approach results in balance across the treatment and control groups in terms of the balancing variables. 

As mentioned earlier, several variables were used to balance the treatment and control samples. Along 

with state in which the schools are located, these included: total school enrollment, percentage of 

students receiving free or reduced priced lunch, and percentage of total student enrollment that are 

minority students.  These variables were chosen as they are predictive of the outcomes of interest in 

this study.  For example, a regression model using total school enrollment, percentage of total 

enrollment that are minority, and percentage of total enrollment eligible for free or reduced priced lunch 

significantly predicted total Computer Science (Computer Science A and Computer Science Principles) 

tests taken at the school; F (3, 333) = 25.12, p<.001, R2 = .19.  

Figure 3. Balance plot for ATT analyses 

 

Treatment and control groups were fairly balanced prior to weighting on total enrollment (M=1354.94 

for treatment; M=1221.48 for controls); t(332)=-1.53, p=.128. These minor differences were virtually 

eliminated through weighting (see Figure 3 for balance plot for ATT analyses). No substantial 

differences between treatment and control schools existed in percentage of minorities (M=47.53% for 

treatment; M=47.42% for controls), t(332)=-0.03, p=.977 or for percent of students qualifying for free 

or reduced price lunch (M=49.56% for treatment; M=49.82% for controls); t(332)=0.09, p=.929.  After 

propensity score weighting (ATT estimation), the treatment and control schools were comparable in 

terms of all three balancing variables. Specifically, the average total enrollment for the weighted samples 

was 1354.94 and 1315.26 for treatment and control respectively. Likewise, the average percent minority 

enrollment was balanced at 47.5 for the treatment schools and 47.0 for the control schools; and the 
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average percent qualifying for free or reduced priced lunch was 49.6 and 49.8 for treatment and control 

schools, respectively. Perfect balance is not to be expected. Austin cautions, “as with randomization, 

one should not expect that perfect balance will be achieved for all measured baseline variables between 

treated and untreated subjects in the matched sample” (Austin, 2008, p. 2040). 

Figure 4. Balance plot for ATE analyses 

 

Treatment and control samples were equally well balanced using the ATE propensity score estimation 

procedure (see Figure 4). Specifically, for the ATE estimation, the average total enrollment for the 

weighted samples was 1298.89 and 1263.27 for treatment and control respectively. Likewise, the 

average percent minority enrollment was balanced at 47.1 for the treatment schools and 47.3 for the 

control schools; and the average percent qualifying for free or reduced priced lunch was 49.4 and 49.9 

for treatment and control schools, respectively. Given the adequately balanced samples with the ATE 

procedure, we will present the causal estimates from both the ATT and ATE procedures in this report.  
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Table 1. ATT Estimates for Test Participation by Course 

 Estimate t value p value < Cohen’s d 

All Computer Science     

All Students  17.96  6.72 0.001 0.735 

Female Students 5.28   6.07 0.001  0.664 

Black Students 1.53   4.08 0.001  0.446 

Hispanic Students  5.04  4.95 0.001  0.542 

Computer Science 

Principles 

    

All Students 16.27   8.03 0.001  0.879 

Female Students  5.00  7.10 0.001  0.777 

Black Students  1.46  4.18 0.001  0.457 

Hispanic Students  4.92  5.62 0.001  0.615 

Computer Science A     

All Students  1.69 1.24  0.215 (NS) 0.136  

Female Students  0.27  0.72  0.470 (NS)  0.079 

Black Students  0.07  1.07  0.284 (NS)  0.117 

Hispanic Students  0.12  0.43  0.668 (NS)  0.047 

 

The results of the logistic regressions for the average treatment on the treated (ATT) effect are presented 

in Table 1 above, which shows the impact of the program on average school Computer Science, 

Computer Science Principles, and Computer Science a Advanced Placement test taking.  Table 2 shows 

the impact of the Code.org program on average number of earned qualifying scores of 3 or better on 

these same AP tests. Similar analyses were conducted for average treatment effects (ATE), the results of 

which are provided in Tables 3 and 4.  

 

Figure 5. Effect on Computer Science Principles AP Test Participation 
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As indicated in Table 1, the average number of AP test taking for Computer Science Principles was 

dramatically higher for all students in the treatment schools following program implementation.   On 

average, participation in the Code.org program generated an average increase of almost 18 additional 

AP Computer Science tests taken in the 2016-2017 school year; t(332) = 6.72, p < .001. Moreover, these 

effects persist when looking at student subgroups.  For female students, the increase in Computer 

Science test taking as a result of program participation is an average of 5.28 tests per school; t(332) = 

6.07, p < .001. For Black students the increase is an average of 1.53 tests; t(332) = 4.08, p < .001 and 

for Hispanics it is more than 5 additional tests; t(332) = 4.95, p < .001. All of the estimates are highly 

significant statistically, with standardized effect sizes at or above .40 (Cohen’s d), indicating a moderate 

to large causal effect of the program on student AP test taking in Computer Science courses.   Upon 

closer inspection, it is clear that virtually all of the effect on increased test participation in Computer 

Science courses is a function of increasing participation in Computer Science Principles and not in 

increased participation in Computer Science A, which is consistent with the Code.org model.  In fact, 

there was no discernable impact of program participation on Computer Science A test taking for all 

students; t(332) = 1.24, p=.215, female students; t(332) = 0.72, p=.470, Black students; t(332) = 1.07, 

p=.284, or Hispanic students; t(332) = 0.43, p=.668. In contrast, the effect of the program on Computer 

Science Principles (CSP) was highly significant for all students and every student subgroup analyzed, 

thus the effect was not a result of generalized increases in Computer Science participation, but rather a 

function of targeted Computer Science Principles participation.  Moreover, the Cohen’s d effect sizes 

ranged from moderate (d=.46) to large (d=.88). 

 

Figure 6. Impact Ratios for Student Subgroups on Computer Science Principles Test Participation 

Although the standardized effect size estimates were smaller when viewing minority student test taking 

effects relative to effects for all students or for female students only, they are nonetheless highly 

significant and substantial. In fact, Figure 6 shows the impact ratios for Computer Science Principles 

test taking by student group.  This shows that the relative impact is greatest for minority students.  

Whereas the program effect, in essence, increases test participation for all students by a factor of more 

than 5, the effect is almost twice that for Black students (10.13).  That is to say, the program increased 

the number of Black students taking Computer Science Principles more than ten-fold on average across 

the treatment schools.  In addition, the program increased the number of Hispanic students taking 
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Computer Science Principles tests nearly six-fold. 

Table 2.  ATT Estimates for Qualifying Scores earned by Course 

 Estimate t value p value < Cohen’s d 

All Computer 

Science 

    

All Students 11.77 5.92  0.001 0.648 

Female Students  3.01 5.31  0.001  0.581 

Black Students  0.43 4.02  0.001  0.440 

Hispanic Students  2.24 4.96  0.001  0.543 

     

Computer Science 

Principles 

    

All Students 10.41   6.73 0.001  0.736 

Female Students  2.68  5.91 0.001  0.647 

Black Students  0.40  4.14 0.001  0.453 

Hispanic Students  2.25 5.37  0.001  0.588 

          

Computer Science A     

All Students 1.36  1.35  0.179 (NS)  0.148 

Female Students  0.39  1.18  0.239 (NS)  0.129 

Black Students  0.03  1.03  0.305 (NS)   0.113 

Hispanic Students  -0.01  -0.05  0.961 (NS) -0.005  

        

 

Similarly, impressive results were found for program effects on the number of qualifying scores earned 

in program schools.  In addition to increasing the number of students taking Computer Science AP tests, 

the Code.org program increased the number of qualifying scores earned by students in Computer 

Science AP courses. Table 2 demonstrates that program schools reported an average of 11.77 more 

qualifying scores in all Computer Science courses (t(332) = 5.92, p < .001) and an average of 10.41 

more qualifying scores of Computer Science Principles for all students (t(332) = 6.73, p < .001), both 

of which were highly statistically significant.  Further, as with test taking effects, the impact on 

qualifying scores was persistent for each student subgroup, with moderate to large effect sizes 

demonstrated for Computer Science Principles and no discernable effect on the number of qualifying 

scores earned in Computer Science A.   
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Figure 7. Effect of program on Computer Science Principles qualifying scores earned 

 

Figure 7 shows the impact of participation in the Code.org program on qualifying scores earned in 

Computer Science Principles in the treatment schools by student subgroup relative to what would have 

been expected had the program not been implemented in the treatment schools.  On average, the 

program resulted in 2.68 more qualifying scores for female students; t(332) = 5.91, p < .001, 0.40 more 

qualifying scores for Black students; t(332) = 4.14, p < .001, and 2.25 more qualifying scores per school 

for Hispanic students; t(332) = 5.37, p < .001.  Although these values are smaller compared to the effect 

for all students, they are nonetheless highly significant substantial effects.  The effect sizes for these 

groups are all in the moderate range (d=.45 to d=.65).   

 

 

Figure 8. Impact Ratios for Student Subgroups on Computer Science Principles Qualifying Scores 

 

 

All Females Black Hispanic

Estimate 10.41 2.68 0.40 2.25

Intercept 2.41 0.62 0.07 0.54

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Sc
o

re
s

CSP Qualifying Scores -- ATT 

All Females Black Hispanic

Ratio 5.32 5.32 6.71 5.17

0.00

2.00

4.00

6.00

8.00

10.00

12.00

CSP Qualifying Scores-- ATT Impact 
Ratios



International Journal of Computer Science Education in Schools, January 2019, Vol. 2, No. 4  
ISSN 2513-8359 

 14 

Further, the impact ratios for at least one minority subgroup are greater than for non-minority students.  

As Figure 8 shows, whereas the program results in a more than five-fold increase in the number of 

qualifying scores in Computer Science Principles for all students, Black students saw an increase of 

more than 6.7 times what would have happened without participation in the Code.org program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Average Treatment Effect on Computer Science Principles AP Test Participation 

 

These average treatment on the treated (ATT) estimates show that program participation substantially 
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students; t(332) = 6.70, p < .001, an additional 1.43 tests for Black students; t(332) = 4.03, p < .001, and 

an additional 4.7 tests for Hispanic students; t(332) = 5.03, p < .001 (see Figure 9). 
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Table 3. ATE Estimates for Test Participation by Course 

 Estimate t value p value < Cohen’s d 

All Computer Science     

All Students   17.07 6.57  0.001 0.719  

Female Students 5.19   6.00 0.001  0.657 

Black Students  1.47  3.85 0.001  0.421 

Hispanic Students  4.71  4.33 0.001  0.474 

     

Computer Science 

Principles 

    

All Students  15.76  7.42 0.001  0.812 

Female Students  4.96  6.70 0.001  0.733 

Black Students  1.43  4.03 0.001  0.441 

Hispanic Students  4.70  5.03 0.001  0.550 

          

Computer Science A     

All Students  1.31  1.09  0.275 (NS) 0.119  

Female Students  0.22  0.69  0.494 (NS)  0.076 

Black Students  0.04 0.59   0.553 (NS)  0.065 

Hispanic Students  0.01  0.05  0.961 (NS)  0.005 

        

 

As was seen with the ATT estimates, the average treatment effect estimates produced a much greater 

impact ratio for Black student Computer Science Principles test participation than for the overall 

collection of students or for Female or Hispanic students.  Figure 10 shows that for the full student 

population, the treatment increased Computer Science Principles test participation more than 500% for 

all students and for Hispanic students in particular, but the increase for Female students exceeded 600% 

and for Black students test participation increased more than 800% greater than would be observed 

without program participation. 
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Figure 10. Impact Ratios for Student Subgroups on Computer Science Principles Test Participation.  

A comparable pattern of findings was observed for Computer Science Principles qualifying scores using 

the average treatment effect estimates as was found with test participation using the same ATE estimand 

(see Table 4).  Program participation would increase the average number of qualifying scores by more 

than 10 per school in the overall sample; t(332) = 6.05, p < .001, by an average of 2.69 for female 

students; t(332) = 5.46, p < .001, by an average of .39 for Black students; t(332) = 3.83, p < .001, and 

by an average of more than 2 qualifying scores for Hispanic students; t(332) = 4.52, p < .001 (see Figure 

11).  Each of these projected improvements are highly statistically significant.  As with the ATT 

estimates, no significant improvement in Computer Science A qualifying scores is anticipated by 

program participation. 

 

The impact ratios using the ATE approach, while still substantial, are lower than for the ATT estimation 

procedure (Figure 12).  For all students, the number of qualifying scores is projected to be 4.91 times 

larger with the ATE approach as compared with 5.32 times larger with the ATT approach.  Likewise, 

the ratio for females is 5.20 for ATE versus 5.32 for ATT.  For minority students, the ratios are 

considerably lower with the average treatment effect approach compared to the average treatment on the 

treated approach (5.88 vs. 6.71 for Black students; 4.35 vs. 5.17 for Hispanic students).  

Notwithstanding these discrepancies in estimation procedures, the program effects on the number of 

Computer Science Principles qualifying scores remain large and significant. 
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Table 4. ATE Estimates for Qualifying Scores earned by Course 

 Estimate t value p value < Cohen’s d 

All Computer Science     

All Students 11.14   5.57 0.001  0.610 

Female Students  2.97  5.18 0.001  0.567 

Black Students  0.41  3.68 0.001  0.403 

Hispanic Students  2.05  4.22 0.001  0.462 

     

Computer Science 

Principles 

    

All Students  10.08  6.05 0.001  0.662 

Female Students  2.69  5.46 0.001  0.598 

Black Students  0.39  3.83 0.001  0.419 

Hispanic Students  2.08  4.52 0.001  0.495 

          

Computer Science A     

All Students  1.05  1.15 0.251 (NS)  0.126 

Female Students  0.28  1.19  0.237 (NS)  0.130 

Black Students  0.02  0.76  0.448 (NS)  0.083 

Hispanic Students  -0.03 -0.27   0.785 (NS)  -0.030 

        

 

In sum, the results of this study indicate substantial and significant increases in both AP test taking and 

qualifying score earning for all students following the implementation of the Code.org professional 

development program. In addition, significant program effects for Computer Science Principles AP test 

taking and qualifying score earning were found for female students and minority students when analyzed 

separately. Average effect sizes (Cohen’s d) for treatment effects over both average treatment on treated 

(ATT) and average treatment effects for all students (ATE), all subgroups of students, and both outcomes, 

and all disciplines was d=.62, showing a substantial positive causal impact.  The effects are stronger 

when looking only at the average treatment on the treated (ATT) effects, where the average effect size 

for first year effects was d=.64 across all subsamples and outcomes analyzed. The mean effect size for 

all analyses with the ATE approach was slightly smaller at d=.59, which still indicates a moderate effect 

size. 
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Figure 11. Average Treatment Effect of program on Computer Science Principles qualifying scores 

earned 

 

  

Figure 12. Impact Ratios for Student Subgroups on Computer Science Principles Qualifying Scores  

 

4. Discussion 

This study provides evidence that the Code.org teacher preparation program increases the number of AP 

tests taken and the number of AP qualifying scores earned by the students of the participating teachers.  

This is consistent with prior research that has shown that teacher professional development can, in 

certain contexts, positively impact student outcomes generally (Yoon, K. S., Duncan, T., Lee, S. W.-Y., 

Scarloss, B., & Shapley, K., 2007) and in computer science specifically (Mouza, C., Marzocchi, A, Pan, 

Y., & Pollock, L., 2016).  In and of itself, these results are important, but these increases may lead to 

additional advantages for these students.  Research shows that students who take AP courses have a 
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greater likelihood of attending college (Mattern, Marini, & Shaw, 2013).  Mattern, et. al state, “… the 

odds of enrolling in a four-year institution increased by 171% for students who took one AP Exam 

compared with students who took no AP exams.  The increase in odds was even higher for students 

who took more than one AP exam" (Mattern, Marini, & Shaw, 2013, p. 5).  Students participating in 

AP classes also earn better grades in college (Shaw, Marini, & Mattern, 2013), and have a greater 

likelihood of persisting in and graduating from college (Dougherty, Mellor, & Jian, 2006; Hargrove, 

Godin, & Dodd, 2008).  In addition, students who earn qualifying scores on AP tests outperform 

matched Non-AP students on many college outcome measures (Murphy & Dodd, 2009). Future research 

should explore these longer term potential impacts of this training program. 

 

This work is significant for many reasons. First, it demonstrates the use of propensity score potential 

outcomes modeling to observational data to yield meaningful and significant causal estimates of a 

popular professional development program’s effectiveness in a context where randomized assignment 

to treatment condition is either infeasible or impractical. Secondly, this study provides evidence that 

Code.org’s Professional Development Program for CS Principles is having significant and important 

impacts on preparing more students to succeed in Computer Science careers and improving the future 

of Computer Science education in this country. More students, notably female and minority students, 

are engaging in, and succeeding in, Computer Science Principles as a result of implementing this 

program in schools across the country. From an impact ratio perspective, the program is having a greater 

impact for these groups of students. 
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Abstract 

This study examines the relationship between students' pre-college experience with computers and their 

later success in introductory computer science classes in college. Data were drawn from a nationally 

representative sample of 10,197 students enrolled in computer science at 118 colleges and universities 

in the United States. We found that students taking introductory college computer science classes who 

had programmed on their own prior to college had a more positive attitude toward computer science, 

lower odds of dropping out, and earned higher grades, compared with students who had learned to 

program in a pre-college class, but had never programmed on own, or those who had never learned 

programming before college. Moreover, nearly half of the effect on final grades was mediated by a 

positive attitude toward computing. 

Keywords: self-directed, performance, experience, programming, computer science 
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1. Introduction  

“…it is often the case that students come into the institution with a self-taught ‘cowboy’ 

style of programming that in no way resembles the good programming practices which 

we are trying to convey. In teaching, we have to make sure that those students change 

their habits over time. Changing one’s habits, however, is harder than learning new 

ones.”  

—Kölling, 1999, p. 4   

Preparing students for careers that require college degrees in science, technology, engineering, and 

mathematics (STEM) is a dominant concern of K-12 education in the United States (Handelsman & 

Smith, 2016). Computing lies at the epicenter of this concern (Smith, 2016), as labor force experts have 

issued dire warnings that the overall size of the American-trained future workforce in the computer 

science and IT fields is too small to maintain the nation's status as a leader in this area (National Research 

Council, 2012).  

Students interested in majoring in computer science (CS) or other STEM fields want to do well in their 

introductory college CS course, because inferior performance may lead them to abandon career plans 

and change majors. However, learning to program is difficult—it requires thinking in a completely new 

way (Robins et al., 2003) known as computational thinking (Grover & Pea, 2013). It also requires that 

students be comfortable with learning by trial and error, (Anderson & Gegg-Harrison, 2013; Cooper, 

Dann, & Pausch, 2003), learning from open communities, and creating and participating in socially 

engaged practice (“the social turn”; Kafai & Burke, 2013). It has been found that it takes a novice 

programmer about 10 years to become an expert (Winslow 1996). Researchers have noticed a bimodal 

distribution in course grades (Lilja, 2001; Lister & Leaney, 2003; Carey, 2010), with failure rates 

commonly ranging between 30% to 60% (Bennedsen & Caspersen, 2007; Dehnadi & Bornat, 2006; 

Robins, 2010, Watson & Li, 2014). 

A large body of research over the past 40 years has examined factors that predict success in introductory 

CS courses. Learning theory research suggests a growth mindset versus fixed mindset about learning 

may be a factor in general student success (Dweck, 2006). The CS education literature has identified 

several predictors of success in programming, namely, mathematics ability (Beaubouef, 2002; Byrne 

and Lyons, 2001;Konvalina, Wileman, & Stephens, 1983; Werth, 1986; Wilson & Shrock, 2001), 

problem-solving ability (Nowaczyk, 1984), high aptitude (determined by SAT, ACT, or researcher-

administered tests; Wileman et al., 1981), perceived self-efficacy (Wiedenbeck, 2005), strong previous 

academic performance (Byrne & Lyons, 2001), and psychological factors, such as student comfort level 

(Ventura, 2005).  
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Of all the factors tested in the CS education literature, previous programming experience stands out as 

the single factor most consistently predicting student success in these courses (Wiedenbeck, 2005 

[n=120]; Byrne & Lyons, 2001 [n=110]; Wilson & Shrock, 2001 [n=105]; and Hagan & Markham, 2000 

[n=75]). Furthermore, “prior self-initiated computer experience, [mostly gained outside of school 

through “hacking” and unguided exploration], was highly predictive of university-level introductory CS 

course performance” (Kersteen, Linn, Clancy, & Hardyck, 1988, p. 328). Other researchers in the 1980s 

had also demonstrated that students were able to acquire a considerable amount of computational 

thinking skills by learning in a purely self-discovery environment without any teaching intervention 

(Kurland & Pea, 1985; Papert, 1980). The underlying philosophy is consistent with learning theories 

such as constructivism (Piaget & Inhelder, 1969), active learning (Harmin & Toth, 2006), and learning 

by design (Goldman, Eguchi, & Sklar, 2004), and quickly became the cornerstone of educational 

interventions using LEGO-Mindstorm (Kabatova & Pekarova, 2010) and robot design (Mubin et al., 

2013). This philosophy, however, stands in contradiction to Kölling’s (1999) assertion of the drawbacks 

of “cowboy programming” (in the title of this article, we expanded the original term adding "cowgirl 

programming" to steer clear of what some might consider gender-biased language, We have combined 

both, for convenience in places, with “cowhand” programming )—if we define cowhand programming 

as self-initiated programming practice, unguided and outside of school.  In any case, just how much a 

self-initiated/self-discovery cowhand programming experience improves, or hampers students’ long-

term programming efficacy and performance is yet to be examined. Researchers who took a middle 

ground advocated that self-discovery-based learning should be incorporated with a guided and 

supportive curriculum (Fay & Mayer, 1994; Lee & Thompson, 1997; Mayer, 2004). Nevertheless, the 

comparative efficacy of cowhand-oriented and instruction-oriented approaches, the interplay of the two 

approaches, and the optimal sequence of the two approaches, remain hotly debated (Chase & Klahr, 

2017; Dean & Kuhn, 2007; Furtak et al., 2012; Klahr, 2010; Roll et al., 2017; Tobias & Duffy, 2009; 

Weaver et al., 2017). 

A clearer understanding of the specific ways of attaining programming experience that helps students 

succeed in later CS coursework will benefit practitioners who operate or create programs, students who 

must choose in what fashion to expend their time and energy, and college CS instructors who seek to 

understand their students’ learning styles and to create the best learning opportunities for their students. 

This is more important today than ever because of the rising investment in K-12 CS offerings, as well 

as the proliferation of free, interactive, responsive, web-based programming education platforms like 

CodeAcademy, code.org, and Khan Academy, where one can learn programming on one’s own. 

While CS education at the K-12 level has expanded significantly in the United States (e.g., CS 10k, AP 

Computer Science: Principles), across the European Union (e.g., European Coding Initiative), in the 

United Kingdom (e.g., Computing at School), Australia (e.g., Digital Technologies), and Mexico 

(Escherle, Ramirez-Ramirez, Basawapatna, Assaf, Repenning, Maiello, Endo & Nolazco-Florez, 2016), 

https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR9
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR14
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR24
https://link-springer-com.ezp-prod1.hul.harvard.edu/article/10.1007/s10956-017-9700-6#CR51
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little is known about the degree to which such initiatives are successful beyond the immediate 

measurement of student enjoyment. A more rigorous approach to evaluating the effectiveness of 

precollege experiences is to measure their impact on performance in later introductory college 

coursework (Tai, Sadler, & Mintzes, 2006). In this way, many different types of in-school and out-of-

school initiatives and experiences can be compared, and resources can be better allocated to those 

programs that are the most effective, rather than relying on anecdotal reports to make policy decisions. 

In the case of computer science, examining the degree to which precollege experiences predict 

performance in introductory college CS courses nationwide, provides a metric that is both fair and 

meaningful. 

In this study, we ask if pre-college cowhand programming experience is associated with different college 

level CS attitude and performance, compared with a) students who had never had any programming 

experience, b) students who had learned programming only in a previous class, but never cowhand, and 

c) students who had both in-class and cowhand programming experience (in each possible sequence). 

2. Data collection 

The “Factors Influencing College Success in Information Technology” (FICSIT) study, which was 

conducted at Harvard University with funding from the National Science Foundation (grant number 

1339200), supplied the data for this article. The FICSIT study sent out a 52-item survey to examine the 

pre-college computer experiences of students. The study’s investigators obtained responses from a 

stratified random sample of 10,197 students enrolled in 118 2- and 4-year colleges and universities 

across the United States. The Integrated Postsecondary Education Data System of the National Center 

for Educational Statistics provided a listing of post-secondary institutions that was used to build a 

stratified random sample reflecting the proportion of students in the U.S. enrolled in 2-and 4-year 

colleges in three different size bins (small, medium, and large). We contacted 1080 different institutions 

(279 2-year and 801 4-year) that offered introductory courses in CS in the fall semester of 2015; 138 of 

them agreed to participate (30 2-year and 108 4-year), and 118 of them (23 2-year and 95 4-year) actually 

returned the survey. Thus, our final sample consisted of 118 institutions. Within the first two weeks of 

class, 10,197 students filled out a 52-item, paper-and-pencil, in-class survey about their prior CS 

experiences and current attitudes about computing, along with background questions about a wide 

variety of their educational experiences, as well as family background and demographic characteristics. 

Instructors provided students’ final grade in the college introductory CS course or indicated that the 

student had dropped the course. We excluded respondents who had missing values in more than 50% of 

the questionnaire or in the key predictor variables or outcome variables. As a result, the final sample 

size in our analysis was 8,891. 
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3. Variables and modeling  

This section explains the variables and analysis methods. In a nutshell, the predictor of interest was 

participants’ programming experience, but we also controlled for a wide range of background variables. 

The predictor variables and controlled variables were collected retrospectively. The dependent or 

outcome variables were 1) the grade in computer science that they eventually received in the 

introductory CS course by the end of the semester (filled in by their instructors); 2) participants’ attitude 

toward computer science at the time they answered the survey; and 3) course completion. Students in 

the sample were clustered in the models by their course instructor. To account for the significant 

autonomy instructors often have in grading, a random intercept, two-level hierarchical approach was 

used in all models. We first built hierarchical regression models to predict each of the dependent 

variables separately. We further constructed a path model to predict multiple dependent variables 

simultaneously.  

3.1. Predictor of interest 

While this study considered many student pre-college experiences with computing as possible predictors 

of performance, the final models examined programming experience in terms of “cowhand 

programming” and in-class computing experience. Our definition of cowhand programming was that a 

student had programmed by him/herself without the supervision of classroom teachers. It could happen 

prior or after taking computing classes, or not in combination with any in-class experience. The type of 

programming experience was determined based on participants’ answers to questions about “taking a 

class about computer programming,” “have programmed on my own,” and the order of the two. There 

were five groups: 1) control (n=6824), students who had never taken any class about computer 

programming, nor had practiced programming outside of class; 2) cowboy-or-cowgirl-only (479), 

students who had programmed on their own, but had never taken any class about computer 

programming; 3) cowhand→class (n=250), students who had first programmed on their own prior to 

taking a class about computer programming; 4) class→cowhand (n=422), students who had started 

programming on their own during or after taking a class; 5) Class-only (n=916), students who had taken 

classes about computer programming, but had never programmed on their own. We did not know the 

particular programming languages that the participants learned because such information was not 

specified in the questionnaire. We discuss this limitation by the end of the article. 

3.2. Control variables 

Several variables were used in the model to account for significant differences in student backgrounds. 

Gender was coded as a dichotomous variable, zero for female and one for male. Race/ethnicity was 

divided into five categories coded as a set of dummy variables—Asian, Hispanic, black, and white, with 

white as the baseline.  
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Socioeconomic status (SES) entered the model through the proxy of parents’ education. The parents’ 

highest level of education was indicated by students on a scale from zero through five: zero representing 

“did not finish high school,” one—“high school graduate,” two—“some college,” three—“4 years of 

college,” and four—“graduate level education.”  

Mathematics preparation has often been found to be associated with CS course performance (Byrne & 

Lyons, 2001; Werth, 1986; Wilson & Shrock, 2001). The SAT/ACT mathematics score was used as a 

proxy for the students’ academic preparation and aptitude. If students reported ACT scores, but no SAT 

scores, their ACT scores were converted to the SAT scale according to a concordance published by the 

College Board (1999). In our sample, the correlation between SAT/ACT mathematics score and overall 

SAT/ACT score was 0.25. 

We also controlled for whether the student was born in the United States, whether the first language was 

English, whether the student went to a public high school, whether the student had access to computer 

at home, and whether the job of any of the parents was related to CS. In all statistical models, we have 

controlled for the covariates listed above. 

3.3 Dependent variables 

This study estimated with three distinct dependent variables. The first was a hierarchical linear 

regression model, for which the dependent variable was the numerical grade in the course in introductory 

college CS at the end the semester. Institutions in the sample used different measures in awarding grades, 

with 11% using single letter grades (i.e., A, B, C, D, F), 40% using “+” and “-” to augment letter grades 

(e.g., A+, B-), and 49% using a 100-point scale. All letter grades reported were converted to the same 0 

to 100-point scale (e.g., B+=88.5, B=85, B-=81.5). For uniformity, all grades below 60 were coded as 

55, representing an “F.” 

The second was another hierarchical linear regression model. The dependent variable was positive 

attitude toward CS, which was represented by the first component score based on a principal component 

analysis of 23 items. Overall, this is a measurement of the level of interest, efficacy, and comfort in 

regard to computing. The scale was developed by the authors, Inspiration for some attitude items was 

drawn from the Computing Research Association (CRA) Undergraduate Survey and the Scientific 

Attitude Inventory (Moore & Hill Foy, 1997). The scale had a very good internal consistency with a 

Cronbach alpha value of 0.91. We used the first component because it has an eigenvalue of 9.12 and 

successfully explained 38% of the variance, whereas the second component only has an eigenvalue of 

1.60 explaining 6.4% of the variance. Table 1 presents the wording and loading of each item. 
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Table 1. Wording and PCA loading of each items in the scale measuring 

positive attitude towards CS 

 

Positive Attitude 

(PC1) 

Items Loading Contrib% 

1. Computer science is interesting to me 0.84 7.75 

2. I look forward to taking computer science 0.83 7.70 

3. I feel I belong in computer science 0.80 7.00 

4. I am confident I can do well in computer science 0.76 6.25 

5. Computer science is a creative activity 0.75 6.20 

6. Computer science can help in solving problems 0.74 5.96 

7. I enjoy using algorithms to solve computational 

problems 

0.73 5.79 

8. Computer science allows me to develop models from 

abstractions 

0.73 5.82 

9. I feel comfortable doing computer science 0.72 5.64 

10. Computer science facilitates the creation of 

knowledge 

0.70 5.47 

11. Computer science is relevant to real life 0.63 4.38 

12. I do not get discouraged from setbacks in computer 

science 

0.62 4.30 

13. I wish I did not have to take computer science -0.61 4.21 

14. Computer science is boring for me -0.59 3.93 

15. I feel accepted by my peers in computer science 0.56 3.43 
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16. Computer science provides new ways to 

communicate globally 

0.55 3.36 

17. The internet fosters collaboration worldwide 0.49 2.64 

18. I am comfortable asking classmates for help 0.43 1.96 

19. Computer science people are intelligent 0.39 1.71 

20. Most people can understand computer science 0.39 1.67 

21. I am comfortable asking my professors/TAs/tutors for 

help 

0.37 1.54 

22. Computer science makes me nervous -0.32 1.17 

23. Most people in computer science are nerds or geeks 0.02 0.01 

 

The third model was a hierarchical logistic regression model, with a binary dependent variable indicating 

whether students either completed their college CS course or dropped out of the course—5.54% of 

sampled students.  

Lastly, we specified a path model to test the relationship among cowhand programming experience, 

positive attitude towards CS, and final grade. Specifically, we examined whether the effect of prior 

experience on the final grade was mediated by positive attitude.  

4. Results 

4.1 Descriptive statistics 

The mean grade for those who completed the course was 84.34 (sd=13.83) on a 100-point scale. The 

mean mathematics SAT/ACT score was 639.27 (sd=126.53), approximately 1.39 standard deviation (in 

standard deviation units of our sample) higher than the national average of 500 (College Board, 2014). 

Two-thirds of the sample had at least one parent with either 4 years of college or a post-graduate 

education. With just a 5.5% dropout rate, this U.S. study’s findings are at odds with Bennedsen and 

Caspersen’s (2007) and Watson and Li’s (2014) global studies, which estimated a roughly 33% dropout 

rate for introductory programming courses. Other descriptive summaries, broken down by programming 

experience groups, are shown in Table 2. 
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Table 2. Descriptive summary by group     

 None Cowhand 

Only 

Cowhand-> 

Class 

Class-> 

Cowhand 

Class Only 

Definition:      

      Taking class No No Yes Yes Yes 

      Practicing 

programming 

No Yes Prior class In/After class No 

N 6824 479 250 422 916 

Dropout Rate 5.80% 3.50% 4.40% 4.70% 5.80% 

Final Grade (sd) 84.01 (13.94) 87.46 (12.33) 86.75 (11.79) 86.21 (12.37) 82.40 (14.88) 

Male 70.76% 85.14% 82.11% 80.14% 68.34% 

Born in US 75.40% 82.67% 81.20% 84.59% 68.62% 

English is First Language 69.50% 79.33% 79.60% 76.06% 66.32% 

Public High School 77.40% 73.27% 71.60% 77.25% 79.49% 

Race. Asian 24.20% 24.63% 26.80% 23.93% 19.87% 

          Hispanic 9.60% 2.64% 4.00% 6.23% 15.28% 

          Black 8.40% 5.33% 4.80% 6.10% 15.48% 

          White 57.80% 67.40% 64.40% 63.74% 49.37% 

SAT Math Score  

          ...(sd) 

634.54 

(125.71) 

683.11 

(104.64) 

693.12 

(109.07) 

678.72 

(108.73) 

561.25 

(142.78) 

CS Help Outside of School 6.60% 16.07% 20.40% 15.87% 8.70% 

Parents' Jobs Relate to CS 2.10% 32.35% 46% 33.88% 23.01% 

Access Computer at Home 9.10% 97.28% 92.33% 96.19% 83.55% 
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4.2. Hierarchical models 

Our first hierarchical regression model (M1) showed that all three groups that had cowhand 

programming experience did not statistically differ from each other in the final grade. All three of them 

outperformed the control group. They also outperformed the Class-Only group based on our post-hoc 

test (for Cowhand-Only versus Class-Only, 2=17.70, p<0.001; for Cowhand→Class versus Class-Only, 

2=13.11, p<0.001; for Class→Cowhand, 2=9.59, p=0.002). Figure 1 shows the predicted score by 

programming experience groups, controlling for other covariates at the mean. This result also translates 

to a significant main effect of cowhand programming (=2.13, se=0.47, p<0001) if we aggregate the 

five groups into two groups (Cowhand versus non-Cowhand). On average, students who had 

programmed on their own scored 2.13 points higher than students who had not, an effect size of 0.15.  

 

 

Similarly, in M2, the three groups that had cowhand programming experience did not differ from each 

other on the scale of positive attitude towards CS, whereas they scored higher than the control and the 

Class-Only group. 

In the hierarchical logistic regression predicting student dropout (M3), we found that the Cowhand-Only 

group was the only group that to yield significantly lower odds of dropping out than the control group. 

The parameters for all three models are shown in Table 3. 
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Table 3. Hierarchical regression model predicting the final grade and the odds of dropout 

  M1.Final Grade M2.Positive Attitude  M3.Dropout 

   s.e. 
p-

value 
b s.e. 

p-

value 

Odd 

Ratio 
s.e. 

p-

value 

Cowhand-Only 2.23 0.68 0.001 1.29 0.14 0.0001 0.52 0.16 0.04 

Cowhand->Class  2.43 0.92 0.01 1.31 0.19 0.0001 0.64 0.25 0.25 

Class->Cowhand 1.59 0.7 0.03 1.19 0.15 0.0001 0.61 0.17 0.08 

Class-Only -0.8 0.77 0.227 -0.16 0.12 0.17 0.89 0.3 0.75 

                    

Male -1.04 0.36 0.004 0.94 0.07 0.0001 0.94 0.13 0.67 

US born -0.75 0.49 0.13 -0.37 0.11 0.001 1.65 0.32 0.01 

Language 0.59 0.47 0.21 -0.02 0.1 0.8 0.79 0.14 0.19 

Pub-School 0.27 0.38 0.48 0.01 0.08 0.88 1 0.15 0.99 

Asian -0.83 0.44 0.06 -0.16 0.09 0.1 0.85 0.14 0.37 

Hisp -1.09 0.55 0.04 0.27 0.11 0.02 0.84 0.17 0.42 

Black -4.51 0.63 0.0001 -0.05 0.13 0.71 0.84 0.22 0.5 

Ed Father 0.41 0.17 0.01 -0.09 0.04 0.02 0.93 0.06 0.26 

Ed Mother -0.08 0.18 0.65 -0.03 0.04 0.05 0.96 0.07 0.53 

SAT score 0.02 0.001 0.0001 0.003 0.0003 0.0001 0.99 0.0004 0.0001 

Help  0.23 0.58 0.69 0.28 0.13 0.03 0.6 0.16 0.06 

Parent job -0.59 0.38 0.12 -0.13 0.08 0.12 0.93 0.14 0.64 

Access to 

computer 
0.14 0.75 0.85 0.08 0.16 0.61 0.52 0.13 0.01 

Intercept 68.11 1.44 0.0001 -3.79 0.32 0.0001 0.21 0.12 0.006 

                    

2(Level-2) 22.84 0.38   0.89 0.07   2.85 0.21   

2(Level-1) 147.38 0.11   2.53 0.02         

                    

Lastly, we used the path analysis to examine a possible mediation of the effect from cowhand 

programming experience to final grade via positive attitude. Because M1 and M2 have both shown that 

the three groups with cowhand programming experience did not differ from each other, and that Class 

Only and the control group did not differ from each other, we decided to simplify our model to merge 

the five groups into two groups (Cowhand versus Non-Cowhand) to model the cowhand programming 

effect in general. We ran a path analysis that simultaneously tested for the effect of cowhand 

programming on positive attitude, the effect of cowhand programming on final grade, and the effect of 
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positive attitude on final grade, while controlling for all covariates and accounting for the two-level 

clustering. 

As shown in Figure 2 (for presentation purpose this figure does not show the covariates and clustering; 

they were nevertheless accounted for in the model), when modeling the effects simultaneously, cowhand 

programming had significant positive effect on positive attitude (std.est=1.735, robust.se=0.113, 

p<0.001) and final grade (std.est=0.086, robust.se=0.035, p=0.015), and the positive attitude also had a 

positive effect on final grade (std.est=0.041, robust.se=0.005, p<0.001). There was a significant 

mediation effect from cowhand programming to final grade via positive attitude (std.est=0.070, 

robust.se=0.009, p<0.001), whereas the total effect from cowhand programming to final grade was 

0.157. In other words, 44.58% of the total effect from cowhand programming to final grade was 

mediated by positive attitude.  

 

 

5. Discussion and conclusion 

In Paradoxes of Education in a Republic, philosopher Eva Brann (1979) wrote, in 1979, “Those who 

lack a good grounding must learn laboriously and lengthily in schools what the well-educated learn 

quickly by themselves.” She mentioned computer programming explicitly as an example of a field in 

which this is the case. We have found little to refute this nearly half-century-old claim. At the pre-college 

level, self-directed learning still may be the best way to learn to program. 

Why might it be the case that cowhand programmers outperformed the other students on all fronts? It is 

reasonable to suspect that cowhand programmers have a greater perceived self-efficacy and comfort 

level with programming. Moreover, by programming alone, cowhand programmers have expressed 

Cowhand 

Programmi

ng 

Positive 

Attitude 

Final Grade 

1.735 

0.086 

Figure 2. Path diagram of the effect from Cowhand programming to final grade 

partially mediated by positive attitude towards computer science. Other 

covariates and two-level clustering were accounted for in the estimation but 

not shown in the diagram. 
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greater interest in, and commitment to, the subject, which may help them push through the difficult 

portions of their college CS course when many of their peers do not. This interpretation is supported by 

the mediation effect of positive attitude, which measures the level of interest, efficacy, and comfort. 

Previous research has also shown such a mentality to be associated with success in CS (Ramalingam, 

LaBelle, & Wiedenbeck, 2004; Ventura, 2005; Wiedenbeck, 2005). In addition, because college requires 

a more independent working style than does high school, it is possible that cowhand programmers are 

more suited to college success in general. College work may require more independence from classroom 

instructors, but it is not independent of the outside world. This is especially true for CS, which enables, 

and heavily relies upon, the open source online community. The development of search engines, as well 

as the ease with which learners can access the help of experts through message boards and websites like 

Stack Exchange, means that one is hardly learning alone anymore when one is programming “on one’s 

own.” Students who have had the experience of programming independent of a classroom instructor 

may be more familiar and comfortable using a variety of tools to “geek out and mess around,” an 

attribute that is crucial for new generation programmers and innovators (Ito et al., 2009; Liggett, 2014; 

McKenna & Bergie, 2016). 

Compared with the cowhand-only group, our study did not find any distinctive advantage for cowhand 

programming in combination with classroom learning in whichever sequence. This might be due to the 

lack of information about the pedagogy adopted in the prior computing classes. Nevertheless, our finding 

strongly suggests that to learn in class without any independent hands-on experience is a rather 

ineffective strategy.  

The major limitation of this study was that we could not narrow down the language, environment and 

pedagogy in which the cowhand and in-class groups were introduced to computer programming. 

Because of the varying complexity of underlying data structures and algorithms, the specific 

programming languages the students are exposed to could make a significant difference in their attitude 

toward CS subjects in general. For example, students who had experience with Alice, which uses stories 

and games to teach logic and primitive data structures, would have very different understanding and 

expectations of CS subjects from those who had exposure to a modern high-level programming language 

like C++ or Java. It is not uncommon for CS majors to drop out or change majors simply because they 

are frustrated by the very first programming language they encounter. As a matter of fact, many schools 

have moved from the strongly typed (stricter typing rules) languages, such as C++ or Java, to scripting 

languages like Python in their CS1 curriculum, to improve retention. Future studies should carefully 

observe the context in which student learn their first programming language by themselves, with family, 

online or in class. 

Cowhand programmers’ stronger college CS performance suggests that, whatever bad habits they may 

have developed by lacking a teacher to guide them, as Kölling (1999) suggests, those are more than 
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compensated for by what they learn on their own. However, the claim that cowhand programmers have 

a tendency pick up negative habits may be far less tenable today than it may have been in 1999, at the 

time of his writing. Recent advances in graphic based languages, such as Scratch, as introductory 

languages, have greatly reduced the demand for syntactic memory. Accompanied with well-designed 

tutorials, challenges and forums online, these introductory languages have empowered beginners to self-

explore and self-teach at a young age. Many scholars once expressed concerns, similar to Kölling’s, that 

non-professional languages may introduce bad syntactic habits, such as missing semicolons or cluttered 

global variables (Meerbaun, Armoni & Ben-Ari, 2011; Powers, Ecott & Hirshfield, 2007; Techapalokul, 

2017). An increasing number of studies, however, has shown that such an introductory language 

environment both promotes interest in programming (Bers, 2010; Brennan et al., 2011; Fessakis, Gouli 

& Mavroudi, 2013; Sáez-López, Román-González & Vázquez-Cano, 2016; Weintrop & Wilensky, 

2017; Wilson & Moffat, 2012) and has long-term performance benefits in programming (Chen, 

Haduong, Brennan, Sonnert & Sadler, 2018). Based on our findings, and the recent development of 

beginner friendly programming environments, we recommend that 1) introduction to computer 

programming should not wait until taking a formal course; students should be encouraged to explore by 

themselves. 2) Getting one’s hands “dirty” is more important than keeping the code “clean” and well 

formatted. Only following instruction in a pre-college classroom without more independent hand-on 

experience may place students at a disadvantage compared with those who have hand-on experience, 

but are not class-trained. 3) To program in cowhand style does not only lead to acquisition of knowledge 

and skills, but more importantly appears to cultivate a positive attitude towards computer science, which 

translates to better performance in programming in the long term. 

The demand for professional programmers, the interest in majoring in CS in college, and the general 

push by parents and policy makers for K-12 offerings in computer science have all increased (Yadav, 

2016; Strickland, 2014; Taylor & Miller, 2015). In the meantime, many secondary CS teachers are 

currently undertrained, with limited teacher preparation for teaching pre-college computer science in the 

United States (Yadav, 2016). Despite the scarcity of resources, students have pursued self-teaching 

through innovative channels such as Code Academy, Dev Bootcamp, and open resources (McKenna & 

Bergie, 2016). We believe such a self-initiated approach should be supported wherever and whenever 

possible by pointing students towards the best available learning resources and encouraging them to 

work on their own with the help of responsive tools, online community support, and well-designed 

instruction.  
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