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Abstract 

This study compares computational thinking skills evidenced by two groups of students in two different 

secondary schools: one group per school was studying a qualification in Computer Science. The aim was to 

establish which elements of computational thinking were more prevalent in students studying Computer 

Science to a higher level. This in turn would evidence those elements likely to be present from their earlier 

computing education or through their complementary studies in Science or Mathematics, which all students 

also studied. Understanding this difference was important to identify any increased competence in 

computational thinking that was present in the Computer Science groups. Interviews involved a set of 

questions and a maze activity designed to elicit the sixteen students’ computational thinking skills based on 

the Brennan and Resnick (2012) model of computational concepts, practices and perspectives. Analysis of 

students’ responses showed surprisingly little difference between the computational thinking practices of the 

two groups in relation to abstraction, decomposition, evaluation, generalisation/reusing, logical reasoning 

and debugging/testing. The study concludes that general computational thinking skills can be developed 

either at a lower level of study or in cognate curriculum areas, leaving computer science as the rightful locus 

of computational thinking for automation.   

 

Keywords: computational thinking; computer science; computing, automation, GCSE 

 

1. Introduction: Defining Computational Thinking 

There has been recurring international attention on the perceived lack of adequate preparation of future 

generations to participate fully in the changes which new technology is bringing to society (Grover and Pea, 

2013; Webb et al, 2017). The Royal Society’s ‘Shut down or restart’ report (2012) identified key areas of 

http://ijcses.org/index.php/ijcses/editor/viewMetadata/77
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concern around curriculum and provision in computing education in England, calling for Computer Science 

to be introduced into the curriculum to increase creativity, rigour and challenge and redress the falling 

numbers and attrition rates of those studying advanced computing courses post-16.  

Although the concept was first promoted by Papert (1980), it was Wing’s (2006) call for computational 

thinking as a ‘universally applicable attitude and skill set for all’ (p.33) that was repurposed to underpin the 

Royal Society’s position regarding Computer Science as a discipline. This influenced the 2014 National 

Curriculum computing programmes of study (Department for Education, 2013) and was also evident in the 

Computer Science General Certificate of Secondary Education (GCSE) subject content first published in 

2015 (Ofqual, 2018a, Department for Education, 2015). 

The term ‘computational thinking’ (CT) has come to be embodied in computing education discourse as useful 

for society (Wing, 2014) and as a transferrable skill set valued not only academically, but also by employers 

(Brown, Sentence, Crick & Humphreys, 2014). The extent to which CT can be considered a discrete set of 

skills, separate from mathematical or scientific reasoning is still a matter of some debate (Tedre & Denning, 

2016, Weintrop et al., 2016). Many of the skills currently defined as ‘computational’ thinking, may be more 

properly considered among the higher order thinking skills (HOTS) articulated in mathematics by Pólya but 

tracing its heritage back to Plato (diSessa, 2018). Selby and Woollard’s (2013) developing definition 

promoted this view by separating evidence of the practice of skills from the activity of thinking, but Denning 

(2017) argues that skill manifests tacit knowledge. CT as an activity that is often product-oriented is therefore 

not the same as whether or not a student can evidence the use of relevant skills. It is arguable that the nature 

and extent of computation for automation purposes resulting from applied computational thinking marks a 

conceptual dividing line in the field. Berry (2019) highlighted that thinking in relation to automation (and 

therefore demonstrable) is distinct from the thinking skills developed by a broader set of CT skills, a tension 

also alluded to by Cansu and Cansu (2019) when contrasting the different prevailing definitions of 

computational thinking. 

Given the ongoing shortage of trained Computer Science teachers, the teaching or reinforcing of CT in other 

curriculum areas could help to relieve the pressure on limited resources as well as provide a safety net for the 

development of ‘computational thinking without a machine’ (Wing, 2014). Wider Science, Technology, 

Engineering and Mathematics (STEM) subjects provide a cognate space for the development of CT as these 

fields have also seen a growth in their computational counterparts and seek to develop a nuanced 

understanding of CT as it applies to their practices (Weintrop et al., 2016).     

By exploring the proficiency of able learners who are taking the new GCSE in Computer Science (CS) 

compared to those who are not, this study questions whether those taking GCSE CS have a notable difference 

in general CT skills beyond the thinking for automation that might be expected from students opting to study 

for a qualification in Computer Science. The answer to this question may help to inform curriculum 

discussions and the allocation of scarce time and personnel resources, but more importantly, it contributes to 

our understanding of the development of computing as a school subject by anchoring systematic research in 

the teaching and learning that underpins it. 

 

1.1 Operationalising Computational Thinking  

Wing originally characterised CT as a type of thinking that ‘involves solving problems, designing systems 

and understanding human behaviour, by drawing on the concepts fundamental to computer science’ (Wing, 

2006, p.33). Computing education is concerned with ‘the habits of mind developed from designing programs, 

software packages, and computations performed by machine.’ (Denning, 2017, p. 33). Whereas the trend in 
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the computing education literature leans often towards describing CT in general terms or as part of a wider 

set of twenty-first century skills (Livingston et al, 2015), for practical purposes CT still requires 

operationalisation. Brennan and Resnick’s (2012) development of three domains of CT: computational 

concepts, computational practices and computational perspectives has influenced resources developed for 

schools by the British Computing Society such as the Barefoot suite (barefootcomputing.org).  

 

In the Brennan and Resnick (2012) framework, computational concepts are key concepts that programmers 

engage with as they develop a computer program, such as sequencing, loops, parallelism, events, operators 

and data. CS students must learn how to select the most appropriate one for their program design. As they 

attempt to put these concepts into practice to meet their design goal, they will engage in a number of 

computational practices. These are the processes that programmers use when developing new software. CS 

students who are secure in these practices understand the ‘how’ of programming. They understand the 

appropriate use of strategies such as decomposition, debugging, logical reasoning, algorithmic thinking or 

abstraction to achieve their objective. Finally, computational perspectives are developed by CS students who 

are able to reflect on how their programming has the potential to alter the relationship they have with the 

wider world. When grounded in an understanding of concepts and an ability to apply practices, the 

computational perspectives developed by a student programmer gives them the ability to: i) create rather 

consume media; ii) use digital tools in innovative ways and iii) question the role of technology in daily life 

based on an appreciation of the possibilities and limitations afforded by technology. This model has provided 

a stimulus for the current study: CS alone is not CT, but it can provide evidence of CT. 

 

The increased importance placed on CS in schools increases the need for studies that focus on the school 

phase, but extensive literature reviews have concluded that CT research in the school context is still in the 

relatively early stages (Lye & Koh, 2014; Sentance & Selby, 2015; Lockwood & Mooney, 2018). This point 

was also acknowledged by the Royal Society (2017) with their conclusions that additional research is needed 

into; i) teaching and learning CT, ii) tools and methods of assessment and, iii) a better understanding of the 

relationship between CT and CS as a curriculum subject (Crick, 2017; Kallia, 2017; Waite, 2017). 

 

1.2 Assessing Computational Thinking  

The assessment of thinking skills of any kind presents a considerable challenge (Moseley, 2005; Burden, 

2015, Bilbao et al. 2017). Assessment in the case of a school subject is vital in terms of being able to monitor 

and measure student progress, so much attention has been paid to developing and sharing teaching, learning 

and assessment materials, which can therefore provide proxies for CT. At one end of the spectrum, in an 

attempt to be able to assess at scale Korkmaz, Cakir, and Özden (2017) developed a Likert-scale survey to 

assess CT through 29 questions in five categories: creativity, algorithmic thinking, cooperativity, critical 

thinking and problem solving, but completely divorced from the practical elements as no practical skill is 

tested. 

One commonly used method to assess CT is project analysis, examining projects previously created by 

students (Brennan & Resnick, 2012; Werner, Denner & Campe, 2015; Burke, 2012). Only the project, not 

the process to create the project is examined. Therefore, while project analysis can give some insight into 

students’ CT skills, it does not give enough information about the process used to create the projects. Recent 

studies focused on assessment of CT in schools have tended to use practical tasks to uncover and quantify 

students’ programming skills, which are then linked to CT skills. Zhong, Wang, Chen and Li (2015) used 
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practical tasks as well as students’ written reflective reports, which were then graded, or coded, on a scale of 

1-5 to assess the level of CT being shown. The focus on testing students’ ability to use programming 

constructs was a similar theme in Román-González et al. (2017), where multiple-choice questions gave 

students the opportunity to solve problems and demonstrate CT. This type of testing is very closely related 

to programming and therefore only possible to use with students of similar levels of programming experience. 

However, it limits the scope of the assessment as it is partially dependent on the students’ ability to respond 

in a suitably technical way. 

 

Design scenarios, in which students are monitored when working with or creating a program (Brennan & 

Resnick, 2012; Lee, et al., 2011; Fields, et al., 2012; Webb, 2010; Fessakis, Gouli & Mavroudi, 2013; Zhong, 

et al., 2015; Lye & Koh, 2014) are a favoured method for measuring CT. This method is able to assess all 

three dimensions of CT, enhanced by the fact that students explain the process in real-time, but it can be very 

time-consuming. 

Denning (2017) would support these approaches as evidence of the ‘new’ CT that recognises the significance 

of practical programming as evidence of CT. It can also be argued that this further separates CT from being 

considered as just another thinking skills framework and pushes the practical application towards the 

demonstrable outcomes of the CT process. 

Román-González et al. (2017) categorised a range of assessment tools into five helpful categories, suggesting 

that using complementary tools can strengthen the quality of the assessment. Thinking about assessment of 

CT in terms of summative (such as tests), formative-iterative (using artefacts to develop CT skills), skill-

transfer (through applying knowledge to problems), perceptions-attitudes scales and vocabulary assessment 

tools allows for a more nuanced understanding of what is possible in terms of assessment. This is further 

supported by Allsop (2019), whose longitudinal study triangulated a wealth of data gathered through 

conversations, interviews, journals, worksheets and completed games. It is clear that, on one hand, the ability 

to code is not enough to evidence CT, and on the other, that there are elements of coding ability that 

demonstrate computational practices that cannot be evidenced through more abstract approaches.  

The current study was designed to access the participants’ responses as evidence of their cognitive processes 

as well as giving them the opportunity to demonstrate some real-time computational practices. In assessment 

terms, this combined the aforementioned formative-iterative and skill-transfer approaches. This was 

important in developing the research questions. 

 

1.3 Research Questions 

Taking the separation of CT into the three areas identified by Brennan and Resnick (2012), this study explores 

the ways in which CS students and non-CS students differ in their ability to apply computational concepts, 

practices and perspectives to scenario-based and practical computing problems. It seeks to answer three 

research questions:  

RQ1: How do CS students and non-CS students differ in their ability to apply computational concepts to 

scenario-based and practical computing problems? 

RQ2: How do CS students and non-CS students differ in their ability to apply computational practices to 

scenario-based and practical computing problems?  

RQ3: How do CS students and non-CS students differ in their ability to apply computational perspectives to 

scenario-based and practical computing problems? 
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2. The study 

2.1. Method: Data Collection From Interviews 

The study was a comparative ex post facto design, which compared participants from two secondary schools 

in England. The constraints of the participants’ school timetables and limited free time led to the selection of 

artefact-based interviews as the best available data collection method (Webb, 2010; Lee, et al., 2011; Fields, 

et al., 2012; Fessakis, Gouli & Mavroudi, 2013; Kallia, 2017). An initial set of general CS-related questions 

exploring issues and scenarios was posed to each participant before they worked with an ‘artefact’ – in this 

case a pre-made Scratch game. The questions were related to the specific CT practices in Table 1. Artefact-

based interviews can give insight into the learner’s processes and objectives (Zhong et al., 2015), allowing 

students to be observed and engaged with while working on a program. By collecting real-time data as the 

participant worked on a CS problem, researchers were able to make note of the steps used to work through 

the artefact as well as discuss the process with the participant, exploring their reasoning for the choices they 

made. The research process is presented in Figure 1, below. 

 

 

2.2. Participants 

The schools attended by the participants were of comparable size, locality and socio-economic circumstances. 

There were some differences in the approach to CS instruction in the schools. In terms of prior learning, in 

School A, pre-GCSE pupils learned to use Scratch, a popular block-based visual programming language 

(Noone & Mooney, 2018), but did not encounter Python, a text-based programming language, until they had 

started GCSE CS and begun to prepare for controlled assessment. In School B, in addition to visual 

programming, students were introduced to basic Python earlier, in Year 8 (age 12-13 years), prior to the 

beginning of GCSE CS. However, they continued to spend the early part of GCSE on the fundamentals of 

Python. Based on formative and summative assessments, both CS groups’ programming skills were broadly 

comparable by the time of the interviews in Year 11.  

 

Participants (n=16, aged 15-16) had self-selected to the extent that they had elected whether or not to study 

a GCSE qualification in CS up to age 16 following the completion of their period of mandatory computing 

education up to the age of 14. However, in both schools this option was only available to those who had 

demonstrated previous high attainment in Mathematics.   

 

In each school there were 4 CS participants and 4 non-CS participants. Participants in CS and non-CS groups 

were predicted broadly similar grades in GCSE Mathematics. In both schools there was gender balance in 

the non-CS group (2 male, 2 female). However, there was imbalance in the CS groups (School A: 4 male; 

School B: 2 male, 2 female) because of the uptake of Computer Science.  

 

Figure 1. The Research Process 
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Table 1. Interview Questions Related to Computational Concepts, Practices and Perspectives 

Question 
Computational Thinking indicative 

references 

1. If asked to create a basic calculator that only did addition and 

subtraction, how would you go about doing this? 

Formulate Problems for a 

Computer  

(CSTA & ISTE, 2011; Wing, 2006) 

2. Imagine you are a police detective and a murder has been 

committed in your area. You are given loads of information and 

are expected to find the murderer. How would you do this? 

Decomposition  

(Riley & Hunt, 2014; Selby, Dorling 

& Woollard, 2014) 

3. I’m going to read a couple of statements, and you tell me if 

they are true, false, or if there is not enough information given: 

a. Joe is older than Tom and Matt is older than Joe. Is this 

statement true, false or not enough info: Tom is older than Matt. 

b. All the flowers in the garden are red. Some of the flowers in 

the same garden are roses. Is this statement true, false or not 

enough info: All roses are red. 

Logical Reasoning  

(Riley & Hunt, 2014; CSTA & ISTE, 

2011; Barr & Stephenson, 2011) 

4. Could you describe an algorithm to me that describes how 

you get to school in the morning, including if you cannot do 

your route one day. How would you represent this routine?  

Algorithmic thinking  

(CSTA & ISTE, 2011; Barr & 

Stephenson, 2011;Werner, et al., 

2012; Lee, et al., 2011; Selby, 

Dorling & Woollard, 2014) 

5. If you were to make a program to make a game of Chess, can 

you tell me specifically about some of the programming 

concepts that you would use and how you would use them? 

Computational Concepts  

(CSTA & ISTE, 2011 

6. How do you think the design of this game ties into your day-

to-day life? 

Computational Perspectives  

(Brennan & Resnick, 2012) 

7. Do you think technology like this has any impact on the 

world? 

Computational Perspectives  

(Brennan & Resnick, 2012) 

8. After a quick glance through and before playing it, could you 

tell me what this program does? (Uses Scratch artefact). 

Abstraction  

(CSTA & ISTE, 2011; Riley & Hunt, 

2014; Lee, et al., 2011; Barr & 

Stephenson, 2011; Werner, et al., 

2012; Selby, Dorling & Woollard, 

2014) 

9. Could you tell me some positives and negatives of the design 

of this game? What would you change if you made it? (Uses 

Scratch artefact). 

Evaluation  

(CSTA & ISTE, 2011; Selby, Dorling 

& Woollard, 2014) 

10. If asked to create a game on scratch where two users race 

each other through a course, how could you use some of the 

parts/ ideas of this Scratch program to do so? (Uses Scratch 

artefact). 

Generalisation/reusing  

(Barr & Stephenson, 2011; Brennan 

& Resnick, 2012; Fields, et al., 2012; 

Webb, 2010) 

11. There are some bugs/errors in this program… can you find Debugging/testing  
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them and fix them? (Uses Scratch artefact). (Brennan & Resnick, 2012; CSTA & 

ISTE, 2011; Selby, Dorling & 

Woollard, 2014) 

 

2.3. The Data Collection Tools 

Table 1 presents the questions that were developed by the researcher to give the participants the opportunity 

to demonstrate a range of computational thinking practices. These questions were similar in nature to 

questions commonly used by Computer Science teachers to stimulate students’ thinking in their lessons. 

Many such examples are available to teachers making use of shared resources such as the Computing At 

School website (Computing At School, 2020). In addition, questions were developed in response to 

assessable themes identified in the literature around CT. 

Questions 8-11 used a Scratch maze game (Figure 1) designed by the researcher for the purposes of the study. 

This incorporated four key features of programming: sequence, selection, variables and events. Scratch was 

used to create the program because it was a common component in the pre-GCSE curriculum of both schools 

for Year 7 and Year 8 students (11-14 years old). All participants had previously worked with Scratch prior 

to the beginning their GCSEs.  

 

Participants received one point for each star collected and three for completing the maze. If they touched the 

maze walls, they were sent back to the beginning of the progam. There were seven separate bugs in the 

Scratch script, which it was anticipated that the participants would have the ability to identify. 

 

Figure 2. Screen Shot of the Scratch Maze Game Used In Questions 8-11 
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2.4. Data Analysis 

Data collection involved both audio recordings and field notes made by the researcher while conducting the 

artefact-based interviews. Field notes were used to highlight typical and atypical responses to the questions. 

Audio recordings were used to supplement these and as a basis for transcriptions of student utterances. For 

each question it was noted whether the participant’s response provided evidence that they were able to engage 

with the CT practices, concepts or perspectives, as summarized in Table 1 below. A process of thematic 

analysis was used, colour-coding correct or incorrect answers, the use of appropriate key words and the 

amount of detail provided. Examples from the main themes are presented in the results section below. 

 

3. Results 

3.1 Summary of Responses 

The summary responses of all participants to all questions are presented in the tables below. Table 2 shows 

that overall, the mean number of correct responses given by CS students (79.7%) was higher than those given 

by non-CS students (62.5%). Table 3 shows the number of correct responses given by students to the first 

eight questions. The differences between CS and non-CS students are more pronounced in Q1 (formulation 

of problems) and Q2 (decomposition), with all CS students being able to give a correct answer to the question 

on formulation compared to only 37.5% of the non-CS students. In Q2, 87.5% of CS students gave a correct 

answer compared to 37.5% of non-CS students. CS students also gave more correct responses to Q3 (logic), 

Q5 (concepts) and Q8 (abstraction) than non-CS students. CS students were able to give responses as to how 

they would improve the Scratch artefact in Q9 (evaluation) in Table 4. However, both groups were able to 

supply reasonable ideas as to how to reuse some of the Scratch code in other contexts (Q10). Students from 

each group were also able to suggest some solutions to the bugs included in the Scratch program (Q11), with 

a mean average of three responses per student overall in each group. 

 

Table 2. Mean Average of Correct Responses to Interview Questions 

Computer Science Students Non-Computer Science Students 

79.7% 62.5% 

 

Table 3. Summary of Correct Responses to Interview Questions Given by Participants 

Question Number and Focus Computer Science Students Non-Computer Science Students 

1. Formulation 100% 37.5% 

2. Decomposition 87.5% 37.5% 

3. Logic 37.5% 25.0% 

4. Algorithm 87.5% 100% 

5. Concepts 87.5% 50% 

6. Perspectives (specific) 50% 62.5% 

7. Perspectives (general) 87.5% 100% 

8. Abstraction 100% 87.5% 

 

Table 4. Types of Responses to Interview Questions on Evaluation and Generalizing or Reusing Code 

Question Number and Focus Computer Science Students Non-Computer Science Students 

9 i. Evaluation (Positive) 75% 100% 

9 ii. Evaluation (Negative) 12.5% 37.5% 
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9 iii. Evaluation (Changes) 62.5% 12.5% 

10. Generalize/Reuse 75% 75% 

 

The responses presented in these tables mask some differences in approach and general dispositions of some 

participants relating to the key CT areas: concepts, practices and perspectives. The next section will explore 

the verbal responses thematically to identify similarities and differences in the approach of the two groups of 

participants. 

 

3.2 Computational Concepts 

The ability to elaborate and explain the purpose and function of the CT concepts they selected was the main 

difference between the responses of CS and non-CS participants. CS students used a diverse range of 

computational concepts in their responses to interview questions (particularly for Q5). They did so in a self-

aware manner, able to explain why and how they were being used. For example, when discussing loops, 

selection and Booleans Participant 1 was able both name the concepts and to explain their use:  

You would probably use a loop to loop from each of the different areas where the 

current piece could go. You would probably use IF and Else statements… to check if 

it already has a chess piece there or if it doesn’t… You could use a switch statement 

also to check for the different pieces you’ve still got available and to see if they’re 

dead or alive. You could probably use a Boolean to see if a chess piece is alive or 

dead. (CS Participant 1, Q5) 

GCSE CS participants were able to display a fluency and familiarity with CT concepts which made deploying 

them in problem solving reasoning seem logical and natural.  

You would have to create like a basic counter, which would hold the values and then 

increment it or decrement it depending on if the value was adding or being taken away. 

(Participant CS 6, Q1) 

In the main, responses from the non-CS group were limited. Some could offer no answers for Q4 or Q5. 

When a prompt was given by the interviewer, for example, that a computational concept could be an IF 

statement or a loop, some non-CS participants were able to provide a basic answer focused exclusively on 

the ‘IF’ statement, most likely related to Key Stage 3 knowledge:  

I’d probably use like IF: say the pawn moved onto where another pawn was, then it 

would be like a point to black, that sort of thing. (Non-CS Participant 17, Q5) 

To an extent this difference can be explained by the close alignment of some questions to tasks found on 

controlled assessments in CS. The CS students were more familiar with articulating this kind of reasoning. 

 

3.3 Computational Practices 

3.3.1  Abstraction 

All CS and 7 non-CS students were able to offer reasonable responses to Q8, which focused on abstraction. 

When presented with the code 5 CS students spent time looking through the game compared to 3 non-CS 

students. Some CS and non-CS students chose to summarise as they read. Others were able to explore and 

then abstract key information from the code: 
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I think the diver starts off at the beginning of the maze and you have to go through 

and grab the stars, and this star indicates the finish. (CS Participant 4, Question 8) 

You sort of try to negotiate your way around the maze and collect the stars which will 

put you up points. But if you hit a green wall you are going down by minus 2. (Non-

CS Participant 17, Question 8) 

3.3.2  Algorithmic Thinking 

Both GCSE CS and non-GCSE CS students were able to explain their morning routine (Q4). However, CS 

students were better able to do so chronologically and with the use of conditionals (if… then…) to structure 

their responses.  

If my alarm goes off at the right time, then I get up. If I actually get out of bed when 

I’m meant to, I go downstairs and have porridge, unless there’s none left, and then I 

have toast. Then, if I have to walk my dog, then I do that, but if I don’t then I just get 

ready for school. Then I just catch the bus, but if I miss that then I’ll get a lift. (CS 

Participant 9, Question 4) 

There were also a number of CS students who discussed planning their responses to Question 1 with the use 

of an algorithmic flow chart, for example:  

Before I like tried to do it, I would draw a flow diagram of what I had to do. (CS 

Participant 8, Question 1) 

Responses such as this demonstrated a strong grasp of two key concepts, sequencing and selection. This 

tendency to use a more algorithmic approach was not present in the non-GCSE CS group. Although they 

were able to describe their morning routine, the use of conditionals was not present in the same way:  

Get in the car, get dropped off, then walk. And if I can’t take my normal route I would… 

just get the bus if I can’t get the car. (non-CS Participant 15, Question 4) 

Non- responses generally demonstrated some coherent chronological structure, but which still lacked 

algorithmic expression. 

 

3.3.3  Debugging/Testing 

Both GCSE CS and non-GCSE CS students took similar approaches to debugging. In order to find the bugs, 

the majority of participants chose to play the game rather than read the code. Those who read the code first 

could not find any bugs by doing so and then began to play.  

Participants from both groups identified that there was a bug with one of the stars in the maze. However, 

none tested other stars to see if this result was inconsistent. All sixteen participants, regardless of group, took 

a linear approach to finding bugs by focusing on the goal of the maze. They only discovered those bugs that 

were in their path on the way to completion of the task. They did not, for instance, investigate whether all 

walls had the same functionality.   

 

3.3.4  Decomposition 

When approaching decomposition in Q2 no participants in either group talked in terms of taking a big 

problem and breaking it down into smaller problems. However, students from both groups explained how 

they would sort the data and make matches in the data to narrow it down.  
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I would compare all of the information and see what parts of it are common to lots of 

sources and then use that information to find the murderer. (CS, Participant 9, Q2) 

I’d probably make a table on… Excel or something and put in each suspect’s names 

and what they’ve done, and I’d probably put evidence in and try to match up what 

suspect links in with the evidence and try to filter it that way. (non-CS, Participant, 

17, Q2) 

3.3.5  Evaluation 

When evaluating the game (Q9) the CS students were able to give a more detailed evaluation than the non-

CS group. Although initially CS students were far more focused on the positives of the game than the 

negatives, with prompting from the interviewer they were able to give a more balanced view. Answers 

included reflections on the code that the game used. Some parts were criticised for being too complicated, 

others were praised for their simplicity.  

If you could like somehow like simplify all the blocks to make it look less complicated 

so you could spot errors if you had any. (CS, Participant 9, Q9) 

In contrast, non-CS participants only spoke about the experience of playing the game itself when discussing 

both positives and negatives. The non-CS students described the experience of playing the game as ‘simple’, 

without mention of the code. Most spoke about adding further levels to the game to add an increased level of 

difficulty:  

You could maybe have different levels of the game, for when you finish. (Participant 

12, Question 9) 

3.3.6  Formulation of Aa Problem for a Computer 

By including a stretch task (Q5), the researchers had hoped to explore the ability of the learners to formulate 

a problem in an appropriate way for a computer. Although challenging, this task was covered in the Key 

Stage 3 curriculum and so should not have been unfamiliar to any participants. Differences in approach and 

ideas indicate there were clear differences between CS and non-CS participants. The CS students discussed 

using various programming languages and operators throughout the interview whereas non-CS students did 

not. Many CS students discussed the actual operations that they would use. All CS answers were different 

but could be used as a valid approach to create a calculator:  

I would create a calculation function. I would probably use a Boolean to check if it’s 

subtraction or addition, and then I would ask them to enter two different numbers, and 

then return the value once I’ve done the calculation. (Participant 1, Question 1) 

GCSE CS students also showed the ability to formulate a problem for a computer when answering Question 

5. For example, one participant demonstrated understanding of how the chess game would need to be set up 

in a programme:  

I’d say if there’s already a character thing on one of the spaces, make sure that you 

can only move the characters in the ways that those characters can be moved. 

(Participant 9, Question 5) 

In contrast, many non-CS students simply could not give an answer that formulated the problem in a 

meaningful way for a computer. The answers given were not accurate. Two participants attempted to come 
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up with a solution but these lacked detail beyond using spreadsheet software (Participant 15). This task was 

covered in the Key Stage 3 curriculum and so should not have been unfamiliar to participants in either group.  

 

3.3.7  Generalization/Reusing 

Overall, students from both groups were able to explain what they would reuse from the original game in a 

new game. The students from the CS group described how they would adapt the existing functionality to 

improve the game, for example, Participant 6 described how they would use the walls from the original game 

but would change the penalty incurred for hitting them:  

Instead of having the point decrement, you could have it so it bounces you off. (CS, 

Participant 6, Question 10) 

In contrast, the non-GCSE CS students were able to describe how they would reuse elements of the original 

game but without adaptation:  

You could use the maze walls as tracks. And you could use the finish as the finish line, 

so whoever gets there first wins. You could us a diver as the cars and stars as like 

extra points if you get them. (non-CS, Participant 15, Question 10) 

3.3.8  Logical Reasoning 

The three CS students who answered Q3a correctly also answered Q3b correctly as well. Although 4 non-CS 

students answered Q3a correctly, only 2 also got Q3b right. There were no obvious differences in the quality 

of logical reasoning displayed by either group in their approach to these tasks.  

 

3.4 Computational Perspectives 

When invited to consider the effect of programming on daily life, there appeared to be a school effect among 

the GCSE CS students. Three of the four participants from this group in School A did not think there would 

be much effect of programming on daily life whereas all of the CS students from School B thought there 

would be. For example, when considering the personality of the programmer and the design of an automated 

chess player: 

It could. Like if you’re more of an attacking person, then it may go on to full attack, 

but if you’re more of a defensive person then you could go to constantly defend. 

(Participant 7, Question 6) 

The non-CS responses from both schools indicated that this was not a topic they had considered in detail. 

Some non-CS students did not think there was any relationship between lifestyle and design (Q6). Others 

had ideas, but they had not experienced this for themselves:  

Yeah, could do… like if you have a, well, stick to a sequence then it might be easier 

for you to like plan out how to do the algorithm. (Participant 12, Question 6).    

Regardless of their answers to Q6, almost all students in both groups appeared to think it obvious that 

programs and computers are having an important impact on the world. Students in the GCSE CS group were 

able to give more nuanced answers concerning to the wider impact of computers in the world compared to 

the non-GCSE CS group:  

Yeah… I think in a positive and negative manner… they are very helpful and can do 



International Journal of Computer Science Education in Schools, April 2020, Vol. 3, No. 4  
ISSN 2513-8359 

 15 

just easily, faster than people would. And I think they’re quite time consuming [to 

make and maintain], for example. (Participant 4, GSCE CS group, Question 7) 

Yeah a lot… I don’t know, it’s just changed a lot over the years, like the development 

of technology is like has developed so much we’re more reliant on them I guess. 

(Participant 13, non-GCSE CS group, Question 7) 

3.4.1  Terminology 

Students in the GCSE CS group used computing terminology throughout their answers without prompting. 

They did so accurately, with the familiarity borne of exposure and practice. The language used by non-CS 

students suggested they saw computers as a ‘black box’, without any knowledge of its internal workings. 

They understood that computers were able to perform functions when given data inputs, but they did not 

understand how these then produced the outputs. In Q7 they repeatedly referred to programming as ‘it’ and 

to computers as ‘them’. Participant 10’s response to Q7 typifies the approach taken:  

Yeah because, I don’t know, there’s a lot of Computer Science behind that no one is 

aware of, but it influences lots of technology and stuff online. (Participant 10, non-

GCSE CS, Question 7) 

3.5 Summary 

There were evident differences in the answers given by GCSE CS and non-GCSE CS participants when they 

considered the computational concepts underpinning CT practices (see Table 5). Responses showed that in 

some areas there was surprisingly little difference between the CT practices of CS and non-CS students: 

Abstraction, Decomposition, Evaluation, Generalization/Reusing, Logical Reasoning and Debugging/testing.  

In other CT practices there were clear differences: Algorithmic thinking, Evaluation and Formulation of a 

problem for a computer. The data collected indicated that formulation of a problem for a computer was a 

particularly challenging task for students. There were also differences between the groups in their 

computational perspectives, seeing the impact of computers on daily life in very different terms. This was 

also reflected in their willingness to try to solve unfamiliar problems and the language they used to describe 

problems and solutions.  

 

Table 5. Summary of Differences and Similarities in Responses by Participants in GCSE CS and Non-GCSE 

CS Groups 

Area of Computational 

Thinking 
Computer Science Students 

Non-Computer Science 

Students 

1. Computational Concepts Able to use many different 

concepts and correctly explain 

their use. 

Many not able to answer; Some 

tried to explain ‘if’ statement. 

2. Computational Practices:  

a) Abstraction 

Some found important details, 

and some talked about all parts. 

Some found important details, and 

some talked about all parts. 

b) Algorithmic Thinking Explained routine in time order. Explained routine, often out of 

time order. 

c) Debugging/ Testing Found some bugs, but not all. Found some bugs, but not all. 

d) Decomposition Explained how to organise and 

sort data. 

Explained how to organise and 

sort data. 
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e) Evaluation Main positive was that it was 

‘simple’. Some commented on 

repetition of code. 

Main positive was that it was 

‘simple’.  

f) Formulate Problem for a 

Computer 

Gave detailed answers of 

potentially correct solutions. 

Not able to explain how to create 

a calculator. 

g) Generalisation/ Reusing Explained what would be reused, 

with some criticality. 

Explained what would be reused, 

with some criticality. 

h) Logical Reasoning Not consistent correct answers to 

Q3. Logical reasoning evident. 

Not consistent correct answers to 

Q3. Logical reasoning evident. 

3. Computational 

Perspectives 

Thought that daily life affected 

programs. Gave specifics of the 

effect of programs on the world. 

Thought programs affected the 

world, but not many details given.  

 

4. Discussion of Findings 

The findings of the study in relation to the research questions are summarised below. 

 

4.1 Research Question 1: To what extent do CS students and non-CS students differ in their ability to apply 

computational concepts to scenario-based and practical computing problems? 

The detailed and accurate responses given by CS students suggest a strong knowledge of computational 

concepts. As a group, they were comfortable with the definition and usage of various concepts even when 

specifically asked. They tended to use computational concepts even when not specifically directed to do so. 

The non-CS students had more difficultly talking about computational concepts, with many unable to answer 

the questions.  

 

4.2 Research Question 2: To what extent do CS students and non-CS students differ in their ability to apply 

computational practices to scenario-based and practical computing problems?  

Algorithms and flowcharts created by the CS participants were better ordered than those of non-CS 

participants. They were able to create these as a means to structure thinking without prompting. Non-CS 

students designed algorithms that were less coherent, and they did not use algorithms to structure thinking 

without prompting.  

There were a number of areas where there was little difference in the sophistication of approach between 

participants in either group: abstraction, debugging, generalisation, decomposition and logical reasoning. In 

particular, participants in both groups struggled to abstract from the practical to the general.  

When evaluating programs, there was a difference in approach between participants in the two groups. The 

CS participants tended to approach evaluation from a programmer’s perspective. They commented on the 

code and more closely evaluated how this was constructed. Non-CS participants tended to approach 

evaluation from a player’s perspective, focusing on the end product rather than the underlying code.  

 

4.3 Research Question 3: To what extent do GCSE CS students and non-CS students differ in their ability 

to apply computational perspectives to scenario-based and practical computing problems?  

The CS participants demonstrated a richer understanding of how their lifestyle could affect their 

programming. They were also able to say specifically how this would happen. CS participants were also able 

to engage with discussion about how programs impact on the world around them. In their answers, many 

showed evidence of a deeper approach to CS: relying less on memory; able to demonstrate transferrable 
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understanding of concepts; and able to use terminology with fluency (Ramsden, 2003). Non-CS participants 

were unable to give detailed examples of how changes in lifestyle would change the program. They were 

also less forthcoming about the role that computers play in daily life. 

Overall, students studying for a GCSE qualification in CS demonstrated stronger CT skills than the non-CS 

students, as would be expected as a result of two additional academic years’ worth of study. It is also fair to 

note that the majority of these strengths lay in the tasks directly related to programming. Given that the 

relevant literature in the field had highlighted a conceptual dividing line, Denning’s (2017) classification of 

the traditional view of CT being cultivated through programming perhaps holds as true as the ‘new’ view of 

CT being seen as a conceptual framework that enables programming, assuming that programming skills are 

being taught. In this case, the study confirms that students who continued to study programming through 

GCSE CS had more strengths in this area. They showed they were stronger in the areas of computational 

concepts, algorithmic thinking, formulation of a problem for a computer, and computational perspectives.  

To answer the research questions explored in this study, the data suggests that the CS students were better 

able to apply computational concepts and computational perspectives to new challenges than non-CS students. 

The opportunities to practice and apply their knowledge and skills ensured this. However, although the CS 

group performed better, the difference in ability between the two groups to apply computational practices 

was less pronounced. This is important because the wider STEM curriculum areas, recognising the 

importance of embracing CT in their cognate disciplines (Weintrop et al, 2016), are also making efforts 

towards this. This is the beginning of a working hypothesis suggesting that there are elements of CT that can 

be developed outside of programming, but that still have value in terms of overall CT education. 

 

4.4 Willingness to Try 

There was also, in general, a greater willingness to try among CS participants, who, even when they did not 

know the answer, were willing to engage and offer a possible solution. Non-CS students frequently did not 

attempt answers to questions where they did not know an answer. For example, many non-CS students did 

not answer question 5 (focusing on computational concepts) despite being given support by the researcher. 

In addition, non-CS participants also appeared more likely to regard the computer as a ‘black box’. They 

understood that computers had functionality and gave various outputs. However, they did not have an 

understanding of how this happened; indeed, there was a higher degree of apparent computer anxiety among 

these students that may have been related to their lower confidence in the use of computers (Doyle, et al., 

2005). The willingness to try may well indicate that higher degree of confidence with computers displayed 

by the CS group is the result of an existing pre-disposition that led them to opt for the course in the first place 

(Sam, et al., 2005). This pre-disposition may then have been developed through additional experience using 

computers, leading to further improvements in their confidence (Compeau and Higgins, 1995).  

 

4.5 Computational Thinking Skills and GCSE Computer Science 

The evidence presented in this study illustrates the differences in thinking between the two groups of 

participants, using Brennan and Resnick’s (2012) model of the interface between computers and people 

(computational perspectives) and in their understanding of the underlying concepts that enable this 

relationship (computational concepts). These point to the development of the ‘habits of mind’ referred to by 

Denning (2017).  

CS participants demonstrated greater fluency in the use of some computational practices in comparison to 

participants from the non-CS group (formulation of a problem, algorithmic thinking and evaluation). As such 
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it would appear that the GCSE CS students are developing some but not all of the ‘practical skills’ described 

by Wing (2006). However, the similar behaviour by participants in both groups in some areas of 

computational practices suggests that there remain considerable overlaps with some other skill sets required 

for Mathematics and Science, which aligns with other studies that have identified CT practices in Science 

and Mathematics classrooms.  (Tedre and Denning, 2016). On one hand the crossover between disciplines 

can be seen as a reflection on the evolving nature of research and study in Science and Mathematics where 

computing has become an ever more essential skill in recent years (Weintrop, et al., 2016). On the other, it 

may support the idea that a large part of CT draws upon a broad and deep range of higher order thinking 

skills which underpin learning throughout the STEM curriculum (diSessa, 2018).   

 

4.6 Limitations of the Method 

The number of participants in the sample was small due to the pressures of the curriculum at GCSE (students 

and teachers were intensely focused on the end of year exams) and also due to the relatively small number of 

GCSE CS students in each cohort. While the study tried to include elements of a design scenario structure 

(e.g. the summarising and debugging of the game) that related to the assessment tools categorised by Román-

González et al. (2017), examination pressures meant that it was not possible to work with participants to 

develop a full design scenario study. Future research should focus on greater utilization of think-aloud 

interview protocols in combination with innovative digital data collection methods, which have proved 

fruitful in exploring teacher reasoning in this area (Hidson, 2018).  

Although there is no firm evidence of this in the data collected, it is not possible to discount a teacher effect 

impacting on CS students from each of the two schools, particularly given shortages in this subject (Kemp et 

al., 2018). The necessarily limited range in teacher perspectives may have influenced attitudinal aspects of 

the CS curriculum such as computational perspectives. Future studies should seek where possible to draw 

participants from a wider base of schools to broaden the range of teacher inputs received across the range of 

participants. Interrogating the areas where there are fewer differences could also be fruitful, as this points to 

the area where other cognate areas may overlap and provide complementary CT development, leaving 

programming as the rightful place for thinking about automation.  

In School A, the class was comprised entirely of male students. The gender balance was more equitable in 

School B. Whilst this reflected national trends in uptake of this subject at the time (Ofqual, 2018b), increasing 

the number of schools in future studies may yield a greater pool of students of both genders from which 

participants can be selected. This would allow exploration of gender differences in the adoption of CT 

concepts, practices and perspectives.  

 

5. Conclusion 

The interviews with CS and non-CS students indicate that there is some difference in areas of CT concepts, 

practices and perspectives (Brennan & Resnick, 2012). The introduction of a dedicated GCSE in Computer 

Science does have much to contribute to the development of a distinct disciplinary identity that can be 

articulated by the student. It allows and encourages the development of computational thinking for 

automation purposes that is not present in the general computational thinking skills displayed by the non-CS 

students.  

A similar level of performance was shown by participants from both groups in some CT practices: namely, 

abstraction, debugging, generalisation, decomposition and logical reasoning. This may indicate the potential 

for these skills to be fostered successfully through other areas of the curriculum (Berry, 2019, Weintrop, 
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2017), or indeed to a sufficient extent in the Key Stage 3 computing curriculum. Further research should be 

conducted in this area to compare the types of computational thinking generated specifically in Mathematics 

or Design and Technology versus the evident computational thinking for automation that is present in the 

GCSE CS students’ responses. Greater understanding of the potential for other disciplines to develop CT 

skills may alleviate pressure on under-staffed CS departments and enable the design of cross-curricular 

projects that meet the needs of CS and other STEM subjects. If computational thinking is to realise the 

benefits ascribed by Wing (2014), then logic suggests that additional study of how it is developed and 

transferred across cognate disciplines is needed. 

The key finding from this study is that it is most likely the increased focus on programming in Key Stage 4 

as part of GCSE CS that is responsible for the elements of computational thinking for automation that have 

hitherto been promoted as part of the universality of CT. The controversial point to be made is that this is 

something that can only be developed by continuing to learn programming. Rather than seeing this as a point 

of deficit, the concluding suggestion is that computational thinking for automation should be seen as the 

advanced development and application of CT specific to those whose interests and aptitudes lead them to opt 

to continue their study of programming. General computational thinking skills can be successfully developed 

at a lower level of study or in cognate areas, such as Science or Mathematics.   
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Abstract  

Literature indicated that attitude toward programming, programming self-efficacy, gender, and students’ 

department was related to achievement in computer programming. However, there is a need for further studies 

investigating to what extent these factors explain programming achievement in a model. This study aimed to 

investigate the effects of programming self-efficacy, attitude towards programming, gender, and students’ 

department on their perceived learning. The correlational study design was adopted for this study. The sample of 

the study was 742 students of an engineering faculty at a state university in Turkey. To collect data, Programming 

Self-Efficacy Scale, Computer Programming Attitude Scale, and Perceived Learning Scale were used. To analyze 

data, descriptive statistics such as mean, standard deviation, and Pearson Correlation tests were administered. In 

addition, to determine the factors affecting perceived learning, multiple regression analysis was employed. The 

results indicated that the engineering faculty students’ attitudes towards programming, programming self-efficacy, 

and perceived learning were at a high level. In addition, significant correlations between perceived learning and 

predictive variables were found. Finally, it was concluded that gender, attitude towards programming, and 

programming self-efficacy significantly predicted perceived learning. The results of the study provide a deeper 

understanding of how students’ learning was affected in programming courses.  

 

Keywords: computer programming, perceived learning, attitude, self-efficacy, gender 

 

1. Introduction  

Computational thinking has been regarded as one of the crucial skills of next-generation students (International 

Society for Technology in Education [ISTE], 2016). Core components of computational thinking curated by ISTE 

(2016) are decomposition, gathering and analyzing data, abstraction, and algorithm design. Decomposition is the 

breaking down of a larger problem into smaller and manageable parts. Gathering and analyzing data refers to 

collecting, organizing, and representing data. Abstraction is determining what parts of the problem can be ignored, 

to decrease the computational complexity of a problem. Algorithm design is the process of designing a step-by-

step process to achieve a task (ISTE, 2016). Such skill is not only crucial for students' professional careers, but 

also for the industry’s economic competitiveness and the ability to find qualified employees (Gardiner, 2017). For 

this reason, as a fundamental tool of computational thinking, many studies have been carried out to introduce 

students to computer programming in all levels of education, from elementary school to graduate level.  

http://ijcses.org/index.php/ijcses/editor/viewMetadata/74
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Scholars have proposed that programming is one of the essential skills for many engineering schools (Hodge & 

Steele, 2002). To Zyda (2009), strong programming skills would be one of the essential criteria for the graduates 

of engineering to be employed by the industry. Programming education instills some of the concepts and abilities 

of computational thinking and provides a basis for computational thinking, which helps in following a mental path 

through comprehension and understanding of concepts (Kılıçarslan-Cansu & Cansu, 2019). Therefore, 

programming education is essential for shaping the perceptions and thinking strategies of engineering students.  

Engineering faculty students face with the task of solving problems by using numerical approaches in their 1st and 

2nd grades. Good programming skills will enable them to easily solve these problems (Naraghi & Bahman, 2001). 

Therefore, it is important for engineering and technology students to learn basic computer programming skills in 

the first years of university education. Almost all engineering programs contain basic information about 

programming as part of their curriculum. Introduction to programming languages is an essential and compulsory 

course for students in computer engineering, software engineering, information systems engineering, as well as in 

many engineering fields such as electrical engineering, industrial engineering, civil engineering, mechanical 

engineering. 

With the emphasis on computer programming and the proliferation of programming education, the number of 

studies on programming education has increased. Researchers have studied the learning and teaching of 

programming (Askar & Davenport, 2009; Yılmaz, 2013), attitude toward programming (Anastasiadou & Karakos, 

2011; Gurer, Cetin, & Top, 2019; Korkmaz & Altun, 2013), and perception of programming self-efficacy (Akçay 

& Çoklar, 2018; Özyurt & Özyurt, 2015). In addition, there are studies on the factors related to programming 

achievement (Askar & Davenport, 2009; Başer, 2013a; Clinkenbeard, 2017). Related literature has indicated that 

attitude toward programming, programming self-efficacy, gender, and department of students are related to 

programming achievement. However, the correlations between the variables are needed to be examined in a more 

comprehensive manner. Although a correlation between each variable and the programming achievement has been 

shown, there is a need to investigate to what extent each variable explains programming achievement. An 

investigation of factors is supposed to guide teachers in designing computer programming courses.  

 

1.1 Literature Review  

As in the teaching of many disciplines and fields, achievement has been one of the topics that are emphasized and 

examined in programming studies. Literature showed that mostly test grades or final course grades were used to 

measure the level of learning. However, Ewell (1994) stated that grades might have little correlation with what 

students learned, and learning can also be measured effectively with self-assessment tools. Rovai and Barnum 

(2003) asserted that the use of grades to functionalize learning does not always give the best results. Learners can 

monitor their learning, and therefore perceived learning could be a valid measure of student learning (Metcalfe, 

2009). Alavi, Marakas, and Yoo (2002) define perceived learning as the changes in the perceptions of learners 

about their knowledge and skill levels before and after the learning experience. According to Rovai, Wighting, 

Baker, and Grooms (2009), perceived learning has three components; cognitive, affective, and psychomotor 

learning. The cognitive domain is expressed as remembering or recognizing information, while the affective 

domain is expressed as the development of positive attitudes towards a specific content or subject. The 

psychomotor field is described as the development of skills related to manual tasks and physical movement. 

Considering components of perceived learning, it is expected that attitude toward computer programming and 

programming self-efficacy influence perceived learning.  

Several researchers have aimed to examine the relationship between achievement and attitude in programming 

studies, and confounding results have been found. Aiken (2002) suggested that attitude is learned cognitive, 

affective, and behavioral tendencies to respond positively or negatively to specific objects, situations, institutions, 

concepts, or people. According to this definition, attitude consists of three dimensions: (1) cognitive dimension, 

consisting of beliefs about the object of attitude, (2) affective dimension, consisting of feelings about the object, 

and (3) behavioral dimension, composed of tendencies of action towards the object. As a result of their 

experimental study, Cetin and Andrews-Larson (2016) and Hongwarittorrn and Krairit (2010) stated that there was 

no explicit relationship between students' computer programming achievement and their attitudes towards 

computer programming (ATCP). Korkmaz (2016) confirmed this result in another study. On the other hand, after 

investigating 113 studies, Ma and Kishor (1997) offered a positive correlation between attitude and achievement. 

The positive relationship between attitude and achievement has been confirmed in computer programming related 

studies. In a recent study, the Gurer et al. (2019) investigated the relationship between perceived learning and 

ATCP and found that there was a positive correlation between two variables. Başer (2013a) conducted a study with 
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179 prospective teachers and stated that there was a significant relationship between students' ATCP and their 

success in programming. Additionally, Lee, Kim, and Lee (2017) conducted a study with 4221 primary school 

students and found that the ATCP was highly correlated with academic achievement in programming education. 

Hence, further investigation is needed to investigate the potential relation between students’ learning and their 

attitudes towards computer programming.  

Self-efficacy has been another psychological construct researched in computer programming studies. Perceived 

self-efficacy means one's beliefs about his or her ability to regulate and conduct the behavior to achieve specific 

goals (Bandura, 1997). According to Bandura, self-efficacy influences the way people think, motivate themselves, 

and behave. Schunk (1989) claimed that perceived self-efficacy is an important construct that directly influences 

students' learning and achievement-related behaviors. With this point of view, students with high self-efficacy tend 

to be more motivated, persistent, and perform better in a given task. On the other hand, students with low-level of 

self-efficacy perceive a given task threatening and unchallenging. Askar and Davenport (2009) stated that students' 

self-efficacy would lead to their future success. In a study related to computer programming, Yılmaz (2013) found 

that computer programming self-efficacy (CPSE) had a significant effect on programming achievement. Similarly, 

Wiedenbeck, LaBelle, and Kain (2004) stated that CPSE has a direct impact on students' overall achievement in 

programming. Clinkenbeard (2017) concluded that students' computer self-efficacy is an important determinant of 

their success in the introduction to computer programming. In a recent study, Cigdem (2017) indicated that self-

efficacy was the strongest positive determinant of achievement in programming courses. Further studies need to 

consider the effect of self-efficacy in explaining students’ computer programming achievement. 

Gender, which may be one of the potential factors that affect students' programming achievement, should also be 

investigated. It has been argued that females are not adequately represented in computer-related work and computer 

science (Doube & Lang, 2012; Singh, Allen, Scheckler & Darlington, 2007) for some cultural and environmental 

reasons. Moreover, it was reported that males have higher attitudes towards computer programming than females 

(Başer, 2013b; Korkmaz & Altun, 2013; Özyurt & Ozyurt, 2015). Contrary to these results, some studies show 

that female students have higher programming success than male students. For example, Yılmaz (2013) concluded 

that female students' computer programming success was significantly higher than male students. Similarly, Pioro 

(2004) stated that female students had higher success in computer programming than male students. Lau and Yuen 

(2009) reported that in computer programming, secondary school female students perform slightly higher than 

male students. Despite such studies pointing to gender differences in information and communication technologies 

(ICT), gender differences in ICT use have generally been shown to decrease (Alsadoon, 2013; Top, Yukselturk & 

Cakir, 2011).  

Students’ discipline may be one of the factors which affect the achievement of computer programming. Each 

discipline puts a different emphasis on computer programming, and this emphasis is reflected in the curriculum of 

the program. The computer engineering programs have five or more compulsory and several selective 

programming courses in their curriculum. On the other hand, the curriculum of other engineering programs 

includes two or more compulsory programming courses. Students of these programs register to programming 

courses related to their interests and motivations. Studies are indicating a significant relationship between the 

students’ discipline and the variables that are thought to be related to programming achievement. Ülkü, Doğan, 

Demir, and Yıldız (2017) reported that the electrical-electronics engineering department students’ self-efficacy 

perception of programming is higher than that of the textile engineering department. Gezgin and Adnan (2016) 

found that there was a significant relationship between students' self-efficacy and the discipline of students. Altun 

and Mazman (2012) and Askar and Davenport (2009) state that computer engineering students have a higher 

perception of programming self-efficacy than students in other departments. Moreover, Korkmaz and Altun (2013) 

and Başer (2013b) found that computer engineering students had more positive attitudes towards programming 

than other department students. Although students’ achievement in computer programming takes attention, the 

research on the factors affecting achievement in computer programming is still limited. This study aims to 

investigate the factors related to students’ perceived learning on computer programming (PLCP), and to what 

extent gender, department, computer programming self-efficacy (CPSE), and attitude toward computer 

programming (ATCP) predict students’ PLCP.  

This study was guided with the following research questions:  

1) What are the engineering students’ PLCP, attitudes towards computer programming, and computer 

programming self-efficacy?  

2) Is there a significant correlation between students’ PLCP and the predictor variables (gender, department, 

computer programming self-efficacy, and attitude toward computer programming)? 
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3) What are the significant predictors of students’ PLCP, and to what extent do the predictor variables explain 

PLCP?  
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2. Methodology  

The correlational study design was implemented for this study. The relationship between the two or more variables, 

where no interventions are applied to the variables, are examined with correlational studies (Fraenkel, Wallen, & 

Hyun, 2015). As this study aims to examine to what extent the selected variables (gender, department, CPSE, and 

ATCP) accounts for engineering students’ PLCP, a correlational study was considered to be appropriate for this 

study. The dependent variable of the study was engineering students’ PLCP, and the independent variables were 

their gender, department, CPSE, and ATCP.  

 

2.1 Participants  

The current study was conducted with 742 voluntary students of an engineering faculty in a state university located 

in the northeastern part of Turkey in the spring semester of 2018-2019 academic year. The participants were briefed 

about the purpose of the study and the privacy of the data with a statement on the first page of the questionnaire. 

They were also told that they had the right to withdraw from the study at any time.  Table 1 indicates the 

demographics of the participant students.  

 

Table 1. Demographic information about the participants  

Variables Group N % 

Gender Female 204 27.49 

Male 538 72.51 

Department Computer Engineering  54 7.28 

Electrical & Electronics Engineering 65 8.76 

Industrial Engineering 63 8.49 

Civil Engineering 69 9.30 

Mechanical Engineering 64 8.63 

Mechatronics Engineering 95 12.80 

Metallurgy & Materials Engineering 68 9.16 

Automotive Engineering 46 6.20 

Rail Systems Engineering 72 9.70 

Medical Engineering 63 8.49 

Transportation Engineering 42 5.66 

Environmental Engineering 41 5.53 

Grade level  Freshmen  106 14.29 

Sophomore  162 21.83 

Junior  236 31.81 

Senior  238 32.08 

Total  742 100 

 

The age of the students varied between 18 and 26, and the mean age was computed as 21.15. The number of male 

students (72.51%) was more than females (27.49%). While the number of juniors (31.81%) and seniors (32.08%) 

were nearly the same, they were more than freshman (14.29%) and sophomore (21.83%) students. In the faculty 

where this study was conducted, the students in the computer engineering department take six compulsory 

programming language courses, electrical-electronics and mechatronics students take three compulsory 

programming language courses, and students of other departments take one or two compulsory courses on 

programming language courses. However, the students of all departments take at least one course on programming 

languages in their first grade. As the data were collected at the end of the spring semester, it was considered that 

all the students who participated in this study had at least one computer programming language course. None of 

the students reported that they had not taken a programming language course. In addition, their success or failure 

in the programming language course(s) was not considered as a criterion for a student to be a participant of this 

study. 
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2.2 Data Collection  

Data of this study were collected with a paper-based survey at the end of the course year. After having required 

permissions from the faculty and the instructors, the surveys were administered to engineering faculty students in 

their classrooms. Only the volunteers completed the surveys. In this study, the surveys used to collect data were 

perceived learning on computer programming (PLCP) scale, computer programming self-efficacy (CPSE) scale, 

and attitudes toward computer programming (ATCP) scale.  

PLCP was used to measure engineering students' perceived learning levels at computer programming lessons. The 

Perceived Learning survey was originally developed by Rovai et al. (2009) to reveal students’ perceptions of their 

learning in any course. The initial form consisted of nine items in three constructs; cognitive, affective, and 

psychomotor learning. Then the survey was adopted by Top, Yukselturk, and Inan (2010) resulting in nine items 

and the Cronbach’s alpha internal consistency coefficient of 0.81. The items were in a 5-point Likert type ranging 

from 1 = completely disagree to 5 = completely agree. In this study, the Cronbach’s alpha coefficient was found 

to be 0.75, which was good (Field, 2009).  

The CPSE was originally developed by Ramalingam and Wiedenbeck (1998) to study higher education students’ 

self-efficacy beliefs on a computer programming language. The scale development study resulted in four factors; 

(1) independence and persistence, (2) complex programming tasks, (3) self-regulation, and (4) simple 

programming tasks. The reliability coefficient was computed as 0.98. The original survey was adopted by Altun 

and Mazman (2012). It resulted in nine items within two factors; the ability to perform simple programming tasks 

and the ability to perform complex programming tasks. They found the reliability of the scale as 0.93. In this study, 

the reliability coefficient was calculated as 0.88, which was good (Field, 2009).  

To investigate higher education students’ attitudes towards computer programming, Cetin and Ozden (2015) 

developed the ATCP. It included 18 items in a 5-point Likert type within three factors (affection, cognition, and 

behavior). The internal reliability coefficient of the original scale was determined to be 0.94. In this study, the 

Cronbach’s alpha value of the scale was found to be 0.86, which was good (Field, 2009).   

 

2.3 Data Analysis  

The negative items in the scales were reversed before the data analysis. Initially, descriptive statistics such as mean, 

standard deviation, skewness, and kurtosis were administered to analyze the data. The skewness and kurtosis tests 

were used to check the normality of data. To Field (2009), a normally distributed sample is satisfied if 95% of z-

scores of skewness and kurtosis should lie between −1.96 and +1.96. The skewness and kurtosis values of each 

variable ranged between -0.57 and -0.06. Hence, it could be said that the data of each factor were normally 

distributed. Then, to investigate the correlation among the engineering students' gender, department, CPSE, ATCP, 

and PLCP, the Pearson Product-Moment Correlation test was administered. Finally, multiple regression analysis 

was run to examine to what extent the independent variables explain the students’ PLCP. For multiple regression 

analysis, as the gender and department variables were nominal type variables, dummy coding was applied to the 

two variables. For gender, male was coded as “1”, and female was coded as “0”. In addition, for department 

variable, computer engineering was coded as “1”, and the others were coded as “0”.  Multiple regression analysis 

was run based on this dummy coding.  

 

3. Findings  

3.1 Descriptive Findings  

The engineering students’ PLCP, CPSE, and ATCP scores, including the sub-dimensions of the scales, are indicated 

in Table 2.  

 

Table 2. Descriptive statistics for each scale 

Variables X̄ S 

Attitude toward computer programming 3.61 0.58 

Cognitive  3.25 0.73 

Affective  3.42 0.86 

Behavioral  4.15 0.64 

Computer programming self-efficacy 3.29 0.80 
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Self-efficacy of simple tasks 3.93 0.95 

Self-efficacy of complex tasks 2.65 0.87 

Perceived learning on computer programming 3.15 0.55 

Cognitive  2.97 0.70 

Affective  3.28 0.84 

Psychomotor  3.20 0.65 

 

On the 5-point Likert type scale, it was found that students’ ATCP were at a moderately high level. Although 

students’ attitudes at affective (X̄ = 3.42) and behavioral (X̄ = 4.15) dimensions were found to be at a high level, 

they were at a moderate level in cognitive dimension (X̄ = 3.25). Students’ CPSE was found to be moderate (X̄ = 

3.29). While their self-efficacy for simple tasks was at a moderately high level (X̄ = 3.93), their self-efficacy for 

complex tasks was found to be at a moderate level (X̄ = 2.65). In addition, students’ PLCP were found at a moderate 

level (X̄ = 3.15). Likewise, their perceived learning at all sub-dimensions was found to be moderate. 

 

3.2 Correlations among Variables  

Pearson correlation test was carried out to investigate the correlations between PLCP and the predictive variables. 

The correlation test was administered after the dummy coding of gender and department variables. However, as 

gender and department are categoric variables, the correlation between these variables was not computed. Table 3 

shows the correlations between the variables.  

 

Table 3. Pearson correlation coefficients among variables  
 

PLCP Gender Department CPSE ATCP 

1. PLCP 1 -0.09* 0.20** 0.58** 0.56** 

2. Gender   1 --- -0.02 0.00 

3. Department   
 

1 0.25** 0.15** 

4. CPSE  
  

1 0.43** 

5. ATCP   
   

1 

*. Significant at the 0.05 level. 

**. Significant at the 0.01 level. 

 

All of the predictive variables were significantly correlated with PLCP. A negative significant correlation between 

PLCP and gender (r = -0.09) means that, depending on the dummy coding, females’ PLCP was higher than males’ 

PLCP. In addition, due to the dummy coding of the department variable, the positive and significant correlation 

between PLCP and department means that computer engineering students’ PLCP was higher than that of other 

departments. While the correlation between PLCP and department (r = 0.20) were found to be positive and low, 

PLCP was positively and moderately correlated with both CPSE (r = 0.58) and ATCP (r = 0.56). Furthermore, 

CPSE was found to be positively and moderately (r = 0.43) correlated with ATCP.  

 

3.3 Regression Analysis  

As gender, department, CPSE, and ATCP were found to be significantly correlated with PLCP, they were entered 

the multiple regression analysis to test how well PLCP can be explained by them (Field, 2009). Firstly, possible 

multicollinearity, which is one of the assumptions of multiple regression, between the dependent and the 

independent variables was examined. Table 3 shows that the correlation coefficients were not higher than 0.80. 

Strong correlations between the predictor variables make it difficult to distinguish the unique estimates of 

regression coefficients (Cohen, Cohen, West, & Alken, 2003). Additionally, for the current model, the variance 

inflation factors (VIF) values are all below 10, and the tolerance statistics all well above 0.2. Hence 

multicollinearity between the predictors, which is the violation of one assumption of multiple regression analysis, 

was not worthy of concern for this study. Table 4 presents the results of the multiple regression analysis tests.  
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Table 4. Regression analysis results 

Variables  B Std. 

Err. 

Beta (β) t p Zero-

order r 

Partial 

r 

(Constant) 1.054 .120 --- 8.790 .000 --- --- 

Gender (Male) -.099 .034 -.080 -2.927 .004* -.086 -.107 

Department 

(Computer Eng.) 

.002 .004 .013 .476 .634 -.090 .018 

ATCP .362 .028 .382 12.709 .000* .558 .424 

CPSE .287 .021 .413 13.632 .000* .577 .449 

R = 0.676          R2 = 0.458         R2 adjusted = 0.455 

F = 155.385      p = 0.00 

* Significant at 0.01 level 

 

As a result of multiple linear regression analysis, gender, department, ATCP and CPSE variables together, showed 

a significant relationship with PLCP (R = 0.676, R2 = 0.458) (F = 155.385, p <0.01). In other words, it was found 

that this model was found to be significant and accounted for 45.8% of the variance (R = .676) in engineering 

students’ PLCP. While ATCP (t=12.709, p<0.01) and CPSE (t=13.632, p<0.01) were positive significant predictors 

of the PLCP, being male student had negative significant impact on students’ PLCP (t=-2.927, p<0.01). With this 

finding, it can be said that female students with high ATCP and CPSE scores were expected to have higher PLCP 

scores. According to the standardized regression coefficient beta (β) in the table, the relative importance of 

predictive variables on PLCP was as following; (1) computer programming self-efficacy (β = 0.413), (2) attitude 

towards computer programming (β = 0.382), (3) gender (β = 0.080), and (4) department (β = 0.013). Based on the 

multiple regression analysis, the regression equation for PLCP was; 

PLCP=(0.362xATCP)+(0.287xCPSE)-(0.099xgender(male))+(0.002xdepartment(computer eng.))+1.054

  (1) 

 

4. Discussion  

This study investigated the factors affecting engineering students’ perceived learning in computer programming. 

Related literature highlighted that gender, department, computer programming self-efficacy, and attitude toward 

computer programming were related to perceived learning. These variables were subjected to multiple regression 

analysis to predict PLCP. The analysis of data showed that these variables accounted for 45.8% of the variance in 

PLCP. While gender, attitude toward computer programming, and computer programming self-efficacy had a 

significant influence on PLCP, students’ department was not determined to be a significant predictor of PLCP.  

There was a positive and significant relationship between students’ PLCP and ATCP in the current study. According 

to this result, it can be estimated that students with positive attitudes towards programming are likely to have 

higher PLCP, and students with low attitudes tend to have low PLCP. Furthermore, ATCP was found to be one of 

the significant predictors of PLCP. Researchers have been studying the relationship between achievement and 

attitude. Ma and Kishor (1997) analyzed 113 studies focused on the relationship between attitude and achievement. 

They noticed that the correlation between attitude and achievement was positive, but not significant. Contrary to 

this meta-analysis study result, Recber, Işıksal, and Koç (2018) found a significant relationship between attitude 

and achievement. Similar to the results of this study, studying with 168 higher education students, Akinola and 

Nosiru (2014) also found that students' attitudes had an impact on their programming success. The results of the 

studies conducted at the higher education level are similar to the results of the studies conducted at the primary 

education level. After surveying with primary school students, Lee et al. (2017) concluded that the students’ 

attitudes towards programming were significantly related to their programming achievement. This result indicates 

that teachers of programming courses should consider students’ attitudes towards programming to increase 

students’ achievement in the course. In recent years, the number of programming languages and tools has increased, 

and they were shown to have an impact on attitude and achievement (Du, Wimmer & Rada, 2016). Prior 

programming experience has effects on students’ attitudes and success in programming courses and attitudes 

towards programming. Tafliovich, Campbell, and Petersen (2013) suggested that the prior experience “affects 

students’ expectations, work habits, attitude and confidence, and perceptions of self and peers” (p. 244). It was 

found that graphical programming languages as the first experience in programming has effects on students' 

performance (Chen, Haduong, Brennan, Sonnert, & Sadler, 2019). In addition, instructional strategies such as 
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game-based learning environments have influenced students’ attitudes toward programming (Goel & Kathuria, 

2010). Hence, instructors can employ graphical programming languages, proper instructional strategies, select 

languages with a higher level of abstraction, and use software visualization tools to enhance students’ attitudes 

towards programming.  

Ramalingam and Wiedenbeck (1998) noted that self-efficacy is essential for personal motivation. Individuals with 

high self-efficacy can take on more challenging tasks and spend more effort in achieving these tasks. Similarly, 

students with high self-efficacy effort higher performance and sufficiency in activities and can achieve higher 

success in these activities (Sternberg & Williams, 2010). This study indicated that there was a positive and 

significant relationship between the perceived learning level of the students and their self-efficacy scores. 

Furthermore, CPSE was one of the significant predictors of PLCP and one of the factors affecting students' success 

in learning environments. According to this result, it can be said that students with higher CPSE are likely to have 

higher PLCP. There are studies supporting this result of the study in the literature. Gurer et al. (2019) indicated the 

positive correlation between PLCP and CPSE. Moreover, Cigdem (2017), Clinkenbeard (2017), Wiedenbeck et al. 

(2004) and Yılmaz (2013) concluded that students' computer self-efficacy is an important determinant of their 

success in introductory computer programming. The significant correlation between self-efficacy and learning in 

this study was also supported by the self-efficacy theory (Bandura, 1997). Students’ practice, teachers’ assistance, 

and students’ value of computer programming influence students’ efficacy of programming. Askar and Davenport 

(2009) stated that when faced with difficult tasks, learning achievement leads to an increase in learners’ self-

efficacy and success in future life. Therefore, teachers could lead students to more practicing and guide them. 

Additionally, they should adjust the difficulty of tasks based on the content of the course.  

There are many studies in the literature showing that computer science is a male-dominated field, that women are 

not adequately represented in universities in computer science-related courses, and that only a small percentage of 

women choose computer science as a future career (Cheryan, Master & Meltzoff, 2015; Galpin, 2002). However, 

the gap between men and women is gradually decreasing in terms of access to education and technology (Ikolo & 

Okiy, 2012; Yılmaz, 2013). Therefore, it can be stated that female students could become as successful as male 

students when opportunities for education and technology are improved. According to the results of the study, 

gender was significantly correlated with PLCP and was a significant predictor of PLCP. In other words, in this 

study, female students think that they learn computer programming more than boys. This result is similar in some 

studies in the literature and contradicts with some others. Pillay and Jugoo (2005) stated that male students' 

computer programming achievement was higher than female students. Similarly, Pala and Mıhcı-Türker (2019) 

examined prospective teachers' views on programming and found that females found programming languages 

more difficult than male teachers. In some studies, it was stated that there is no significant relationship between 

computer programming success and gender (Byrne & Lyons 2001; McDowell, Werner, Bullock, & Fernald, 2003). 

Lau and Yuen (2009) stated that female students showed higher performance in computer programming than male 

students, but this difference was due to talent differences, and there was no statistically significant difference 

between female students and male students' computer programming performances. Contrary to these studies, 

Yılmaz (2013) concluded that the computer programming success of female students was significantly higher than 

that of male students. Likewise, Pioro (2004) stated that female students had higher success in computer 

programming than male students. It can be stated that these results presented in the literature differ according to 

the time of the study, the characteristics of the sample group and the cultural structure of the region where the 

research was conducted. Similarly, the results obtained in this study are thought to be due to the characteristics of 

the sample group. This conclusion emphasizes the importance of teachers’ analysis of the target group. The analysis 

of the students in the classroom reveals the characteristics of learners, i.e., motivation, attitude, readiness. This 

supports teachers in designing teaching activities, instructional materials, learning environment, and selecting 

evaluation strategies. When a group of students with similar characteristics, i.e., gender, have lower performance 

and achievement, the teacher should put more effort into those students.  

In this study, a positive and low-level correlation between the perceived learning levels of the students and their 

departments was found. However, department variable was not found to be a significant predictor of PLCP. This 

result implies that although the variation in the perceived learning of engineering students could be explained by 

being a computer engineering or other engineering department student, it is not a determinant of student’s PLCP. 

The reason for this result may be related to the courses offered in the departments and the field of work they will 

work upon graduation. The number of courses on programming offered in the computer engineering department 

is higher than the other departments. The higher number of courses on programming and more in-depth content 

on computer science and programming may have led to higher PLCP of computer engineering students. In addition, 

students of the computer engineering department are potential computer scientists or will likely work in a 
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profession related to information and communication technologies. It can be thought that computer engineering 

students consider programming as an important gain for their future professions and therefore have high motivation 

for computer programming. In this case, computer engineering students are expected to have a higher PLCP than 

other departments’ students. Previous studies have indicated that computer engineering students' perceptions of 

programming self-efficacy (Altun & Mazman, 2012; Askar & Davenport, 2009), and their attitudes towards 

programming (Başer, 2013b; Korkmaz & Altun, 2013) are higher than those of other department students. 

Additionally, students of computer-related departments have higher attitudes towards programming than other 

departments’ students (Gezgin & Adnan, 2016; Yılmaz, 2013). Therefore, these variables, which are positively 

related to perceived learning, may cause computer engineering students to have higher PLCP. 

 

5. Conclusion and Future Works 

The study contributes to the literature on engineering faculty students’ learning on computer programming. Data 

collected from engineering students indicated that the PLCP of engineering students could be predicted using 

gender, attitude toward computer programming, and computer programming self-efficacy. The results of this study 

can inform the instructors of computer programming lessons. Teachers may use the findings of this study to 

understand better the role of different variables in students’ learning of computer programming. As it consists of 

cognitive, affective, and psychomotor domains of learning, perceived learning is a strong indicator of learning 

outcomes. While designing and implementing the programming courses, to increase learning, gender, attitude 

toward computer programming, and computer programming self-efficacy can be handled together.  

One of the limitations of this study is the population. 63.89% of the students were in their third and fourth grade. 

The freshman and sophomore students were not represented equally. Hence, in a further study, equally represented 

groups in terms of grade-level could be created while collecting data to make more concrete comparisons and 

conclusions. In the current study, to apply dummy coding on department variable, the departments of students were 

categorized as computer engineering and other departments. Therefore, the generalizability of the result about the 

relationship between PLCP and department is another limitation of this study, and this result should be considered 

carefully. In this study, variables used to predict programming success explain only 45.8% of programming 

achievement, while 54.2% cannot be explained. There are other variables that could affect students’ perception of 

learning in programming such as measured learning (Gurer et al., 2019), satisfaction with the course (Lee et al., 

2017), or first-experience with programming (Chen et al., 2019). A more comprehensive study can be done by 

adding variables such as measured learning, attitude towards the course, satisfaction, motivation. Multiple 

regression analysis was used to investigate the effect of different variables on programming achievement. In 

another study, structural equation modeling, which is an analysis that is running multiple regression models 

simultaneously, can be used to investigate the direct and indirect effects of different variables on the learning of 

programming.  
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Abstract 

We argue that understanding the cognitive foundations of computational thinking will assist educators to improve 

children’s learning in computing. We explain the conceptual relationship between executive functions and aspects 

of computational thinking. We present initial empirical data from 23 eleven year old learners which investigates 

the correlation between assessments of programming and debugging in the visual language Scratch and scores 

from the BRIEF2 assessment of executive functions. The initial data shows moderate to large correlations between 

assessments of debugging and programming with the BRIEF2 teachers’ rating of executive function as manifested 

in classroom behaviour. Case studies from the empirical data are used to qualitatively illustrate how executive 

functions relate to a game making task. We discuss the implications of these findings for educators, and present 

suggestions for future work. 

 

Keywords: computational thinking, executive functions, primary school 

 

1. Introduction 

The recent Royal Society report on computing education in UK schools reviewed the landscape after major 

curricular reform in which computing lessons became a requirement for learners aged 5 and older in England and 

Wales (Royal Society, 2017). While it welcomes the changes (which it was partly responsible for instigating) and 

notes that there are pockets of excellence, it identifies that computing education is still “patchy and fragile” (Royal 

Society, 2017, p. 6). The report demonstrates the curriculum changes are not enough; they must be supported by 

high quality teacher education and computing education research. It proposes that a research agenda in the UK 

should focus on the questions: “What is the most effective, best-evidenced curriculum framework for 

computing? …Which specific instructional techniques and teaching strategies are most effective for raising 

attainment in computing?”(Royal Society, 2017, p. 95). These are also open questions within the international 

research community. In order to answer these questions, however, we need to further develop our understanding 

of the cognitive and psychological skills which underpin different aspects of computational thinking, and how 

these develop throughout childhood. This paper focuses on the potential link between computational thinking and 

underlying executive functions. 

Much work has been done on defining computational thinking (also referred to as CT) and its component skills. 

In this paper, we use the Royal Society’s clear and succinct definition of computational thinking: “ the process of 

recognising aspects of computation in the world that surrounds us, and applying tools and techniques from 

Computer Science to understand and reason about both natural and artificial systems and processes” (The Royal 

http://ijcses.org/index.php/ijcses/editor/viewMetadata/76


International Journal of Computer Science Education in Schools, April 2020, Vol. 3, No. 4  
ISSN 2513-8359 

 37 

Society, 2012, p. 12). A review of computational thinking research identified the following core computational 

thinking elements: abstractions and pattern generalizations (including models and simulations); systematic 

processing of information; symbol systems and representations; algorithmic notions of flow of control; structured 

problem decomposition (modularizing); iterative, recursive, and parallel thinking; conditional logic; efficiency and 

performance constraints ; debugging and systematic error detection (Grover & Pea, 2013). In addition, 

“programming is not only a fundamental skill of CS and a key tool for supporting the cognitive tasks involved in 

CT but a demonstration of computational competencies as well.” (Grover & Pea, 2013, p. 40) 

There has been debate about the extent to which computational thinking can be distinguished from the other sorts 

of thinking which children learn at school. Although historically some doubt has been cast on the nature of the 

relationship between programming and problem solving (Palumbo, 1990), recent evidence synthesis reveals that 

learning to program can improve scores on other measures of problem solving. A meta-analysis of studies which 

explore the transfer of programming skills to general problem solving found an overall transfer effect of g =0.49, 

with a transfer to mathematical reasoning of g=0.57 (Scherer, Siddiq, & Sanches Viveros, 2018). It is also likely 

that programming and other computational thinking abilities are enabled by well-researched lower level 

psychological processes. Grover and Pea make the case that while there might be overlap between computational 

thinking and other STEM problem solving approaches, it was recognisably and crucially absent from previous 

curricula (Grover & Pea, 2013). Recent empirical work supports this; while computational thinking is predicted 

by other cognitive abilities, it appears to some extent to be an independent construct. In a study of 1251 Spanish 

school students, Román-González and colleagues investigated the relationship between computational thinking 

(as measured by their CTt instrument) and other cognitive abilities as measured by the Primary Mental Ability and 

RP301  Resolucion-de-Problemas problem solving standardised psychological tests (Román-González, Pérez-

González, & Jiménez-Fernández, 2017). They found a high correlation (r=0.67) between general problem solving 

ability and computational thinking scores. In a regression model, spatial ability and logical reasoning as measured 

by RP30 problem solving tasks were significant predictors of the CTt scores, explaining 27% of the variance. The 

authors interpret the high proportion of unexplained variance to suggest a “certain independence of CT as a 

psychological construct, distinct from the traditional aptitudes” (Román-González et al., 2017, p. 9). They 

recommend that further research should relate computational thinking with other cognitive abilities including 

working memory and other executive functions (also referred to as EF).  

This paper pursues this line of research by exploring the relationship between two important aspects of 

computational thinking (programming and debugging) and executive functions. It begins with an explanation of 

executive functions, the role they play in academic success, and the reasons why they are likely to be related to 

computational thinking. This is followed by an account of how executive functions (as measured by the Behavior 

Rating Inventory of Executive Functioning-2 (BRIEF2) instrument) may map to creative programming and 

debugging. Having made the case that specific EF skills are likely to underpin these aspects of computational 

thinking, the paper then reports on an empirical study to investigate this issue. Data on 23 eleven year-old learners’ 

creative programming and debugging performance, and EF abilities was gathered. Results of a correlation analysis 

do indeed support the case that EFs are related to computational thinking. Case studies from the empirical data are 

used to qualitatively illustrate how executive functions relate to a game making task. The paper concludes with 

some recommendations for practitioners about how this might affect classroom decision making, and suggestions 

of future research work.  

 

2. Literature Review 

2.1 Executive Functions and the Link to Computational Thinking 

Executive functions (EF) is an umbrella term for higher order cognitive functions linked with the frontal lobes of 

the human brain (Aron, Robbins, & Poldrack, 2004) and include abilities such as inhibiting impulsive responses, 

the ability to hold and simultaneously manipulate information in mind (known as working memory), attention 

shifting (or cognitive flexibility), planning and risk taking (Diamond, 2013; Miyake et al., 2000). EF serve as 

general purpose control mechanisms that help modulate human cognition (Miyake et al., 2000), underpin self-

control (Denckla, 1996; Pennington & Ozonoff, 1996) and are commonly implicated in problem-solving or goal-

directed-behaviour (Luria, 1966). These functions mature at different rates through childhood and into adolescence 

(Dolan & Molen, 2006).  

Executive functioning and educational attainment in the primary school age-range has also been linked with 

 
1 http://web.teaediciones.com/RP30--Resolucion-de-Problemas---Problem-Solving.aspx 
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metacognition (MC) (Bryce, Whitebread, & Szűcs, 2015), with some studies reporting a link between MC and 

problem solving in computer science learning specifically (Allsop, 2019; Parham, Gugerty, & Stevenson, 2010). 

Parham and colleagues’ analysis of a think-aloud study with eleven college-level programmers indicates that the 

meta-cognitive strategies of checking/comparing code and stating/revisiting goals were commonly used mental 

processes. In a study of a class of 11 year learners, Allsop noted the use of metacognitive practices to control and 

regulate programming activities including planning, monitoring and evaluation (Allsop, 2019). Whilst related 

constructs in children’s thought and action (Lyons & Zelazo, 2011), EF and metacognition have been based in 

different research and theoretical traditions in the psychological literature (Roebers, 2017a). In this study, for the 

sake of clarity, we have chosen to focus on EF. 

We believe that the link between EF and CT is worth exploring for two reasons: 1) EF is a predictor of academic 

success in general, including in the development of mathematical skills and science learning (Cragg & Gilmore, 

2014) so it is reasonable to assume that they are also required in CT; and 2) conceptual analysis of the processes 

involved in programming and debugging predict that cognitive regulation aspects of EF are required. However, 

further empirical evidence of the relationship is required; this paper makes an initial contribution by providing the 

results of an exploratory study in a primary school classroom. 

Programming and debugging are not the only components of computational thinking; it is likely that EFs are also 

implicated in other aspects. We have chosen to start with these components because they are commonly taught in 

classrooms in the UK and other countries internationally, and there are extensive online teaching materials to 

support them. Other aspects of computational thinking should be the subject of future research.  

 

2.2 EF as a Predictor of Academic Success 

Executive functions are implicated in a wide range of areas of academic learning and attainment. For example, in 

reading (Altemeier, Abbott, & Berninger, 2008), maths (Gilmore et al., 2013) and science (St Clair-Thompson & 

Gathercole, 2006). They are also predictive of school achievement more generally (Bull & Scerif, 2010; McLean 

& Hitch, 1999; St Clair-Thompson & Gathercole, 2006; Titz & Karbach, 2014) as well as university achievement 

(Knouse, Feldman, & Blevins, 2014), and job success (Daly, Delaney, Egan, & Baumeister, 2015). Some interpret 

these findings to suggest a domain-general relationship between EF and school attainment (Best, Miller, & Naglieri, 

2011), a growing number of studies highlight a particularly important role for EF in relation to learning in STEM 

subjects (St Clair-Thompson & Gathercole, 2006; Van der Ven, Kroesbergen, Boom, & Leseman, 2012), although 

to our knowledge, no previous studies have considered the relationship between EF and CT. 

Neuroscience and education research indicates that executive skills play a critical role in developing mathematical 

proficiency, particularly updating and manipulating working memory, inhibition and shifting (Cragg & Gilmore, 

2014). Given Weintrop and colleagues’ detailed argument exploring the reciprocal relationship between 

computational thinking and maths and science learning (Weintrop et al., 2016), and the meta-analysis results which 

indicate programming improves mathematical test scores (Scherer et al., 2018), there is good reason to investigate 

the relationship between computational thinking and executive skills. The executive skills which support the 

development of maths proficiency are also likely to play a role in developing computational thinking. Indeed, 

empirical evidence from design based research with middle school children confirms that the outcomes of a course 

in computational thinking were predicted by maths performance ( Grover, Pea, & Cooper, 2015). 

 

2.3 Conceptual Analysis Of Efs Involved In Programming and Debugging 

2.3.1  Why Efs Are Required For Creative Programming Tasks 

The playful constructionist approach advocated by the Scratch creators, based on Papert’s intellectual legacy, 

encourages creativity and self-directed exploration. Following the footsteps of Logo, Scratch was designed as a 

constructionist environment to support a spiral of creativity, in which learners “imagine what they want to do, 

create a project based on their ideas, play with their creations, share their ideas and creations with others, and 

reflect on their experiences—all of which leads them to imagine new ideas and new projects”(Resnick, 2007, p. 

18) . Brennan and Resnick describe design in the creative programming context as “an adaptive process, one in 

which the plan might change in response to approaching the solution in small steps”. They describe a process of 

“iterative cycles of imagining and building, developing a little bit, trying it out then developing further, based on 

their experiences and new ideas.”(Brennan & Resnick, 2012, p. 7).  

The merits of pure discovery learning (for example in Papert’s constructionist work with Logo) have been 

questioned (Mayer, 2004). Previous researchers have argued that “learners often struggle with algorithmic 
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concepts, especially if they are left to tinker in programming environments, or if they are not taught these concepts 

using appropriately supportive pedagogies.” (Grover et al., 2015, p. 205). That is, unstructured programming tasks 

by themselves may not improve computational thinking. Grover et al. recommend minimally guided discovery 

learning for computational thinking courses for middle school learners (Grover et al., 2015), including approaches 

such as scaffolding, cognitive apprenticeships, code reading and tracing, and modelling the process of 

decomposition. They aim to enable children to build on computational concepts which they have been taught, in a 

way which fosters creativity and ownership. 

The complexity of creative programming tasks can greatly challenge novices. The individual computational 

thinking skills can be difficult to acquire in themselves, but the higher order executive function skills place 

additional load on the learner, particularly in terms of planning and self-monitoring. The learner must decide what 

to make, how to make it and be able to monitor her own progress in reaching her goals. Depending on the stage of 

the learner, it may be the case that the requisite planning and monitoring executive functions are still developing. 

In addition, the task places a load on working memory because the programmer must hold in mind the end goal, 

and steps needed to achieve the goal. Inhibition is also required to avoid distractions from the goal. 

Papert (Papert, 1991) and later Resnick and Brennan (Brennan & Resnick, 2012) favour a less top down approach 

to planning in which the programmer is: “guided by the work as it proceeds rather than staying with the pre-

established plan” (Papert, 1991, p. 3). A learner working in this way would still task-monitor periodically to 

evaluate whether the current code produces a desirable output, and if not, decide what changes are needed and map 

out the sub-steps to get from the current state to the desired state. While open ended creative tasks can be fun when 

appropriately challenging, it may be overwhelming and frustrating for some learners unless they are adequately 

supported. For learners with developing EF skills, it may be difficult – and demoralising – to engage with such 

tasks. With appropriate support with planning and monitoring, however, working on motivating programming 

tasks may be one approach to EF skills development. It is possible that the requisite EF and programming skills 

can be further developed alongside each other in creative projects, if the learner has previously had support to 

develop both programming skills and planning and monitoring skills in other contexts. 

 

2.4  Why EFs Are Required For Debugging Tasks 

Resnick and Brennan describe computational practices relating to solving and anticipating problems. An 

interviewee described her debugging activities as “identify the source of the problem, read through the scripts, 

experiment with scripts, try writing scripts again, find example scripts that work, tell or ask someone else, take a 

break…” (Brennan & Resnick, 2012, p. 7). Rich and colleagues present a helpful literature syntheis and learning 

trajectory of debugging for children (Rich, Andrew Binkowski, Strickland, & Franklin, 2019). They identify 

strategies documented in the literature for finding and fixing errors including: hypothesising and testing theories 

about the cause of a problem and deciding how to change a program when it does not produce the intended results. 

These behaviours are likely to rely on underpinning executive function capacities such as working memory and 

cognitive flexibility (“the ability to shift between response sets, learn from mistakes, devise alternative strategies, 

divide attention, and process multiple sources of information concurrently” (Anderson, 2002, p. 74)).  Rich et al. 

observe that emotional regulation and the ability to preserve in the face of failure is a requirement for successful 

debugging; emotional regulation is an aspect of executive function which is assessed by the emotional control 

subscale within the BRIEF2 instrument which we used in this study. In addition, Rich and colleagues note that at 

the end of the learning trajectory, learners become aware that debugging techniques can be chosen strategically. 

The ability to evaluate and slect the best strategy for a task requires well developed executive function capacities 

(Roebers, 2017b). 

In order to systematically detect errors in code, the learner must have the ability to understand the decription of 

the incorrect program behaviour and why it is different from the required behaviour, and be able to develop and 

follow a plan of detecting, fixing and testing which places high demands on working memory, as well as the ability 

to switch between tasks and switch back and forth between different representations. This last point is particularly 

salient in a visual language like Scratch where the user must look at the visual behaviour of a sprite on screen, 

compare it to a mental representation of what the ideal behavior would look like, and then switch to a different 

visual representation of code blocks in order to fix the problem.  

The programmer must think of possible reasons why the program is not working, prioritise which is most likely to 

begin with, pinpoint where the error would occur in the code, identify whether it is actually present in the code 

and if so, fix it. If that particular error was not present, or if it was present but fixing it did not result in the target 

code behaviour, the programmer must move on to consider another possible reason for the flaw. Beginner 
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programmers are disadvantaged because they do not have the experience to quickly identify or prioritise possible 

errors. From this point of view, the debugging exercises used in this study were designed to start with examples 

where the learner need only solve one bug at a time and progress to finding and correcting multiple bugs. 

 

3. A Classroom Study 

We conducted an initial study with a class of 11-year-old children to begin the process of testing the theorised link 

between EF and CT with empirical data. The aims of the study were to quantiatively explore the relationship 

between EF and CT, specifically: the overall relationship between creative programming and debugging with 

aspects of executive function, as measured by BRIEF2. A further goal for this study was to use case studies from 

the empirical data to qualitatively illustrate the relationship between EF and CT. 

 

3.1 Participants 

This study involved twenty-five children (16 boys, 9 girls) aged 11-12 years from the same Primary 7 class at a 

Scottish Primary School. All children had experience of programming using Scratch as part of their computing 

curriculum work. The group were recruited by their class teacher and received written information sheets and 

consent forms (in age appropriate language) two weeks before the study to be read, signed, and returned before 

they could take part in the sessions. The ethical procedures were approved by the [blank for review] ethics 

committee. Of the twenty-five children who gave their consent to be part of the study, we were able to collect data 

on all EF/CT measures for twenty-three.  

 

3.2 Data Collection  

The following data was collected in this study. 

Executive functions  

The Behavioural Rating Inventory of Executive Function (BRIEF2) is a rating scale used to assess everyday 

behaviours associated with executive functions at home and school. It is considered to be an ecologically valid 

method of assessing the extent to which individuals are able to successfully pursue their own goals in complex 

every-day problem solving tasks (Toplak, West, & Stanovich, 2013) . It is used for clinical assessment of children 

for whom there may be concerns about self- regulation (e.g those with autistic spectrum disorders, attention 

disorders, depression and other conditions). The BRIEF2 is a questionnaire completed by teachers about 

individuals’ behaviour and emotional regulation, aspects of EF which are also important for classroom learning. A 

recent review of BRIEF2 considered it to be a theoretically and psychometrically sound measure of executive 

functioning for children and adolescents (Dodzik, 2017), with internal consistency for the teachers form in the 

range of alpha coefficient =0.88 to 0.98, and a test/re-test reliability of 0.82. 

In this study, the BRIEF2 teacher rating scale is used to assess behaviours which might impact on typically 

developing children’s ability to complete complex creative programming and debugging tasks. BRIEF2 has three 

indices: behavioural regulation (consisting of inhibit and self-monitor scales), emotion regulation (consisting of 

shift and emotional control scales) and cognitive regulation (consisting of initiate, working memory, plan/organise, 

task-monitor, and organisation of materials scales).  

The class teacher filled in a 63 item scale for each pupil, indicating whether the statement is true of the child never 

(scored as 1), sometimes (scored as 2), or often (scored as 3). The raw score was then converted to a T-score which 

is normalised for age and gender according to. T-scores range between 36 and 90 for 11-13 year old girls and 

between 37 and 88 for 11-13 year old boys (Gioia, Isquith, Guy, & Kenworthy, 2015). Higher scores indicate 

higher level of difficulty in a specific domain of executive function. The Global Executive Composite score is 

reported here as it is considered as a useful summary measure.  

Creative programming task: We used an automatic assessment of aspects of computational thinking as manifested 

in the source code of a Scratch program collected from the participants (flow control, data representation, 

abstraction, user interaction, synchronisation, parallelism and logic). The code was analysed using Dr Scratch, 

software which performs static analysis of Scratch source code (Moreno-León & Robles, 2015). Assessment from 

Dr Scratch has shown to be consistent with other software metrics of code complexity (Moreno-Leon, Robles, & 

Roman-Gonzalez, 2016) and correlate strongly with the assessments of expert human evaluators (r=0.82) 

(Moreno-León, Harteveld, Román-González, & Robles, 2017). Overall scores range between 0 and 21, with higher 

scores indicating higher proficiency.  
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Debugging task: A set of 7 custom Scratch debugging tasks were developed by the authors, based on the Debug It! 

Exercises available on Scratch Studio2. The seven exercises required debugging examples involving conditionals, 

fixed loop, variables, conditional loop, parallelism (simple problems), and two integrated examples which brought 

together several of these concepts (complex problems). Participants were given a specification of what an example 

Scratch program should do, a description of the buggy behaviour of the code when it runs, and the code itself. 

They were then asked to locate and fix the error. Each simple problem was scored with 2 points for a complete 

solution, and one point for a partial solution (where a clue had been given), while the two complex problems which 

had a maximum score of 6 points because there were multiple bugs. The maximum overall score was 22, with 

higher scores indicating higher proficiency. The tasks were scored by the first and second authors; discrepancies 

in the scores were resolved through discussion. 

 

3.3 Procedure 

Data collection sessions were undertaken by the second author and a research assistant at the Primary School. 

These staff members both had up-to-date certification to work with children. 

 

3.3.1  Scratch Creative Programming Session 

The creative programming sessions were hosted in the children’s classroom using school Windows laptops and 

facilitated by the second author. He first explained to the children that they were being asked to use Scratch online 

to individually create a program of their choosing within a 60-minute time limit and gave the children an 

opportunity to ask questions about the exercise. The children had a written document of a description of the task 

and instructions to refer to and could ask for clarification and assistance if required. 

 

3.3.2  Scratch Program Debugging Session 

The debugging session was again facilitated by the second author but the research assistant was also present to 

help support the children. The session began with the second author explaining to the children that they were being 

asked to fix a series of 7 broken Scratch programs within a 60-minute time limit. The children were asked to work 

alone without discussion. 

The children were given a worksheet with a description of each problem, stating what the program should ideally 

look like (the specification) and the problems with the current version of the program (see supplementary 

materials). The children also had access to videos of the ideal of each program and the problematic version. 

 

4. Results 

4.1 Descriptive Statistics 

The descriptive statistics indicate that this class of children had room for improvement in debugging (with an 

average just slightly over half marks) and creative programming (with a mean under half marks). Note that the 

number of participants N varies due to student absences on different data collection days. 

 

Table 5. Descriptive Statistics for Overall Measures 

 N Mean Standard deviation 

Debugging score 22 7.5 4.13 

Creative programming score 23 9.35 4.53 

BRIEF2 T-score 25 51.12 15.55 

 

 
2 https://scratch.mit.edu/projects/10437439/ 
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The pearson correlation between the Creative Programming task score and the Debugging score is r=0.6 (95% CI 

0.26, 0.82]). This can be interpreted as a large correlation between these two measurements of computational 

thinking (Cohen, 1992).  

 

4.2 Findings 

As shown in Table 3, programs which have higher Dr Scratch scores are produced by children who have lower 

BRIEF2 scores (i.e. those who have more mature executive functioning): BRIEF2 scores explain 60% of the 

variance in Dr Scratch scores. Similarly, learners with a greater level of debugging skills have better developed EF 

skills, explaining 40% of the variance in debugging scores. Focusing on how the Scratch score relates to the 

BRIEF2 sub-scales, the Behaviour Regulation Index (BRI) correlates with r=-0.69, the Emotional Regulation 

Index (ERI) correlates with r=-0.57, and the Cognitive Regulation Index (CRI) correlates with r = -0.55. Given 

that the BRI seems to have the strongest relationship with the Scratch score, it was worth examining the 

relationship of the further subscales within it: the Inhibit subscale is r=-0.7, and the Self-monitor subscale is r=-

0.67. The definition of Inhibit from the BRIEF2 manual is “the inhibit scale assesses inhibitory control (i.e. the 

ability to inhibit, resist, or not act on impulse), including the ability to stop one’s behaviour at the appropriate time.” 

(Dodzik, 2017, p. 33). The definition of Self-monitor is “the self-monitor scale assesses awareness of the impact 

of one’s own behaviour on other people and outcomes”. It includes “awareness of one’s own effectiveness in 

problem solving and the ability to monitor important outcomes” (Dodzik, 2017, p. 34). 

 

Table 6. Relationships between Measures of CT and “Reflective” Aspects of EF 

Measures 
Pearson 

correlation r 
95% CI 

Creative Programming total and BRIEF2 global composite -0.6 [-0.8, -0.25] 

Debugging total and BRIEF2 global composite -0.4 [-0.70, -0.02] 

Creative Programming and BRIEF2 behavioural regulation index (BRI) -0.69 [-0.86, -0.40] 

Creative Programming and BRIEF2 emotional regulation index (ERI) -0.56 [-0.79, -0.19] 

Creative Programming and BRIEF2 cogntivie regulation index (CRI) -0.55 [-0.79,-0.18] 

Creative Programming and BRIEF2 BRI Inhibit 0.7 [-0.86, -0.40] 

Creative Programming and BRIEF2 BRI self-monitor -0.67 [-0.85, -0.36] 

 

4.3 Qualitative Illustrations of How EF Relates to Programming Tasks 

It is instructive to examine the games produced by learners with different EF profiles in order to identify sorts of 

help which teachers could provide when supporting similar tasks in the future (see Table 7 for a summary of their 

numerical scores). 

 

Table 7. Summary of Case Study Learners’ Scores 

Participant 

number 

Sex Age BRIEF2 Total score Creative programming 

score  

Debugging score 

P18 M 11 164 1 7 

P9 M 11 160 N/A3  N/A 

P5 M 11 83 0 3 

P1 F 12 69 14 12 

P11 F 11 63 8 5 

P17 F 11 62 12 10 

 

 
3 Scratch analyser crashes when this program is run; no score is output.  
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P18 is an eleven year old boy with one of the highest Behavioural Regulation Index scores in the class, scoring 

highly on both the inhibit and self-monitor scales indicating serious issues with these areas of functioning. Indeed, 

P18 has extremely elevated EF profiles across all BRIEF2 subscales. This learner’s Scratch file has no code. It is 

hand-drawn stick man sprite and some vertical black lines on a backdrop. It is possible that the black lines were 

intended to form a maze like some of the other children’s. The game does not convey personal interests or show 

exploratory behaviour within the tool like some of the other games with very little functionality. This learner has 

an elevated score in Initiate, suggesting that he finds it difficult to get started on a task. P18 scored 7 out of 21 on 

the debugging test, which illustrates that he has some basic understanding of Scratch constructs but he was unable 

to put them into practice. He was unable to marshall his efforts to produce a plan for a meaningful program in an 

open ended creative task. This learner would benefit from being given a specific task which would consolidate his 

knowledge of the Scratch concepts which he has been taught. 

 

Figure 3. A Screen Shot of P18's Game 

 

Figure 4 shows a screen shot of P9’s game. P9 is also an eleven year old boy with an elevated EF score across all 

the subscales and was joint with P18 in having a particularly high score for the self-monitoring scale again, 

indicating difficulties across numerous areas of EF. In this game, there a multiple copies of each sprite with the 

same code copied between sprites. When the code runs, the sprites rapidly rotate and make a noise. The overall 

effect is strikingly colourful and overwhelming. There is quite a lot of code, but it is repeated sequences of 

animation instructions and loops which do not serve a clear purpose. There are multiple unnecessary nested loop 

constructs which suggest that the learner does not understand that only one forever block would have caused the 

cat sprite to repeatedly miaow. The learner does not appear to have been following a plan to create a particular 

interactive program, but rather gives the impression of exploring the Scratch interface to produce an entertaining 

visual result. He was absent on the day of the debugging session so there is no additional information about his 

Scratch knowledge. While children often find it fun to experiment with visual effects in Scratch when they initially 

encounter it, this learner would benefit from support in developing a specific goal and identifying how this could 

be accomplished in Scratch.  
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Figure 4. A Screenshot of P9's Game 

 

As an example of a child who did have a plan but who did not write any code, P5 made a backdrop which reads 

“in this game you have to get your green ball to the yellow ball and you will progress to the next round”. This is a 

plan for a potentially entertaining game, but it has not been implemented at all, with no sprites representing either 

colour of ball. His debugging score of 8 suggests that he understands how Scratch concepts work although he did 

not use them in his own game. P5 is in the 59% percentile for his overall EF score, but he has an extremely elevated 

score for Inhibit which indicates that in general he is distractable and may be diverted from executing plans. 

In the case of P1, a twelve year old girl, there is an indication that she thought of a plan but did not prioritise 

finishing the subtasks which were essential for the user to play the game. According to the instructions for the user, 

the purpose is to jump up and collect apples from a tree. The event handling code to implement this is not present, 

although the learner spent time creating scene changes to transfer from a bedroom to an orchard and back. P1 has 

a mid-range EF score in general, but it is elevated for the Shift subscale. Shift includes the ability to switch or 

alternate attention and change focus from one topic to another. Here, the learner may have failed to switch attention 

to the apple gathering mechanic in time to complete the game. The game would have been more successful if the 

learner had some support in identifying which aspects were essential to get a working prototype of the game 

completed. 

P11 (an eleven year old girl) has developed a plan for her game although her knowledge of Scratch appears to be 

insufficient to put it fully into practice. P11 has low scores for EF, benchmarked in the 26th percentile for a girl of 

her age according to the BRIEF2 manual indicating no substantive difficulties with EF in comparison to peers. In 

the game, there are clear instructions which tell the user to hunt for the apple in each scene. There are multiple 

scenes, and multiple sprites for decoration. Code is copied across sprites but is not relevant to them. The code does 

not work because when the user clicks on the apple it switches to only one other room. There is also redundant 

code with “if” statements which will never execute. Her debugging score of 5 also suggests that her knowledge of 

Scratch concepts could be improved. In this case, the learner could progress with some support in learning 

conditional language constructs to help her achieve her initial plan.  
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Figure 5. A Screen Shot of P11's Game 

 

Like many of the children, P17 (an eleven year old girl) made a maze game (see Figure 6) but it is unusually well 

executed. P17 has low EF scores indicating no difficulties in EF (in the 23rd percentile) and her debugging score 

of 8 indicates that she has some working knowledge of Scratch constructs. The maze game has several levels of 

progressing difficulty implemented, indicating some advance planning of the maze features. The code is concise 

and elegant in comparison to that of her peers, using broadcast to generically level up. A step forwards for this 

learner might be to try implementing more complex game mechanics such as a scoring mechanism which would 

require additional computational thinking skills. 

 

Figure 6. A Screen Shot of P17's Game 

 

5. Discussion and Future Research 

Initial empirical results suggest that there is a relationship between EF and both creative programming and 

debugging. This is consistent with the recent finding that computational thinking assessments correlate with 

general cognitive abilities (r= 0.67) (Román-González et al., 2017). We do not interpret this to mean that CT is 
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just “ordinary” problem solving and that the current worldwide emphasis on developing CT is mistaken. Rather, 

we see it is one step further in establishing the nomological net (Román-González et al., 2017) which links CT to 

other cognitive variables. 

The case studies give an indication of how programming skills and executive functions are both required for 

learners to be successful in open ended creative programing tasks. Our study suggests EF is linked with the CT 

abilities of children but metacognition (in terms of self-regulation and self-monitoring) may also contribute to the 

ability of children to engage in CT. Our findings from a standardized test of EF and analysis of the code produced 

by the children along with their debugging performance are complementary to previous evidence about children’s 

metacognition when programming. Allsop’s study in a primary school classroom (in a similar educational context 

and age group) triangulated evidence from semi-structured interviews, learner journals, observations as well as 

completed games to examine the planning, monitoring and evaluation skills used by the children (Allsop, 2019). 

As with our case study learners, Allsop found that debugging required a degree of skill in monitoring and 

evaluation. Interestingly, the learners in her study reported that their methods of planning their games (such as 

sketching) transferred into their ability to plan for other learning domains. Allsop’s methodology gives some 

insight into the children’s thought processes which is beneficial, although in our case the use of standardized tests 

of EF alongside the assessment of programming enabled us to investigate the relationship between EF and CT. 

Future research could further examine the impact of MC in the emerging EF-CT relationship.  

An important finding from Allsop’s work is that the children in a natural classroom setting used language as an 

instrument for making decisions, evaluating and regulating activities in conversation with their peers. This suggests 

that attempts to objectively assess individual performance on creative programming and debugging in a “test” 

situation where peer collaboration does not occur may underestimate the children’s capabilities. That is, Scratch 

code and debugging scores from “test” conditions reveal what the learner is capable of without the assistance of a 

more able peer, whereas more naturalist methodologies show what the learner is able to do within their zone of 

proximal adjustment (i.e. the human and artefact resources that are the most appropriate form of assistance for a 

given learner at a particular moment in time (Luckin, 2008)).  

As this was exploratory work, further studies are required to confirm these findings, and establish the direction of 

the effect. This study should be replicated with a larger sample size to establish whether the relationships between 

these variables hold. While the automated assessment of Scratch programs using Dr Scratch is convenient, hand 

analysis of the games suggests that there are discrepancies between the inclusion of a code construct and its correct 

usage. Future versions of Dr Scratch may address such problems such as the inclusion of “dead” code which is 

never used. 

There have been recent calls for improvements in standardised methods for assessing computational thinking 

(Román-González et al., 2017). This study focussed on programming and debugging, by analysing the product of 

these processes (program source code). Future work could use assessments of wider computational thinking skills, 

perhaps using tools such as the CTt (Román-González et al., 2017). We would anticipate that individual test items 

would be shorter and they would require less sustained concentration on a single problem than an open-ended 

programming tasks. 

  
6. Implications for Educators 

The results of this pilot work may be of benefit to classroom teachers who are planning how to support their 

learners during Scratch projects. It would appear that learners who have difficulties with executive functions, 

particularly behavioural regulation (including not being able to successfully self-monitor or inhibit their behaviour) 

could find an open creative task challenging. For such learners, it could be beneficial to introduce a variety of 

support mechanisms for a zone of proximal adjustment (Luckin, 2008). The teacher could introduce regular check 

points where each class member reflects (perhaps with a classmate) on the extent to which they have achieved 

their initial plan. Some learners may need help to come up with a coherent plan in the first place (beyond exploring 

the interface to find serendipitous effects), and could potentially benefit from lessons in structuring and prioritising 

the required steps to achieve an initial game idea. This can be scaffolded through activities in which the learners 

devise a plan to implement a given specification, or are asked to prioritise a list of tasks which need to be achieved 

to make a specified game. 

Other learners in this study appeared to have the executive skills to conceive, execute and monitor a plan but lacked 

the knowledge of programming language constructs to carry it out. A possible remedy for this would be to 

recommend project specifications to learners to develop their current level of Scratch knowledge e.g. a learner 

who has successfully implemented a maze game could be encouraged to try developing a scoring system for it 
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once they have studied a lesson on variables. 

While teachers are skilled in scaffolding tasks according to learners’ stages for other areas of learning, they may 

find it harder to achieve if they are themselves new to programming and have not yet developed an intuition for 

how difficult tasks are to achieve in the target programming language. This emphasises the need for learning 

materials which are clearly graded in terms of computational thinking difficulty. 

If future work was to confirm a strong relationship between EF and aspects of CT, what would be the implications? 

Firstly, it would be useful for those designing curricula and teaching materials for CT, because previous empirical 

results about the developmental trajectory of EF would give some guidance of the stage at which it would be 

appropriate to introduce particular problem solving tasks in CT. Well established empirical results about the 

development of the ability to look ahead when planning, the development working memory and shifting could be 

applied. These could be used to design external representations, software scaffolding or pedagogical approaches 

which would assist learners whose EFs are still developing. 

Secondly, knowledge of how certain types of CT task rely on secure EFs could help teachers to plan tasks which 

are appropriate to their learners. Research into teachers’ knowledge of executive functions in mathematics learning 

illustrates that experienced teachers are aware of the importance of working memory, inhibition and shifting from 

observation during their practice (Gilmore & Cragg, 2014). However, Gilmore and Cragg found that it may take 

some years for this understanding to develop and student teachers may not encounter these concepts during their 

studies. It is therefore important that developers of classroom learning materials think carefully about the executive 

function demands of their programming and debugging activities and indicate clearly the stage of learning for 

which each task is suitable. Plain language indications of the underlying skills would also be helpful (such as the 

statements used in the BRIEF2 tool), as Gilmore and Cragg found that even the experienced teachers who 

understood the concepts were not familiar with the technical terms from the psychology literature. An introduction 

to EF and how it relates to CT could be a useful part of initial teacher education programmes. 

Lastly, it is possible that CT activities could be a motivating and engaging way to help learners improve their EFs. 

Because EF is a predictor of life success, academic success and health in later life, interventions which successfully 

improve EF in young learners are very valuable (Diamond, 2012). Attempts to train EFs (such as working memory) 

in isolation have shown limited effectiveness when transferred to improving maths proficiency (Titz & Karbach, 

2014). More holistic curriculum based interventions have met with more success, for example Diamond’s model 

of the routes to developing EF emphasises the importance of joy; social belonging and support; and the building 

of confidence, pride and self-efficacy (Diamond, 2012). The design goals of the Scratch community are strikingly 

similar (Resnick et al., 2009), with the emphasis on fun, low floor, high ceiling and wide walls (as a route to 

building confidence and pride in achievements), and a large online community for sharing and support4. For these 

reasons, practice during motivating, authentic and appropriately challenging computational activities could be a 

rich environment in which to develop the executive functions which will be crucially important to children’s lives.  
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Abstract 

This research aims to determine the change in students’ computational thinking skills according to their ICT and 

mobile technology experience and frequency of use. The sample of the study, designed with the survey model, 

consisted of 269 students attending a vocational school of higher education. Data were collected using the 

Computational Thinking Scale and the Personal Information Form. Descriptive statistics, independent samples t-

test and one-way ANOVA were used in data analysis. According to results, it was determined that students’ 

computational thinking skills differs according to their internet experience, mobile device experience, mobile 

internet experience and period of daily mobile Internet use, while no differences were found based on computer 

experience, the number of times they checked their mobile devices a day and purpose of mobile technology usage. 

 

Keywords: computational thinking, ICT experience, mobile technology experience 

 

1. Introduction 

The increase in the space that technology occupies in our lives in terms of volume and function brings about the 

necessity to update the features that individuals should have (Sırakaya, 2019). Today, regardless of age, every 

individual is expected to have basic computer skills. Kalelioğlu, Gülbahar and Kukul (2016) state that today, all 

individuals should have some basic computational skills. Drawing attention to a similar topic, Kalelioğlu (2015) 

and Sáez-López, Román-González and Vázquez-Cano Lopez (2016), emphasize that individuals in 21st century 

should not only use technology but also produce technology. In this context, computational thinking skills come 

to the forefront as among the important skills students should acquire. The concept of computational thinking skills 

which gained popularity in 2006 with the research conducted by Wing, is essentially a concept that has been 

discussed in the literature for many years. Wing (2006) pointed out that computational thinking is a necessary 

competence for every individual. 

Although it has been discussed for a long time, it can be argued that there is no consensus on the definition of 

computational thinking (Grover & Pea, 2013; Demir & Seferoğlu, 2017). It is seen that similar definitions are 

produced for the concept of computational thinking. Some of these definitions are based on computer sciences. 

Korkmaz, Cakır and Özden (2017) and Wing (2008) point out that the concepts and applications that constitute 

computational thinking are based on the basic concepts of computer science. Using computer science concepts, 

Wing (2006) defines computational thinking as problem solving, systems design, and human behaviour analysis. 

Similarly, Sengupta, Kinnebrew, Basu, Biswas and Clark (2013) state that computational thinking utilizes the basic 

subjects and concepts found in computer sciences. In different definitions, computational thinking is associated 

with concepts such as problem solving (Lye & Koh, 2014), algorithmic thinking (Barr and Stephenson, 2011; Lee 

et al., 2011) and abstraction (Wing, 2008). Kalelioğlu, Gülbahar and Kukul, (2016) identify three most accepted 

components of computational thinking as abstraction, algorithmic thinking and problem solving. ISTE 

http://ijcses.org/index.php/ijcses/editor/viewMetadata/73
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(International Society for Technology in Education) (2019) examines computational thinking skills under the 

categories of fragmentation, patterning, abstraction and algorithm. Shute et al. (2017) cite skills such as 

fragmentation, abstraction, generalization, algorithmic design, debugging and iteration along with thinking and 

acting as computational thinking skills. From a more general perspective, Pulimood, Pearson and Bates (2016) 

describe the reasoning process in the solution of abstract problems as computational thinking.  

For a better understanding of computational thinking and its concepts, the operational definitions are provided 

along with its conceptual definition. In their operational definition that considers computational thinking as a 

problem-solving process, ISTE and CSTA (Computer Science Teachers Association) state that computational 

thinking includes, but not limited to, the following activities (ISTE, 2019): 

• Re-formulating problems in order to solve them with computers and other tools. 

• Organizing and analyzing data logically. 

• Re-presenting data in manners of abstraction, such as models and simulations. 

• Automating solutions through algorithmic thinking. 

• Identifying, analyzing and implementing possible solutions to ensure the most effective and efficient 

combination of steps and resources. 

• Generalizing and transferring the problem-solving process to a wide range of problems. 

In order to understand the concept of computational thinking more clearly, it may be useful to look at the process 

from the reverse. In this context, it is useful to take the characteristics of individuals who have computational 

thinking skills as a reference. Accordingly, individuals with computational thinking skills have the following 

characteristics (Lee et al. 2011; Wing, 2006, 2008, 2011): 

• Making problems solvable by using technological tools. 

• Organizing and analyzing data logically. 

• Making the data abstract. 

• Developing solutions through algorithmic thinking. 

• Identifying, analyzing and applying possible solutions and resources. 

• Adapting the solution to different problems. 

Computational thinking a key skill for the 21st century (Pérez-Marín, Hijón-Neira, Bacelo & Pizarro, 2018), is a 

necessary skill for every individual just like literacy and basic mathematical skills (Wing, 2014). Educators are 

researching how to ensure that students acquire computational thinking skill that is regarded to be highly important 

(Wing, 2006). Many researchers suggest that computational thinking skill should be added to the curriculum in 

order to ensure students are given an opportunity to acquire computational thinking skills (Juškevičienė & Dagienė, 

2018; Karal et al., 2017; Yadav et al., 2017). As a matter of fact, many countries include computational thinking 

in their curricula in order to instruct students starting from early ages (Küçük & Şişman, 2017; Webb et al., 2017; 

Wong & Cheung, 2018). It is aimed to improve students’ computational thinking skills through activities such as 

courses, projects and competitions organized as a supplement to the curriculum. However, it is not clear how to 

acquire and evaluate this skill, since the definition and limits of computational thinking skills are not clear (Pérez-

Marín et al., 2018; Werner, Denner, Campe & Kawamoto, 2012). In addition, the required level is not achieved yet 

in terms of resources and informed teachers that are needed to ensure this skill is acquired by students (Brackmann 

et al., 2016; Pérez-Marín et al., 2018). Literature review shows that different methods and tools are used to develop 

computational thinking skills. Various methods such as computer-free activities (Takaoka, Fukushima, Hirose & 

Hasegawa, 2014), block-based programming (Kalelioğlu, 2015; Yünkül et al., 2017; Oluk & Korkmaz, 2016; Oluk, 

Korkmaz & Oluk, 2018), text-based programming (Alsancak-Sırakaya, 2019) and robotic sets (Karaahmetoğlu & 

Korkmaz, 2019) are used for the development of computational thinking skills. 

Although different tools are used in the development of computational thinking skills, it is remarkable that most 

of these tools are technological. Technological tools such as computers, mobile devices, programming languages 

and robotic sets play an important role in the process of acquiring computational skills. Pellas and Peroutseas 

(2016) state that computer sciences are an important resource in the acquisition of computational thinking skills. 

Similarly, in their studies, Yıldız Durak and Sarıtepeci (2018) report that experience in using information and 

communication technologies (ICT) may influence computational thinking skills. Juškevičienė and Dagienė (2018) 

state that research on the relationship between digital competence and computational thinking is needed. Based on 

these, this study aims to determine the change in students’ computational thinking skills according to their 
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experience and frequency of ICT and mobile technology usage. For this purpose, answers to the following sub-

problems are be sought: 

• Do students’ computational thinking skills significantly differ according to their experience in computer 

and Internet use? 

• Do students’ computational thinking skills significantly differ according to their experience in using 

mobile technologies? 

• Do students’ computational thinking skills significantly differ according to the frequency of their 

mobile technology use? 

• Do students’ computational thinking skills significantly differ according to the purpose of using mobile 

technology? 

 

2. Method 

2.1 Research Design 

Screening model was used in the study. Screening model reveals a group's attitudes, beliefs, thoughts, expectations, 

attitudes, and characteristics (Creswell, 2012). Creswell (2012) defines screening model as "quantitative research 

processes that researchers apply to a specific sample to define attitude, opinion, behavior or characteristic features 

related to the universe". Generally, the aim of screening studies conducted with larger sample groups compared to 

other types of research is to reveal the situation in question as is (Büyüköztürk, Kılıç Çakmak, Akgün, Karadeniz 

& Demirel, 2008). 

 

2.2 Universe and Sample  

The universe of the study consisted of vocational school of higher education students at a state university and the 

sample is composed of 269 students from a vocational college at the same state university. According to gender, 

18.6% (50) of the participants were female and 81.4% (219) were male. Of these, 23% (62) were in their first year 

and 77% (207) were in their second year. According to department, 31.6% (85) were students at Computer 

Technologies, 48.3% (130) were studying Construction Technology, 20.1% (54) attended the Department of 

Electricity and Energy. Convenient sampling method was used in determining the study group. In the convenient 

sampling method, the researcher tries to reach the number of samples that is needed by starting with the participants 

that he/she can reach most easily (Büyüköztürk et al., 2008). Ethical permit document has been obtained from the 

educational institution that the students are affiliated with. 

 

2.3 Data Collection and Data Collection Tools 

The process of data collection began with informing participants verbally about the purpose of the study. Then, 

data were collected from volunteer participants through data collection tools. The data collection tools used in this 

study are described below: 

Computational Thinking Scale: The Computational Thinking Scale developed by Korkmaz, Çakır and Özden 

(2017) was used to determine the computational thinking skills of the participants. The scale, with a total of 29 

items, is collected under 5 factors. The internal consistency coefficient of the whole scale was calculated as 0.822 

and the internal consistency coefficients of the factors were stated as follows: Creativity (0.843), Algorithmic 

thinking (0.869), Cooperativity (0.865), Critical thinking (0.784) and Problem solving (0.727). The reliability 

analyses of the scale were re-performed with the data collected within the scope of this study. Accordingly, the 

overall reliability coefficient of the scale was calculated to be 0.869 with the following internal consistency 

coefficients for the factors: Creativity, 0.855; Algorithmic thinking, 0,913; Cooperativity, 0.77; Critical thinking, 

0,818 and Problem solving, 0.817. Korkmaz, Çakır and Özden (2017) stated that the scale is a valid measurement 

tool based on the exploratory and confirmatory factor analyses. 

Personal Information Form: Personal Information Form prepared by the researchers was used to determine the 

gender, department, school year, ICT experience, mobile technology experience, frequency of mobile technology 

usage and purpose of mobile technology use. The form, which was prepared in accordance with the opinions of 

two subject areas experts, consists of a total of 16 questions. 
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2.4 Data Analysis 

Since there was a small amount of data loss (1%) in the responses to the scale items, mean substitution technique 

was used based on the recommendation of Schumacker and Lomax (2004). Since the sample size was greater than 

50, Kolmogorov-Smirnov test (Büyüköztürk, 2007) and Q-Q Plot graphs were used to determine whether the data 

showed normal distribution or not. As a result of the test, it was found that the normal distribution value was not 

statistically significant (p> .05) and the graphical analysis showed that the data showed normal distribution. For 

this reason, data analysis included descriptive statistics along with parametric tests such as independent samples t-

test and one-way ANOVA. Levene test (variance homogeneity of groups) was taken into consideration in 

determining which groups caused the difference as a result of ANOVA test. Since the variance was homogeneously 

distributed in all variables (p> .05), LSD test was preferred (Büyüköztürk, 2007). 

 

3. Results 

3.1 Findings Related to Computer and Internet Experience 

In order to determine whether students’ computational thinking skills changed according to their computer and 

internet experiences, one-factor analysis of variance was used for independent samples. The test results are given 

in Table 1. 

 

Table 1. Change of computational thinking skills according to computer and internet experience 

   N  S    N  S 

C
o
m

p
u

te
r 

e
x
p

e
r
ie

n
c
e
 1 Less than 1 year  19 87.06 21.64 

In
te

r
n

e
t 

e
x
p

e
r
ie

n
c
e 

1 Less than 1 year  9 94.44 17.64 

2 Between 1-2 years 18 98.90 16.21 2 Between 1-2 years 28 91.54 20.51 

3 Between 2-3 years 36 100.53 15.20 3 Between 2-3 years 43 96.01 16.99 

4 Between 3-4 years 46 98.92 18.04 4 Between 3-4 years 59 97.42 16.06 

5 Between 4-5 years 52 100.67 15.36 5 Between 4-5 years 58 98.69 14.65 

6 More than 5 years 88 98.58 14.12 6 More than 5 years 64 102.92 15.55 

 Total 259 98.51 16.22  Total 261 98.08 16.58 

            

Variable 
Source of 

variance 
Sum of squares SD 

Mean 

square 
F p 

Significant 

difference 

Computer 

experience 

Between groups 2890.152 5 578.030 

2.249 .050 ---- In-groups 65017.289 253 256.985 

Total 67907.441 258  

Internet 

experience 

Between groups 3047.367 5 609.473 

2.271 .048 

Between 6 and 2, 

3  In-groups 68446.342 255 268.417 

Total 71493.709 260  

 

According to the Table, it was determined that students’ computational thinking mean scores did not show 

significant differences based on computer experience. (F (5-253) = 2.249; p <=.05). 

As a result of the analysis, it was determined that internet experience caused a significant difference in 

computational thinking mean scores (F (5-255) = 2.271; p <.05). According to the LSD test, it was found that students 

with more than 5 years of internet experience had significantly higher computational thinking scores than those 

with 1-2 years and 2-3 years of experience. 

 

3.2 Findings on Mobile Technology Experience 

One-factor analysis of variance for independent samples was used to determine whether students’ computational 

thinking skills changed based on mobile technology experience. The test results are given in Table 2. 
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Table 2. Change of computational thinking skills based on mobile technology experience 
   N  S    N  S 

M
o
b

il
e
 d

e
v
ic

e
 

e
x
p

e
r
ie

n
c
e 

1 Less than 1 year  9 89.26 22.60 

M
o
b

il
e
 I

n
te

r
n

e
t 

e
x
p

e
r
ie

n
c
e 

1 Less than 1 year  12 86.88 18.57 

2 Between 1-2 years 15 87.99 21.22 2 Between 1-2 years 24 90.48 18.98 

3 Between 2-3 years 26 94.54 14.06 3 Between 2-3 years 40 94.95 18.28 

4 Between 3-4 years 40 98.39 18.36 4 Between 3-4 years 50 99.48 14.05 

5 Between 4-5 years 51 98.15 15.50 5 Between 4-5 years 69 98.05 16.00 

6 More than 5 years 126 100.67 15.07 6 More than 5 years 68 103.19 14.54 

 Total 267 98.15 16.48  Total 263 97.98 16.52 

            

Variable 
Source of 

variance 

Sum of 

squares 
SD Mean square F p 

Significant 

difference 

Mobile device 

experience  

Between 

groups 

3400.874 5 680.175 

2.576 .027 

Between 1 and 6  

Between 2 and 4, 

5, 6  
In-groups 68913.698 261 264.037 

Total 72314.572 266  

Mobile Internet 

experience 

Between 

groups 

5154.202 5 1030.840 

3.990 .002 

Between 1 and 4, 

5, 6  

Between 2 and 4, 

5, 6  

In-groups 66404.305 257 258.383 

Total 71558.507 262  

 

When Table 2 was examined, it was found that students’ computational thinking skills mean scores differed 

significantly according to mobile device experience (F (5-261) = 2.576; p <.05). The results of the LSD test conducted 

to determine which groups caused the difference show that computational thinking skills mean scores of students 

with less than 1 year of mobile device experience were lower compared to those with more than 5 years of 

experience and computational thinking skills mean scores of students with 1-2 years of experience were 

significantly lower than those with 3-4 years, 4-5 years and more than 5 years experience in mobile devices. 

It was concluded that mobile internet experience caused a significant difference in computational thinking skills 

scores (F (5-257) = 3.990; p <.05). According to the LSD test, it was found that the computational thinking skills 

mean scores of students with less than 1 year and 1-2 years of mobile internet experience were significantly lower 

than those with 3-4 years, 4-5 years and more than 5 years experience. 

 

3.3 Findings Related to Frequency of Mobile Technology Use 

One-factor analysis of variance for independent samples was used in order to determine whether students’ 

computational thinking skills differed based on the frequency of mobile technology use. Table 3 presents the test 

results. 
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Table 3. Changes in computational thinking skills based on frequency of mobile technology use 
   N  S    N  S 

N
u

m
b

e
r 

o
f 

d
a
il

y
 c

h
e
c
k

s 
fo

r 

th
e
 m

o
b

il
e
 

1 1-19  69 93.44 19.66 

D
u

r
a
ti

o
n

 o
f 

d
a
il

y
 m

o
b

il
e
 

in
te

r
n

e
t 

u
se

 

1 < 1 hour 38 93.52 19.44 

2 20- 39  48 102.53 13.64 2 1-2 hours  53 101.21 15.02 

3 40-59  46 97.85 14.72 3 2-3 hours  54 98.10 15.62 

4 60-79  29 97.77 15.37 4 3-4 hours 28 91.89 17.77 

5 80-99  29 102.21 17.70 5 4-5 hours 35 101.73 17.05 

6 >99 46 98.28 14.22 6 More than 5 

hours 

56 99.99 12.17 

 Total 267 98.09 16.47  Total 264 98.29 16.11 

            

Variable 
Source of 

variance 

Sum of 

squares 
Sd Mean square F p 

Significant 

difference 

Number of daily 

checks for the 

mobile 

Between 

groups 

2938.162 5 587.632 

2.214 .053 ----- 
In-groups 69284.439 261 265.458 

Total 72222.601 266  

Duration of daily 

mobile internet 

use 

Between 

groups 

3041.923 5 608.385 

2.406 .037 

Between 1 and 2, 5  

Between 2 and 4  

Between 4 and 5, 6  In-groups 65238.895 258 252.864 

Total 68280.818 263  

 

According to Table 3, it was found that students’ computational thinking skills mean scores did not show significant 

difference based on how many times they checked their mobile devices (F (5-261) = 2.214; p>.05). 

Based on the conducted analyzes, it was determined that duration of daily mobile internet use caused a significant 

difference in computational thinking skills mean scores (F (5-258) = 2.406; p <.05). According to LSD test results, 

computational thinking skills of students with less than 1 hour of daily mobile internet use were significantly lower 

than those with 1-2 hours and 4-5 hours; computational thinking skills of students with 3-4 hours were significantly 

lower than those with 1-2 hours and computational thinking skills of students with 3-4 hours were significantly 

lower than those with 4-5 hours and more than 5 hours. 

 

3.4 Findings Regarding Purpose of Use of Mobile Technology 

Independent samples t-test was applied to determine whether students’ computational thinking skills differed based 

on their purpose for using a mobile technology. Table 4 presented the obtained results. 
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Table 4. Change of computational thinking skills based on purpose of using mobile technology 

Purpose of Use At present N  S SD t p 

Connecting to social 

networks 

Yes  239 98.02 15.79 
260 .768 .070 

No 23 95.29 20.72 

Playing games 
Yes  146 98.20 15.86 

245 .433 .387 
No 101 97.27 17.53 

Keeping up to date with 

current news  

Yes  222 98.49 16.30 
251 1.309 .995 

No 31 94.37 16.90 

Doing 

homework/research   

Yes  221 98.20 16.68 
254 1.027 .224 

No 35 95.14 14.01 

Listening to music 
Yes  243 98.24 15.84 

257 .410 .106 
No 16 96.51 23.31 

Online shopping  Yes  144 99.16 15.64 
235 1.298 .487 

No 93 96.39 16.69 

Watching videos  Yes  237 98.17 15.80 
252 .445 .404 

No 17 96.38 19.60 

 

Table 4 shows that while computational thinking skill mean scores of students who used mobile technology to 

connect to social networks ( =98.02) were higher than the mean score of the students who did not use mobile 

technology for this purpose ( =95.29), the difference was not significant (t(260)= .768, p>.05). Similarly, it was 

concluded that while computational thinking skill mean scores of students who used their mobile technology to 

play games ( =98.22) were higher than the mean scores of students who did not use mobile technology purpose 

( =97.27), the difference was not significant (t(245)= .433, p>.05). 

Although the computational thinking skills mean scores of students who used their mobile technology to follow 

the current developments ( =98.49) were higher than the computational thinking skills mean scores of students 

who did not use their devices purpose ( =94.37), the difference was not significant (t(251)= 1.309, p>.05). It was 

found that although the computational thinking skills mean scores of students who used their mobile technology 

for doing homework/research (  =98.20) were higher than the computational thinking skills mean scores of 

students who did not use their mobile technology for this purpose ( =95.14), the difference was not significant 

(t(254)= 1.027, p>.05). While the computational thinking skills mean scores of students who used their mobile 

technology to listen to music was higher ( =98.24) than the computational thinking skills mean scores of students 

who did not use their devices for this purpose ( =96.51), the difference was not significant (t(257)= .410, p>.05). It 

was also found that the computational thinking skills mean scores of students who used their mobile technology 

to do online shopping were higher ( =99.16)  than he computational thinking skills mean scores of students who 

did not use their devices for this purpose ( =96.39); the difference was not significant  (t(235)= 1.298, p>.05). The 

findings also show that while the computational thinking skills mean scores of students who used their mobile 

technology to watch videos were higher ( =98.17) than the computational thinking skills mean scores of students 

who did not use their devices for this purpose ( =96.38), the difference was not significant  (t(252)= .445, p>.05). 

Evaluation of these results in general demonstrates that students’ computational thinking skills did not differ based 

on the purpose of mobile technology use and that their mean scores were very close to one another. 

 

4. Results and Discussion 

Based on the results of the analyses, it was determined that students’ computational thinking skills did not differ 

based on computer experience. Arriving at a similar finding, Oluk and Korkmaz (2016) stated that computational 

thinking skills did not differ according to the duration of daily computer use. Another result obtained in the study 

demonstrated that internet experience affected computational thinking skills. Accordingly, students with 1-2 years 

internet experience had significantly lower computational skills than those with more than 5 years experience. 

Korucu et al. (2017) concluded that middle school students’ computational thinking skills did not change based on 

their weekly internet use. Yıldız Durak and Sarıtepeci (2018) concluded that ICT experience did not predict 
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computational thinking skills. 

The analyses demonstrated that mobile technology experience differentiated computational thinking skills. 

Accordingly, students with less mobile device experience and less mobile Internet experience had significantly 

lower computational thinking skills than those with more experience. This finding can be interpreted to suggest 

that mobile technology experience can increase computational thinking skills. Reaching a different conclusion, 

Korucu et al. (2017) stated that those with only 2 years of mobile technology experience had significantly higher 

computational thinking skills than with longer experience. Differences in the levels of samples in studies may 

cause variations in the obtained results. 

The analyses conducted based on the frequency of mobile technology use concluded that computational thinking 

skills did not differ according to how many times a person checked his/her mobile device but varied according to 

the duration of daily mobile Internet use. Accordingly, students who use less mobile Internet daily had significantly 

lower computational thinking skills than those who used mobile Internet more. According to Korucu et al. (2017), 

who similarly studied the ability to use mobile devices as a variable, computational thinking skills did not differ. 

Yıldız Durak and Sarıtepeci (2018), who examined the duration of daily internet use of secondary school students, 

concluded that this variable did not affect computational thinking skills. 

The study also aimed to determine whether students’ computational thinking skills differed based on their purposes 

while using their mobile technology. According to the analyses, it was concluded that using mobile technology to 

connect to social networks, play games, follow the current developments, do homework/research, listen to music, 

shop and watch videos did not change students’ computational thinking skills. While computational thinking skills 

differed according to mobile device experience and frequency of use, it is a remarkable finding that computational 

thinking skills did not change based on purpose of use. There are no other studies in the literature that explored 

these variables. Future studies may consider filling this gap. 

This research is limited to 269 vocational school students in terms of participants. One of the limitations of the 

study is that self-reported instruments were used. Self-reported instruments may not reflect the actual measure as 

students' perceptions might be differ from their actual levels. Qualitative data collection tools such as observation 

and interview can be used in future research. In addition, experimental studies examining CT and ICT (mobile 

technology) can be conducted. 
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