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Abstract 

During recent years coding education has been an important issue in many countries. Coding 

education has been an important topic for these countries. One of the reasons why coding 

education is being discussed by educators and other partners of the schools is that it is seen as 

a key competence for students, and workers at developing problem-solving skills. Coding as an 

academic skill is seen as a part of logical reasoning. Coding is also accepted as one of the skills 

called “21st-century skills” required from individuals. Special education students are in a 

disadvantaged situation as in other learning platforms. Thus, this study aims to analyze the place 

of coding education in developing problem-solving skills of special education students. Within 

the scope of the study, unplugged coding applications were carried out with the participation of 

34 students having mild intellectual disabilities who are continuing their education in a special 

education vocational school aged between 14 and 18. A question form was used to evaluate 

problem-solving skills. There was a significant difference between the pre-course and post-

course skills of the students. Students’ average scores of problem-solving skills in the post-

course was higher than their average scores in the pre-course. The analysis of the findings 

showed that the students' skill scores in using problem-solving steps have increased in all these 

steps. 

Keywords: special education, unplugged coding, problem-solving skill 
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1. Introduction 

21st-century skills include basic skills areas such as critical thinking, problem-solving, and 

decision making, collaboration and communication, information literacy, technology literacy, 

flexibility and adaptability, global competencies, and financial literacy (Kereluik et al., 2013). 

The new 21st century skills are based on reasoning and logical thinking (Durak & Şahin, 2018). 

Because of this coding skills are important to get 21st-century skills. The ability of coding is 

called “algorithmic thinking” and “computational thinking” in different research (Durak & 

Şahin, 2018). In performing the coding process, it is important to follow the steps of 

comprehending, analyzing, solving the problems, and making the results as algorithms, 

establishing the correct algorithm, and encoding the algorithm with a program over the 

language. In this process, coders should use their algorithmic thinking or computational 

thinking skills (Lee et al., 2011). 

 

In the economy, coding and programming skills have gained importance in many sectors and 

fields (Arora et al., 2001). The coding and programming skills included in the digital 

competencies with lifelong learning competence are among the important skills of the 21st 

century and the future (van Laar et al, 2017). The current workplace needs highly skilled 

employees that can work in increasingly interactive and tasks. Such employees are expected to 

effectively choose and use information from the number of accessible information and 

effectively use them in their works (Ahmad et al., 2013; Carnevale & Smith, 2013). For this 

reason, coding education should take place in education policies for the development of coding 

skills. Teachers have great responsibilities for the development of individuals with lifelong 

learning competencies (Durak & Şahin, 2018). Students can gain problem-solving, critical 

thinking, independent thinking, sharing, ethical behavior, knowledge, and digital literacy skills 

via programming and coding education. (Durak & Şahin, 2018; Voogt et al., 2013).  

 

Programming education at an early age is becoming increasingly important. In this context, 

radical changes have been made in the educational curriculums around the world and in Turkey 

to provide programming education in elementary school (Demirer & Sak, 2016). In this regard, 

the European countries, and other developed countries as South Korea have begun to provide 

programming education to children and young people starting from primary school (Boccani et 

al, 2016; Demirer & Sak, 2016; Salter, 2013). The United Kingdom has integrated computer 

programming as a main course starting from primary school (Jones, 2013). The European Union 

(EU) organizes various events like European Code Week which is held in November. In the 

framework of the European Code Week, activities were held in various European countries, 

approximately three hundred workshops were organized, and thousands of students participated 

in these workshops (Demirer & Sak, 2016). In the programming education process, both 
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plugged and unplugged activities are used. While unplugged programming broadly refers to 

learning computational thinking and computer science concepts without relying on 

computational devices, plugged programming relies on the usage of computational devices in 

these learning processes (Aranda & Ferguson, 2018). Unplugged coding can include role-

playing, manipulation of real-world objects (eg sticky notes, cards, wooden blocks), and 

physical actions of the body activity (Aranda & Ferguson, 2018). Special education students 

are also disadvantaged in this coding education as in other training. Most of the studies and 

applications for special education are prepared for gifted students (Alkan, 2019; Hagge, 2017; 

Lee, 2011). In these studies, plugged visual programming tools as Kodu and Scratch are used.  

  

Empirical research on the impact of coding education on special education students is very 

limited (Adams & Cook, 2013; Miller, 2009; Topal, Budak & Geçer, 2017). Adams and Cook 

(2013) evaluated the effect of using programming and controlling robots’ game for people with 

dementia about the stimulation of social behavior. As a result, it was found out that social 

behavior occurred more often than non-social behavior during the sessions. Miller (2009) 

reported that programming (Logo software) education improved both the programming skills 

and applying written vocabulary in a purposeful, rule-based manner. Topal, Budak, and Geçer 

(2017) found out that algorithm teaching via Scratch was effective on the problem-solving skills 

of deaf-hard hearing students. Coding activities attended by students with intellectual 

disabilities are also extremely limited (Karna-Lin et al., 2006; Ratcliff & Anderson, 2011; 

Taylor, 2018; Taylor, Vasquez, & Donehower, 2017; Wainer et. al., 2010). Karna-Lin et al. 

(2006) worked with children, 8 to 18 years old having learning difficulties and mild cognitive 

delays. Students used Lego robots in the experimental process. As a result, it was found out that 

students’ social abilities as asking for advice, sharing ideas increased. Students also had an 

opportunity to practice their problem solving, logical thinking abilities. Ratchlif and Anderson 

(2011) reported that using programming education software (Logo) captured the students’ 

interest. This programming experience was also described as a viable source of interactive 

challenge and problem-solving experience that provided a great deal of pride, intrinsic reward, 

enjoyment, and a sense of ownership of learning by the attending students. Taylor, Vasquez, 

and Donehower (2017) found out that despite programming education for students with mild 

disabilities was not effective in enhancing problem-solving abilities, programming in Logo 

captured students’ interest. Taylor (2018) researched the potential effect of learning skills in 

computer programming for students with intellectual disabilities. Students were assessed 

through baseline, treatment, and generalization phases. As a result, students were successful at 

programming the robot. Wainer et. al. (2010) found out that interacting with Lego robots for 

programming education increased the collaborative behaviors of the students having Autism 

Spectrum Disorder (ASD). When these empirical studies were analyzed, it was observed that 

they generally include plugged applications. Coding training or practices involving only 



International Journal of Computer Science Education in Schools, January 2021, Vol. 4, No. 3 
ISSN 2513-8359 

 6 

plugged coding applications can only address students having computer usage skills. However, 

coding may provide many opportunities for special education students to support their learning 

and life-skills (Duff, McPherson, King & Kingsnorth, 2019; Taylor, Vasquez & Donehower, 

2017).  For this reason, the use of unplugged applications in coding training may enable a 

wider group of people with having different disabilities to benefit from this training. 

Consequently, it is expected that this study which investigates the development of special 

education students in using problem-solving steps with coding education will contribute to the 

literature. One of the main benefits of coding education is developing problem-solving skills 

(Chao, 2016; Hooshyar et al., 2016). Problem-solving skills can be improved by computational 

thinking processes. Through computational thinking, we can explain the problem and use 

simple methods or formulas to solve the problem by computer computation (Hsu et al., 2018). 

 

1.1 Computational thinking 

Computational thinking (CT) skills have very high importance in obtaining 21st-century 

learning skills (Barut et al., 2016). Wing (2008) defines computational thinking as “designing 

systems, solving problems, and understanding human behavior by drawing on the concepts 

main to computer science”. She stated that computational thinking includes some common 

concepts, such as data representation, problem decomposition, and modeling. She also stated 

that “computational thinking is a basic skill for everyone, not just for computer scientists. We 

should add computational thinking to every child’s analytical ability like writing, reading, and 

arithmetic abilities.” Thinking like a computer scientist enables children to solve any problem 

they can face logically. Computational thinking can help in designing solutions to automation-

sensitive problems (Allsop, 2019). In addition to thinking like a computer scientist, there seems 

to be value in teaching critical thinking skills and the problem-solving mentality that comes 

with traditional writing, reading, and arithmetic. (Kazakoff, 2014). 

Computational thinking includes problem-solving processes:  

• Formulating problems in a way that let us use a computer and other tools to help solve these 

problems,  

• Analyzing and organizing data logically,  

• Representing data through abstractions, such as simulations and models,  

• Automating solutions through algorithmic thinking (a series of ordered steps), 

• Identifying, analyzing, and implementing possible solutions to ensure that the steps and 

resources are combined most efficiently and effectively,  

• Generalizing and transferring this problem-solving process to various problems (Barr et al., 

2011). As a result, computational thinking helps in the development of problem-solving 

strategies. 
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Problem-solving strategies as computational thinking and algorithmic thinking give us loads of 

talents and skills, including: 

• Confidence in dealing with complexity, 

• Instance on working with difficult problems, 

• Tolerance for uncertainty, 

• The ability to deal with open-ended problems,  

• The ability to communicate and work with others to achieve a common goal or solution (Barr 

& Stephenson, 2011). Therefore, including problem-solving skills developing activities via 

computational thinking in the education process can provide loads of talents and skills that are 

of great importance to the students. In the process of realizing these activities, evaluating, and 

following the development levels of students is of great importance in terms of structuring the 

teaching processes. The Computational skill assessment model developed by Allsop (2019) 

includes three aspects: ‘computational concepts’, ‘metacognitive practices’, and ‘learning 

behaviors’. Computer game design processes are generally used in evaluating these dimensions 

(Allsop, 2019; Brennan & Resnick, 2012; Werner et al., 2012; Werner et al., 2014). 

 

1.2 Algorithmic Thinking  

Some difficulties in mathematics are generally associated with weaknesses in algorithmic 

problem-solving (Plerou & Vlamos, 2016). The algorithm also describes a finite sequence of 

actions that describe how to solve a given problem (Kotthoff, 2016). The ability to design and 

use algorithmic forms or schemas in problem-solving processes pre-requires cognitive skills 

and enforces these skills (Antonia, Panagiotis & Panagiotis, 2014). This means that generally 

algorithmic techniques can be applied similarly to solve a problem (Atmatzidou & Demetriadis, 

2016). Algorithmic thinking is a critical skill in getting problem-solving skills. Algorithmic 

thinking is defined as the ability to construct new algorithms to solve given problems (Futschek, 

2006). In algorithmic thinking, a set of solution rules including devising a step-by-step solution 

are designed and application instructions for rules are defined by steps (Angeli et al, 2016; 

Curzon et al., 2014). Algorithmic thinking includes understanding, applying, evaluating, and 

producing algorithms skills (Kanbul & Uzunboylu, 2017). In these activities putting actions in 

the correct sequence and using flow control are very important elements. These are also 

considered important for computational thinking (Angeli et al, 2016).  

 

In the research in which the effect of using algorithmic thinking in programming activities on 

the development of computational and mathematical thinking was examined, it was found out 

that coding and programming education is effective for developing problem-solving strategies, 

teaching mathematics, and for creative thinking. (Taylor et al., 2010; Kalelioglu & Gulbahar, 

2014). Algorithmic thinking is not only an important part of computer science, but it is also an 
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important part of our lives especially in decision-making (Kátai, 2015; Mohaghegh & 

McCauley, 2016). Decision-making processes are very important for individuals with 

intellectual disabilities. They need supports in decision-making processes (Jamesson et. al., 

2015). As a result, algorithmic thinking can be an important supporter and facilitator of 

problem-solving and decision-making processes. 

 

1.3 Problem-Solving 

Problem-solving is a critical learning process in formal education activities for all the education 

levels from primary to higher education (Jonassen, Howland, Moore, & Marra, 2003; 

Lazakidou & Retalis, 2010). This advanced cognitive ability can be understood as the ability to 

use rules and concepts to solve the problem (Wang, Han, Zhan, Xu, Liu & Ren, 2015). 

Educators expect that their students will graduate from their courses with good problem-solving 

skills. They use open-ended problems and activities to develop these skills (Woods et al., 1997). 

Students’ participation in problem-solving activities assists them to gain helpful attitudes that 

are crucial to real life, such as creativity, flexibility, thinking, and efficiency. Besides, all these 

attitudes have already been linked to life-long learning skills (Goffin & Tull, 1985). So, 

problems used in the educational process should be real-life scenarios that provide students 

opportunities to become real-life problem solvers (Yu, Fan, & Lin, 2015). 

 

To date, many problem-solving models have been suggested (Bransford & Stein, 1993; Good 

& Brophy, 1995; Hohn & Frey, 2002; Ormrod, 2000; Polya, 1973; Sternberg, 2003). A well-

known problem-solving model is Sternberg’s 7 steps model. Sternberg’s 7 steps model can be 

used to both well-defined (known) and ill-defined problems in which learners engage a different 

set of epistemic beliefs (Jonassen, 2010; Lazakidou & Retalis, 2010). This model includes the 

following steps: problem identification, the definition of the problem, constructing a strategy, 

organizing information, allocation of resources, monitoring, and evaluating problem-solving. 

(Sternberg, 2003: 360). These steps of the problem-solving process require one to arrange each 

step and make decisions at the same time (Özsoy & Ataman, 2017). Also, the learner should 

experience and make strong the problem-solving process continues to complete the task (Wang, 

Han, Zhan, Xu, Liu & Ren, 2015).  

 

Problem-solving skills have a potential impact on the individuals' having intellectual disabilities 

independence and academic achievement (Erickson, Noonan, Zheng, & Brussow, 2015; Root, 

Saunders, Spooner, & Brosh, 2017). By using schema-based instruction in the practice process 

of teaching problem solving to students with mild intellectual disabilities, these students can 

benefit from many instructional features (Jidentra et al., 2015). Because of this visual 

representation are very important for special education students (Root, Saunders, Spooner, & 
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Brosh, 2017). In problem-solving processes, some thinking strategies are used. More common 

of these are algorithmic thinking and computational thinking. 

 

1.4 Research Questions 

During recent years coding education has been an important issue in many countries to support 

and develop problem-solving skills. One of the reasons why coding education is being discussed 

by educators and other partners of the schools is that it is seen as a key competence for students 

and workers. Coding as an academic skill is seen as a part of logical reasoning. It is also 

accepted as one of the skills called “21st-century skills” required from individuals (van Laar et 

al, 2017). Learning how to code is equally valuable as learning math, reading, and writing 

(Horizon, 2015). It is very important to include coding educations with plugged or unplugged 

activities in the training process. It is thought that especially unplugged coding activities will 

appeal to a much wider group of students with having different disabilities. Lechelt et al. (2018), 

in their research, found out that a physical toolkit (magic cube) could be used both supporting 

comprehensions of computational concepts and enabling students to get excited about learning 

with fun. Because of these, computer-aided coding activities may only address students having 

computer usage skills. As a result, this study aims to analyze the effect of coding education 

having unplugged activities in developing problem-solving skills of special education students. 

Within the aim of this research following questions are identified:  

 

RQ1: What is the effect of unplugged coding education on the problem-solving skills of special 

education students?   

RQ2: What is the effect of unplugged coding education on the steps of the problem-solving 

skill of special education students? 

 

2. The study 

2.1.Method 

 An experimental method was used in the study. Among the different types of these methods, 

the full experimental method is the method with the highest scientific value. Thus, the full 

experimental method is used in this research. Within the scope of this study, both experimental 

and control groups were formed according to unplugged coding education materials usage 

status. 

 

2.2.Participants 

This study was conducted with 34 students having mild intellectual disabilities attending a Math 

education in the Çanakkale Special Education Vocational and Technical High School, Turkey. 

Students with a mild intellectual disability typically defined by having an IQ between 55 and 
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70 and having impairments in adaptive skills, such as daily living, social skills, and 

communication (Schalock, et al., 2010). The distribution of the students according to 

demographic characteristics is shown in Table 1. The number of females (n=14) and males 

(n=11) students are close to each other and the average age of the students is approximately 

15.5. In the sample choosing process, students’ parental written permission and their voluntary 

participation were asked. All the students wanted to participate in the experimental process. 

 

Table 1. Distribution of demographic features of students (n=25) 

Gender f % 

Female 14 56 

Male 11 44 

Age f % 

14 5 20 

15 7 28 

16 6 24 

17 5 20 

18 2 8 

Total 25 100 

 

2.3.Methods of Data Collection 

The full experimental design was used in this research.  There are 4-6 students in the classes 

in the special education school. At each class level, this school has two classes. The 

experimental processes were carried out in the mathematics course. Before the experimental 

processes, each class level (9th, 10th, 11th) categorized randomly as one control and one 

experimental group. The data collection process consists of 4 basic stages (Figure 1). 

Figure 1. The data collection process steps 
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2.3.1. Informing About the Process  

Before the experimental process, the math teacher was informed about the aim and process of 

the research including problem-solving steps, materials that will be used by students, and what 

to pay attention to in the evaluation process.  

 

A performance rating form for determining the status of using problem-solving skills was 

administered to the students in terms of their skills in using problem-solving. In this form, 

including checklist items, students’ usage of problem-solving steps defined by Sternberg (2003) 

are questioned. The problem-solving cycle’s steps are problem identification, the definition of 

the problem, constructing a strategy, organizing information, allocation of resources, 

monitoring, and evaluating the problem-solving stage. The first step "problem identification" 

was not included in this research. Because the problem situation was given to the student and 

asked to find a solution to the problem. In the problem identification step, students are wanted 

to answer the question of "Do we actually have a problem?" (Sternberg & Sternberg, 2012:445). 

In pre-test and post-test processes, the teacher was wanted to ask the students about each 

problem-solving stage defined in the question form (Appendix A). In filling the performance 

rating form, students' written answers to the questions, and their verbal explanations of these 

written answers on problem-solving steps were evaluated. A blank sample of the student 

question form (translated to English) is presented in appendix A. In preparing both the question 

form asked to the students and performance rating form Sternberg & Sternberg (2012:445-446) 

and Lazakidou & Retalis (2010:5) were used. In the question form, students wanted to identify 

the problem, define the problem, construct a strategy, organize the information, allocate the 

resources, and monitor and evaluate their solving strategy. In the performance rating form, 

students’ verbal and written answers to the questions were evaluated. In the performance rating 

form, problem-solving skills are scored out of 5 for each problem-solving cycle step (1: 

insufficient, 2: acceptable, 3: intermediate, 4: good, 5: very good).  In filling this form, the 

math teacher assisted in evaluating the verbal and written answers of the special education 

students because of the communication and writing problems of some students. The main aim 

of the study was not to give special education students the skill of sorting the algorithm 

problems correctly. The main aim was to develop special education students' problem-solving 

skills in a logical framework by using problem-solving steps. For example, the student may find 

the correct sorting in the pre-test by chance or by memorizing in the post-test. But for the 

research, without creating a logical framework by using problem-solving steps sorting the 

algorithm was not valuable. At the beginning of the experimental process, the experimental 

group students also were informed about the rules of the games and problem-solving steps. 

After the informing process, the experimental process was started. 
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2.3.2 The Pre-test Processes 

In the pre-test and post-test process (applied following 6 weeks), algorithm cards shown in 

figure 2-3-4 and the question form (Appendix A) were used. Both the students in the control 

and experimental groups were asked to solve “Buying Bread”, “Washing Dishes” and “Making 

Pasta” problems by using problem-solving steps.  At the same time, students were asked to 

solve these problems by answering the questions on the student question form. In the pre-test 

students' written answers to the questions and their verbal explanations of these written answers 

on problem-solving steps were evaluated by the performance rating form. The opinions of the 

course teacher about student performance were also taken into consideration during the 

evaluation process. 

 

 BUYING BREAD 

……………………………. 

Get out on the street 

……………………………. 

Enter the shop 

……………………………. 

Take the product to the payment case 

……………………………. 

Pay the money 

……………………………. 

Go back home and put it on the table 

 Figure 2. Buying bread and 5 algorithmic steps (Turkish –English) 

 

In this process, the teacher was wanted to ask the students about each problem-solving stage 

defined in the question form. In figure 2, buying bread step cards (including: get out on the 

street, enter the shop, take the product to the payment case, pay the money, go back home, and 

put it to the table) are shown. In figure 3, washing dishes step cards (including cleaning the 

kitchen midden, rinsing out, soaping, rinsing, drying) are shown. In figure 4, making pasta cards 

(including boiling, opening the package, putting it into the water, waiting for 15 minutes, 

pouring to the strainer) is shown. 
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WASHING DISHES 

……………………………. 

Cleaning the kitchen-midden 

……………………………. 

Rinsing out  

……………………………. 

Soaping  

……………………………. 

Rinsing 

……………………………. 

Drying 

 Figure 3. Washing dishes (title) and 5 algorithmic steps (Turkish –English) 

 

In each game, firstly students were wanted to define the problem with their own words. Then 

they were wanted to construct a strategy to solve the defined problem and explain the choosing 

reason for that strategy. After this step, they were wanted to organize having information and 

explain how to use these in finding a solution. After this problem-solving step, they were 

wanted to allocate resources (time, effort, etc.) in solving the problem.  Following this step, 

they were wanted to question themselves if they are on true track as they proceed to solve the 

problem. At the last step, they were wanted to evaluate their problem-solving strategy if the 

strategy worked or not.  If the discovered strategy did not work, they were wanted to explain 

the reasons. In all problem-solving steps, all students were wanted to write their problem-

solving steps and make an oral presentation of their solving. These written answers were 

evaluated by the researcher and the teacher. 

 

MAKING PASTA 

……………………………. 

Boiling 

 ……………………………. 

Opening the package 

……………………………. 

Putting into water 

……………………………. 

Waiting for 15 minutes 

……………………………. 

Pouring to the strainer 

 Figure 4. Making pasta (title) and 5 algorithmic steps (Turkish –English) 
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2.3.3 The Pre-test Processes 

In the classroom environment, the experimental group students played three games to learn the 

usage of problem-solving steps to solve problems in the teaching process. They played the 

games individually and as a member of the game group under the math teacher supervision. In 

the selection of the games, expert opinions were received from the special education teachers 

working in the special education school where the application was carried out and the academic 

staff of Çanakkale Onsekiz Mart University Special Education department. The first game was 

“The wolf, the lamb, the weed and the farmer activity” (figure 5). This game includes real-life 

concepts that students can easily fictionalize. Concrete and close-to-life learning environments 

are crucial for the success of the teaching process (Holt, Segrave & Cybulski, 2013). 

 

Figure 5. The wolf, the lamb, the weed, and the farmer activity 

 

In this game, Uncle Ahmet's farm was just outside of the village, just across the river. Uncle 

Ahmet took his lamb one day, the wolf descending from the forest to his garden, and a certain 

amount of grass he had reserved for his lamb and wanted to cross over to the shore. But the 

only way he could cross over was a small boat and it was impossible to cross them all together. 

He could take one to her at a time; He can either put the lamb, the wolf, or the weed. If the 

farmer leaves the lamb and wolf, the wolf eats the lamb. If the farmer leaves the lamb and the 

weed, the lamb eats the weed. So, the question of the game is “How do you think Uncle Ahmet 

will get all three of them across? The solution of this game consists of 5 steps. It is important 

for special education students facing problems to have fewer solution steps especially at the 

beginning of the learning process. Because students with disabilities rely on considerable step 

by step instructions (Mechling & Ortega-Humdon, 2007). In this game, problem-solving steps 

are: 
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(1) Transporting the lamb across the river, 

(2) Transporting the wolf across the river, 

(3) Transporting the lamb back, 

(4) Transporting the weed across the river.  

(5) Transporting the lamb across the river. 

 

The second game played by students was “Tower of Hanoi” (Figure 6). The Towers of Hanoi 

is a puzzle that has been studied by computer scientists and mathematicians for many years. 

The goal is to recreate the 4-disk tower on the third post. The monks must move the disks 

according to two rules: 

(1) The monks can only move one disk at a time. 

(2) The monks can only place smaller disks on top of larger disks. 

 Figure 6. The towers of Hanoi activity 
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  Figure 7. Tospaa unplugged coding game algorithm cards 

 

The third game played by students was the “Tospaa Unplugged Coding Game”. The game aims 

to bring the turtle to the targets without getting stuck. To reach the targets, algorithm cards in 

figure 7 are used. In this game, one of the most important terms of programming, the loop 

concept can be taught easily with this game. As a group game, gamers make algorithms to reach 

their targets. The gamer that uses the least algorithm card wins the game. An example scenario 

of the Tospaa game is shown in figure 8. At the same time, the control group students were 

informed about the problem-solving steps by the researcher. In this process, firstly the same 

math teacher gave the basic information about “why we need to use problem-solving steps?” 

and the problem-solving steps. In this process, the questions needed to answer in each problem-

solving step were explained in detail by the researcher. Then different problems were asked 

students with worksheets. Students' answers for problem-solving steps were discussed in 

teacher management. Students were informed about their mistakes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. An example scenario of tospaa unplugged coding game 
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2.4.Data Analysis 

Data collection involved by the performance rating form for determining the status of using 

problem-solving skills was administered to the students in terms of their skills in using problem-

solving. The pre-test and post-test scores obtained by the students on this form were used in 

data analysis. These analysis values are given in the results section. 

 

3. Results 

3.1 Question 1: What is the effect of unplugged coding education on the problem-solving skills 

of special education students?   

The pre-course skills of students were determined before the application while their post-course 

skills were determined just after the application.  The results regarding whether a significant 

difference occurred between the scores in terms of skill change are presented in Table 2. Table 

2 demonstrates that there is a significant difference [t (24)=-7.19, p<.001]  between the pre and 

post-course skills of the student group. While the average point of the pre-course skill was 

10.68, the post-course average point increased to 13.36. 

 

Table 2.  Pre-course and post-course comparison of skill scores (n=25) 

 N X  Sd t p 

Pre-course skill scores 25 10.68 3.56 -7.19 .000** 

Post-course skill scores 25 13.36 4.58   

*p< .01, ** p< .001 

3.2 Question 2: What is the effect of unplugged coding education on the steps of the problem-

solving skill of special education students? 

Problem-solving skills were categorized into 6 steps. The results regarding whether a significant 

difference occurred between the scores in terms of skill change are presented in Table 3.  

 

 

 

 

 

 

 



International Journal of Computer Science Education in Schools, January 2021, Vol. 4, No. 3 
ISSN 2513-8359 

 18 

 

Table 3.  Pre- and post-course skill comparison of the students (n=25) 

Problem-Solving 

Step Name 

Score Type N X  Sd t p 

Definition of the 

problem 

Pre-course skill 

score 25 2.40 1.08 -4.10 .000** 

Post-course skill 

score 

25 

2.88 1.01   

Constructing a strategy 

Pre-course skill 

score 

25 

2.48 1.05 -3.36 .003* 

Post-course skill 

score 

25 

2.80 1.04   

Organizing 

information 

Pre-course skill 

score 

25 

2.12 1.01 -2.87 .008* 

Post-course skill 

score 

25 

2.44 .96   

Allocation of resources 

Pre-course skill 

score 

25 

1.36 .49 -6.20 .000** 

Post-course skill 

score 

25 

2.16 .85   

Monitoring the process 

Pre-course skill 

score 

25 

1.20 .41 -3.98 .001* 

Post-course skill 

score 

25 

1.72 .84   

Evaluating the process 

Pre-course skill 

score 

25 

1.12 .33 -2.30 .031 

Post-course skill 

score 

25 

1.36 .57   

*p< .01, ** p< .001 

 

Table 3 demonstrates that there are significant differences between pre and post-course 

observation scores of the student group in all the problem-solving skill steps (step 1: [t(24)=-

4.10, p<.001], step 2: [t(24)=-3.36, p<.01], step 3: [t(24)=-2.87, p<.01], step 4: [t(24)=-6.20, 

p<.001], step 5: [t(24)=-3.98, p<.01],  step 6: [t(24)=-2.30, p<.05]). 
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4. Discussion of Findings 

This study evaluated the effect of the unplugged algorithm training for special education 

students. The study demonstrated that using unplugged algorithm training games can 

considerably improve problem-solving skills within all six steps. When the change in the 

problem-solving skill steps was examined, it was found that the most increase occurred in step 

5 (allocating of resources) and the least increase was in step 7 (evaluating problem-solving 

stage). In step 5, students' experience of organizing information can be increased more with the 

experience they have with unplugged coding games. In steps 6 and 7, the monitoring and 

evaluating the problem-solving stage may require long-term development. Therefore, this step 

may require longer-term practice and experience.  As the pre-test scores in the first 3 steps are 

not too low, the increase may be limited. As a result, using unplugged algorithm games improve 

the special education students’ problem-solving skill. This result is important to see the 

importance of giving coding education.  

 

The effect results of algorithm education consisted of the research results conducted by 

Alotaibi; Allan & Kolesar (1996), Erdem (2018), Fessakis et al. (2013), Howland & Good 

(2015); Topal, Budak, and Geçer (2017).  Allan & Kolear (2011) gave algorithm and coding 

education in the computer science course (CS1) at Utah State University. In the course, students 

gained mathematical and problem-solving skills while becoming familiar with the computer as 

a tool and learning. Erdem (2018) found out that coding and algorithm education developed 

5th-grade students’ problem-solving skills. Fessakis et al. (2013) found out in their research 

that 5–6 years old kindergarten children were pleased with the attractive learning activities and 

had chances to improve mathematical concepts, social and problem-solving skills. Howland 

and Good (2015), there were significant improvements in 12–13-year-olds teenagers’ 

computational communication and problem–solving skills after using algorithm developing 

applications for creating games. Topal, Budak, and Geçer (2017) found out that algorithm 

teaching via Scratch was effective on the problem-solving skills of deaf-hard hearing students. 

There are also research results pointing out that algorithmic thinking is not effective in learning 

and problem-solving (Doleck, Bazelais, Saxena & Basnet, 2017; Psycharis & Kallia, 2017).  

Doleck, Bazelais, Saxena & Basnet (2017) found out a lack of association between 

computational thinking skills and academic performance. They emphasized that this result 

maybe since the curriculum has yet to be adequately associated with 21st-century skills 

teaching. Pyscharis & Kallia (2017) found out in their research conducted with 66 high school 

students that programming education including algorithmic procedures enhanced students’ 

reasoning skills but did not enhance their problem-solving skills. As a result, When the studies 

using algorithmic structures in coding education are examined it is seen that it generally affects 
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problem-solving skills positively. It is especially important to make the curriculum supportive 

of problem-solving skills within 21 st-century skills teaching (Doleck, Bazelais, Saxena & 

Basnet, 2017; Israel, Wherfel, Pearson, Shehab & Tapia, 2015; Psycharis & Kallia, 2017). 

There are several instructional benefits for students that can get from the inclusion of problem-

solving skills within K-12 programs. They can benefit from this skill in building higher order 

thinking skills and increasing collaborative problem-solving (Kafai & Burke, 2014). For this 

reason, it is of great importance to add the skills for the acquisition of 21st-century skills to the 

curriculum and to evaluate them. 

 

In Turkey, it is observed that there is not still sufficient importance given to robotic applications 

and coding education within 21st-century skills. As a result of institutional studies by 

universities, there are also effective robotic studies in almost all universities. However, there is 

not enough initiative to integrate coding education into the programs of different education 

levels from pre-school to university. But robotic coding education also can create lots of 

benefits for students. It can facilitate advanced hands-on programming, increase the rate of two-

directional communication between the students and the robot (Virnes, Sutinen & Kärnä-Lin, 

2008). The course of information technologies and software development (ITSD) course in the 

education program of Turkey is included as an elective course in 5th, 6th, 7th, and 8th grades 

based on the curriculum published in 2012 (Kanbul & Uzunboylu, 2017). In the last curriculum 

of ITSD course developed in 2017, not only setting integrity between informatics technology 

units but also with other subjects and real life is important. so that it is important to realize the 

discourses in real life (students benefit from informatics technologies and software 

development courses) and to learn how to use technology appropriately (Karaman & Karaman, 

2019).  We cannot say that this change in planning is sufficient in practice. Coding training is 

carried out under the supervision of the IT teachers and in their use with a single interactive 

board. It is considered that it is important to provide coding laboratory facilities for student-

centered practice to realize effective learning. The number of coding classes that have the 

infrastructure installed is quite limited. So, it would be wrong to expect to achieve success in 

coding with just the program change. Besides, secondary schools can be considered a bit too 

late for coding training. 

 

Teaching coding to children in early childhood before elementary school education may enable 

long-term economic payoffs. Investments in early childhood interventions are associated with 

lower costs and longer-term impacts than later interventions in childhood. (Heckman, 2006; 

Heckman & Masterov, 2007; Reynolds, et al., 2011).  
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5. Conclusion 

Besides, special education students are the most disadvantaged students in this education 

process. Measures can be taken to ensure that all disadvantaged students receive coding 

training. For example, Al-Khalifa & AlSaeed (2020) found out that tactile teaching strategies 

were effective in the programming education of students with vision impairment. In this 

research, it was also found out that students’ problem-solving skills are insufficient. But 

problem-solving skill is an important skill for the development of life skills (Prajapati, Sharma 

& Sharma, 2017; Wurdinger & Qureshi, 2015). Similarly, special education students need to 

develop life skills to maintain their daily lives (Smith, Cihak, Kim, McMahon & Wright, 2017). 

For this reason, it is thought that education and practices that support problem-solving should 

be given importance. Based on the research results; it can be indicated that coding education 

can provide many educational opportunities to support the problem-solving skills of special 

education students. Some of these opportunities are the ability to break down problems into 

smaller parts and to draw on both logic and creativity to figure out the best ways to solve them 

(Lechelt et al., 2018).  To inform and educate the future generation, companies, universities 

should make investments and serious ventures for coding and robotic applications education. 

Soon, new professions will emerge, and many occupations will not be needed. Therefore, it is 

very important to teach 21st-century skills to all children including students who need special 

education. It is thought that it is of great importance to increase the competencies and expertise 

of teachers in this field to develop students' problem-solving skills. In this context, it is thought 

that it would be beneficial to provide teachers with training or in-service training on how to use 

the applications for the development of problem-solving skills and how to evaluate the 

dimensions of problem-solving skills of the students. According to the findings of the study, 

the following suggestions were made. 

• Coding education applications and web-based platforms like scratch, code.org should be 

integrated into the K12 curriculum. 

• In-service or training courses should be given to teachers and teacher candidates for problem-

solving steps, development, and evaluation of problem-solving skills. 

• Coding laboratories including robotic and unplugged application materials should be set. 

• Experimental studies that investigate the traditional programming course and unplugged 

programming/robotic programming course can be made. 

Limitations  

The research was carried out in a vocational high school where mild intelligent students have 

been given special education. Studies conducted with different samples of intellectual disability 

can be made. Also, in this research, unplugged coding education materials were used. 
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Comparative studies can be conducted on the effectiveness of computerized and unplugged 

coding education. 
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Appendix A 

Dear Students, 

Please write your answers to the asked questions into the empty cell in the same row in the table 

below. 

What exactly is our problem?  

How can we solve the problem? 

Why do we choose this strategy? 

 

 

How do the various pieces of 

information in the problem fit 

together? How can we use them? 

 

How much time, effort, etc.  

should I put into this problem? 

At which point should I intensify 

my concentration and my 

efforts? 

 

 

 

 

 

Am I on true track as I proceed to 

solve the problem? what extent 

does the initial process of my 

plan differ from the way I 

continue? 

 

 

 

 

 

Did I solve the problem 

correctly? If not Why? 
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Abstract 

Increasing the inclusion of underrepresented individuals in coding is an intractable problem, 

with a variety of initiatives trying to improve the situation. Many of these initiatives involve 

STEAM education, which combines the arts with traditional STEM disciplines. Evidence is 

emerging that this approach is making headway on this complex problem. We present one such 

initiative, iLumiDance Coding, which attempts to pique the interest and increase confidence of 

students in coding, by combining it with a fun and physical activity: dance. The connections 

between dance and coding, while not immediately obvious, are authentic, and we hypothesize 

that this approach will increase student comfort level with coding. We used student surveys of 

attitudes toward coding and a variety of statistical approaches to analyze our initiative. Each 

analysis showed a positive effect on student comfort level with coding. These results are useful 

for both educators and researchers since they contribute to a deeper understanding of how to 

increase interest in coding, which we hope will lead to an increase in representation.  

Keywords: STEAM education, coding, increasing representation, dance, coding 
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1. Introduction 

Finding ways to spark interest in groups not immediately drawn to coding has been a challenge 

in an economy that consistently lacks candidates and diversity for positions that require coding 

skills. Women and minorities are consistently underrepresented in these areas and several 

initiatives have emerged to attract both of those groups, with mixed results. It is a problem that 

begins before students even enter college, often starting in middle school. Youth may determine 

career paths by the age of 13 (Tai et al., 2006; Bernstein et al., 2019; Shet & Tremblay, 2019). 

Furthermore, the literature addressing middle school students’ engagement and identification 

with STEM and STEM‐related careers indicates that developing STEM-specific individual 

interest (Staus et al., 2020) and preserving feelings of self‐efficacy in STEM during middle 

school is crucial (Aschbacher et al., 2014; Barmby, Kind, & Jones, 2008; Kang et al., 2019; 

Haussler & Hoffmann, 2002; Nugent et al., 2015). Partovi (2016) of Code.org reports that high 

school girls and underrepresented minorities who take AP Computer Science are more likely to 

major in computer science than those who do not (girls 11% vs 1%; underrepresented minorities 

14-17% vs 2%). Increasing participation, though, is not simply a matter of offering coursework. 

In this paper, we present iLumiDance and Coding, which attempts to pique the interest and 

increase confidence of students in coding, by combining it with a fun and physical activity: 

dance. 

 

Creating engagement by using music and coding have been explored in a variety of projects 

and has been shown to be a powerful way to teach and learn computer science content, as well 

as increase coding self-efficacy (Barate et al., 2017; Bell & Bell, 2018; Horn et al., 2020; 

Ruthmann et al., 2010). Combining dance and coding has been explored to a lesser extent. 

Shamir et al. (2019) saw positive results from the MathDance, which allowed student to perform 

a dance while learning computing concepts but did not explicitly draw on the similarities 

between dancing and coding. While not a combination that immediately comes to mind, 

explicitly teaching dance and coding together is a powerful way to create authentic cross-

disciplinary connections and spark the interest of learners who might otherwise be reluctant in 

either domain. Upon closer examination, it becomes clear that the ties between dance are coding 

are numerous and authentic. Coding is a language, just as the construction of visual and kinetic 

images are a "language" in dance choreography. The word choreography literally means 

"dance-writing" from the Greek words for dance and writing. In the most basic sense, coding is 

a set of instructions given to a computer for execution. Dance choreography parallels coding in 

that it provides instructions for the human body, a "computer" that is self-aware, conscious. 

Beyond just providing instructions, dance choreography and coding share many concepts that 

cross both disciplines. Both choreography and coding are, at their core, sequences of primitive 
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instructions that are executed in a linear order. They both utilize repetition, whether in an 

“ABA” ternary form or a “for loop.” They also have conditional statements that help them 

respond to dynamic situations or states. For example, the choreography may instruct one dancer 

to execute a solo movement sequence until within a foot of a second dancer, after the music 

reaches a certain point both dancers lock arms and revolve around a central point or swing your 

partner round and round. The moonwalk made popular by the late Michael Jackson, provides 

an excellent mirror to the use of “if-then” statements in coding. The choreography may instruct 

the dancer to moonwalk until reaching the edge of the performance space, then execute a 540-

degree clockwise spin and continue to moonwalk in the opposite direction. Finally, in both 

coding and choreography we create “functions” by naming sets of instructions or dance moves 

(e.g. running man, waltz, polka, twerking, electric slide), which can then be called time and 

again, without having to recreate the instructions from scratch.  

With all of these authentic connections, we conjecture that teaching students coding through 

dance will increase their comfort level with coding. 

 

2. Literature Review 

In recent years, the economy has shown an ever-increasing need in STEM fields, for which the 

number of qualified applicants is consistently insufficient (Yankman, 2008). In addition to an 

insufficient number of applicants, employers are also seeking creativity and innovation in new 

hires that may require them to pull knowledge from more than the discipline in which an 

employee might be trained (Land, 2013). STEAM education, which expands traditional STEM 

education to include the arts as a way to foster creative thinking, has emerged as an important 

pedagogy and may help meet these needs. As employers have noted, complex problems often 

require using a multi- or trans-disciplinary approach, which is implicit in STEAM education. 

The process of integrating arts and sciences encourages learners to demonstrate adaptive critical 

thinking as they hone their ability to develop flexible problem-solving models. The 

representation of subjects from both the arts and sciences as equals in STEAM education 

inspires open-ended creative exploration and serves as a form of productive play and inquiry 

(Trowsdale, 2016).  

 

The interest in STEAM has further increased with the release of the Next Generation Science 

Standards (NGSS) in 2013, as these standards are designed to teach students to “think critically, 

analyze information, and solve complex problems” (NGSS, 2013). One NGSS that can be 

addressed specifically through STEAM projects with coding components is “Using 

Mathematics and Computational Thinking.” Computational thinking is an approach to problem 
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solving that is based on the fundamentals of computing, and this approach is transforming the 

way we think about many disciplines, including the natural sciences (Bundy, 2007). 

The idea of crosscutting concepts, concepts that are applicable across the domains of science, 

are also a core part of the NGSS (NGSS, 2019). In many STEAM applications, crosscutting 

between the arts and sciences is added. Science the language and concepts around science topics 

can be intimidating to students (Graham and Brouillette, 2016). Likewise, many students are 

initially intimidated by coding concepts, so, presenting them in a way that shows their 

connection to the arts has been shown to increase students’ comfort level with coding (Moore 

et al., 2016). 

 

STEAM education not only creates cross-disciplinary connections that can lead to greater 

creativity, but it also can increase retention of content in within-discipline content. Graham and 

Brouillette (2016) found that the introduction of arts content into STEM education in 

elementary schools increased test scores in science areas by 13 percentiles compared to the 

control group. It has also been shown that by adding the “A” to STEM, we can bring more 

underrepresented communities into STEM, which continues to be an intractable problem. 

According to the National Center of Science and Engineering Statistics (NCSES, 2019), of the 

bachelor’s degrees awarded in Computer Science in 2016, only 18.7% were awarded to women 

and 21.6% were awarded to underrepresented minorities. There are no doubt many causes of 

this complex problem, but one survey found that women do not think the STEM fields are as 

interesting as other fields (Weinberger, 2005). A powerful approach to combat this can be 

through integrating STEM into fields in which girls and women are already interested. For 

example, STEAM projects that emphasize aesthetics and creativity have been shown to increase 

participation by young women and girls (Buechley and Mako Hill, 2010). Buchholdz, Shivley, 

Peppler, and Wohlwend (2014) discovered in their mixed-gender dyads that the “traditional” 

gender scripts for computing were disrupted by replacing traditional circuitry materials with 

conductive thread, fabrics, and needles, providing girls the opportunity to take on leadership 

roles in completing highly complex electronics projects. Another study showed an increase in 

interest in STEM in a Native American population by using culturally responsive STEAM 

projects (Kant, Burckhard and Meyers, 2018). Plus, integrating arts into STEM can make the 

STEM fields more approachable to all, including underrepresented groups (Maltas, 2015). 

The use of STEAM projects to learn coding and electronics is not an entirely new concept. For 

example, the EarSketch project, which integrates music with coding, found that "results reveal 

that students’ attitudes positively and statistically significantly increased across all constructs 

in our Student Engagement survey, which included constructs such as computing confidence, 

computing enjoyment, computing perceived usefulness, motivation to succeed in computing, 

identity and belonging in computing, and intention to persist" (Moore et al., 2016). Several 
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other programs have also shown strong positive results when connecting music to computer 

science (Barate et al., 2017; Bell & Bell, 2018; Horn et al., 2020). The Performatics program 

for college students described by Ruthmann et al. (2010), utilized scratch to teach music 

students coding concepts and computational thinking while they remixed and created musical 

pieces. Shamir et al. (2019) showed an increased interest in STEM classes and careers after 

students combined, music, dance, and animation with computer science. Peppler (2013) took 

another STEAM approach and utilized e-textiles with students. As part of this, they noted that 

"Stitching circuits seem to demystify ideas that can be elusive to students using traditional 

electronics." 

 

3. Methods 

While there are multiple STEAM approaches that can be used to introduce coding, our project 

focuses specifically on the use of dance. It involves the delivery of curriculum utilizing 

"puppets" and costumes that light up, laptops with our software installed and a connection 

between them, which currently runs via WiFi over a local router. Students receive some dance 

and coding instruction but are allowed plenty of room for exploration and creativity in what 

they design. Our project is founded in the constructivist theories of education, which dates back 

to Dewey (1934) and even earlier thinkers. In a constructivist framework, students are 

encouraged to explore, create and play to construct their own understanding of the world. 

STEAM education is well aligned to fulfill the tenets of constructivist education, where 

“students are engaged and central to knowledge productions” (Gross and Gross, 2016).  

In 2013, Peppler introduced “eight guiding principles of STEAM-powered computing 

education,” most of which we utilize in our curriculum and delivery. These principles are: 

1. Choose open-ended, personal, and aesthetic tools and materials, 

2. Make design thinking central, 

3. Create authentic combinations of STEM and the arts, 

4. Facilitate easy-entry, but challenging, designs, 

5. Purposefully contrast multiple media, tools, and materials, 

6. Involve a range of disciplinary experts, 

7. Devise new assessments, pedagogy, and learning environments, 

8. Document and showcase work.  

As we described in the introduction, the connections between dance and code are many and 

authentic. During the course of our STEAM instruction, we explicitly reiterate these authentic 

connections as we are working on projects, meeting the third principle. Our software is based 

on Google's Blockly. The colorful, block-based interface provided by Blockly alleviates some 
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of the "intimidation factor" of coding and allows for easy entry into basic coding concepts, 

while leaving plenty of room for challenge and creativity, meeting the fourth principle. Students 

spend most of their time working with the coding software, the puppets and the choreography, 

with some short, direct instruction. For example, students explore the use of functions and loops 

in their code on their own, using these tools to develop their desired performance look. This 

method also follows Peppler’s second principle, "make design thinking central." Students are 

doing this when they try some code, test it to check the visual impact, and then use that as 

feedback to further adjust their code. They are designing a visual impact in collaboration with 

designing movement, all the while constructing knowledge about the elements of coding and 

computational thinking. 

 

Computational thinking, an important 21st century skill, is a core part of the curriculum. And, 

according to Wing (2018), "the essence of computational thinking is abstraction." In our 

curriculum, students get experience with abstraction in a variety of ways. For example, students 

will work on a function, say called lightingChase, where the lights turn on and off in rapid 

succession. Once they get lightingChase just right, then they can call that function as many 

times as needed, creating a layer of abstraction. Furthermore, students need to grapple with the 

abstraction of presentation - between the computer screen and the physical puppets or costumes.  

 

3.1 Research Design 

Our curriculum is flexible; we can teach a 5-hour workshop, a week-long camp or even a 10-

week course with our software, and it can be adapted for students as young as 4th grade all the 

way up to young adults. In the 5-hour workshop, students will learn the basics of coding, 

including the sequential nature of executing code and simple iteration through looping. They 

will then perform a dance that is choreographed ahead of time but will design the lighting that 

accompanies the dance using their coding skills. In longer courses, students also learn about 

conditional statements and functions. They dive deeper into the fundamentals of movement and 

expression through choreography and develop their own dance(s) with accompanying lights.  

When possible, our entire content delivery team is present, which consists of a librarian and 

professors of dance and computer science, each of whom brings disciplinary expertise and 

perspective that is unique. This follows Peppler’s (2013) sixth principle, "Involve a range of 

disciplinary experts" and, while one of us will typically be the leader of the workshop, all of us 

assist and may present pieces as our content areas are discussed. 

 

In the workshop format, the students are split into six groups of six to program six puppets. 

Within those groups, each student is assigned a laptop to code on and a body part (head, torso, 
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right arm, right leg, left arm, and left leg), which they will program to light up using Blockly. 

Each part has six differently colored EL (electro-luminescent) wires that can be programmed 

as solid, flickering, or off and two LED strips that can produce a custom color based on RGB 

values the student picks. The laptops and puppets are connected to a local network via a home 

router system. The EL wires and LED strips are controlled via WiFi using a 12 channel WiFi 

DC dimmer. For much of the workshop, the students focus on learning how to control the 

different lights using individual commands, loops, and functions that they design in Blockly. 

Blockly then produces JavaScript, which both runs the puppets on the laptop screens and sends 

commands to the individual puppet pieces and wires via the routers. At the end of the workshop, 

they are asked to coordinate both the movement and lighting of their puppet piece to music in 

conjunction with their table-mates to create a performance. This follows Peppler’s (2013) 

eighth principle "Document and showcase work."  

 

Figure 1. Two team members working with students 
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In the summer camp, students designed a costume, with separate EL wires in each appendage, 

which are also controlled via the code they design in Blockly. Like the puppets, the costumes 

are controlled using a WiFi DC dimmer, but instead of controlling six individually hued wires, 

each channel controls a single wire representing each body part. The students are asked to bring 

dark colored clothing, which they use as their costume base. Each is given six pieces of EL wire 

and six pieces of mesh that they can thread the EL wire through in a design pattern that they 

choose before attaching the mesh to the appropriate part of their costume. Students then design 

a lighting sequence and choreograph dancing using Blockly. They may then combine their 

choreography and lighting for a group dance with shared lighting effects that may appear to 

create motion or other effects. 

 

Figure 2. Students programming a puppet piece during a workshop 
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The 10-week course is still in development but will incorporate additional detailed lessons on 

coding and movement and the connections between them. Because it is a college-level course, 

students will also be researching a social issue of their choosing and developing a dance with 

coded lighting to highlight their representation of that issue. Readings will include articles and 

chapters on topics such as cultural intersections of dance, art, communication, and technology.  

 

3.2 Data Collection 

After each course, we distribute a survey on the workshop to the participants that have given, 

or whose guardians have given, informed consent, based on our institutional review board 

approval. Because of limited time, we gave the survey once, at the end of the workshop, and 

then we chose to maintain a consistent survey method for the summer camp. Other data 

collection methods, like exit interviews or focus groups, where not used in order to maximize 

the amount of time for the activity itself, as these students had a strict schedule be get bussed 

back to their home school. This survey asks workshop participants questions about their attitude 

about coding before, during and after the survey. For example, they are asked "After 

participating in the workshop, my comfort level with coding is…." and asked to circle numbers 

on a Likert scale 1 through 5, with 1 being associated with 'Lower', 3 being associated with 'The 

Same' and 5 being associated with 'Higher.' Since the 5-hour workshops are for students, there 

are often other educators in the room (their classroom teachers, paraprofessional educators, 

counselors, etc.). When this is the case, we also give them a survey that measures their 

perspective of computing before, during and after the workshop. For example, one question is 

"I plan to incorporate more coding into my education environments”, and they are asked to 

circle a number on a Likert scale of 1 through 5 with 1 associated 'Not at all,' 3 associated with 

'Maybe,' and 5 associated with 'Most Definitely.' These surveys were based on Heidi’s (2013) 

work with measuring effectiveness of Injecting Computational Thinking into Computing 

Activities for Middle School Girls, which allowed us to use an existing, validated tool.  

 

3.3. Participants 

The workshop from which we collected data had students from Prineville, Oregon in Crook 

County. According to the Oregon Department of Education, 61% of the students from this 

district are on free and reduced-price lunch, 16% of the students identify as Hispanic and 6% 

as multiracial (https://www.ode.state.or.us/data/reportcard/reports.aspx). The summer camp 

pulls students from the Salem-Keizer School District, which has 71% of students on free and 

reduced-price lunch, 40% identify as Hispanic and 5% as multiracial 

(https://www.ode.state.or.us/data/reportcard/reports.aspx).  
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4. Results 

The results indicated that combining coding and dance is an effective way of increasing interest, 

efficacy, and engagement in coding. Participants reported increased confidence with coding, 

feelings of creativity, playfulness and engagement after the workshops or summer camps. 

 

4.1 Data Analysis 

The survey results were used to test our hypothesis that combining dance with coding 

has positive effect on student comfort level with coding.  The questions that we used to 

measure this comfort level were:  

● Question 3: "After participating in the workshop, my comfort level with coding is…'' 

● Question 4: "If I choose to, in the future I can do a job that uses coding.'' 

● Question 5a: "When I worked on coding the puppets, I felt confused'' 

● Question 5b: "When I worked on coding the puppets, I felt creative''  

● Question 5c: "When I worked on coding the puppets, I felt playful'' 

● Question 5d: "When I worked on coding the puppets, I felt bored''  

 

Summaries of the data from the spring workshop and the summer camp are reported in Table 1 

and Table 2 respectively, and all data is aggregated in Table 3.  In addition to reporting the 

actual data for the survey questions (3, 4, 5a, 5b, 5c, 5d), we compared the survey results in 

each to randomly completed surveys. As a first assumption for comparison, we considered each 

of the five responses to be equally likely so that the underlying distribution is uniform. This 

means the probability of observing any individual outcome from {1,2, 3, 4, 5} is ⅕. Using 

this, we defined a success as follows: 

X= success if we observe a 4 or a 5 on questions 3, 4, 5b, 5c, 

or X= success if we observe a 1 or a 2 on questions 5a, 5d, 

which establishes underlying binomial distributions for the various values of n, the number of 

survey respondents. From a probabilistic point of view, this means we should expect 40% of 

the survey results in the respective categories we define as a success. The results in Table 1 

suggest that success rate is much higher than predicted for all but Question 4. Looking at the 

estimated standard deviation in each case, 𝜎𝑋 ≈ 2.3 and 𝜎𝑋 ≈ 2.4 respectively, the observed 

number of successes is noticeably higher for all but Question 4 as the observed results are nearly 

two standard deviations or more above what theory predicts. This suggests either the underlying 

distribution is not uniform or that there was a positive effect on student comfort level with 
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coding from the workshop. Similar trends are apparent in the summer camp data and the 

aggregated data.  

 

Likert data in the context of education, specifically STEM disciplines, has received renewed 

interest (Brickman and Lovelace, 2013). A typical assumption for Likert data is that the data is 

normally distributed. "Likert (1932) himself argued that the distances of scores such as 1, 2, 3, 

4, 5 are equal and yield data which are approximately normally distributed. The question is if 

the same is true for the labels (e.g. 'Strongly Agree') which are frequently used. Recent research 

suggests that literacy affects the ability to discriminate between categories, i.e. that the 

suitability of the classical Likert scale depends on the choice of the sample (Chachamovich et 

al., 2009).'' (Treiblmaier and Filzmoser, 2009). 

 

We revisited the calculations in Table 1-3 using various approximate normal distributions. 

Comparing the expected number of successes with the observed data in Tables 1-3, we found 

that the observed number of successes was now higher than expected for all questions. The 

theoretical standard deviations decrease as well making the observed data stand out a bit more 

than before. Assuming approximate normal distributions indicates the positive effect from the 

workshop or summer camp was more noticeable. To investigate the possible effect from the 

workshop and summer camp, we now turn to an inferential analysis of the data to test the 

hypothesis that the interventions had positive effects.   

 

Table 1. Spring Workshop Summary Survey Results 

Question Predicted # of 

Successes 

Observed # of 

Successes 

n 𝑋

𝑛
(%) 

|Xobs – Xpred| Difference 

from Predicted 

(%) 

3 9.2 17 23 73.9 7.8 33.9 

4 9.6 8 24 33.3 1.6 6.7 

5a 9.6 14 24 58.3 4.4 18.3 

5b 9.6 16 24 66.7 6.4 26.7 

5c 9.2 17 23 73.9 7.8 33.9 

5d 9.6 17 24 70.8 7.4 30.8 

 

Table 2. Summer Camp Summary Survey Results 
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Question Predicted # of 

Successes 

Observed # of 

Successes 

n 𝑋

𝑛
(%) 

|Xobs – Xpred| Difference 

from Predicted 

(%) 

3 5.6 8 14 57.1 2.4 17.1 

4 5.6 5 14 35.7 0.6 4.3 

5a 5.6 6 14 42.9 0.4 2.9 

5b 5.6 12 14 85.7 6.4 45.7 

5c 5.6 11 14 78.6 5.4 38.6 

5d 5.6 9 14 64.2 3.4 24.3 

 

Table 3. Spring Workshop Summary Survey Results 

Question Predicted # of 

Successes 

Observed # of 

Successes 

n 𝑋

𝑛
(%) 

|Xobs – Xpred| Difference 

from Predicted 

(%) 

3 14.8 25 37 67.6 10.2 27.6 

4 15.2 13 38 34.2 2.2 5.8 

5a 15.2 20 38 52.6 4.8 12.6 

5b 15.2 28 38 73.7 12.8 33.7 

5c 14.8 28 37 75.7 13.2 35.7 

5d 15.2 26 38 68.4 10.8 28.4 

 

4.1.1 One-sided Hypothesis Test 

We begin with a simple null hypothesis 𝐻0: 𝑝 = 0.4 and test this against the claim that the 

workshops had a positive effect so that the alternate hypothesis is 𝐻1: 𝑝 > 0.4 for each of the 

six questions.  Based on our initial analysis, we opted to assume the underlying distribution is 

uniform and to use the test statistic 𝑍 =  
𝑋

𝑛
−𝑝𝑜

√
𝑝0(1−𝑝0)

𝑛

 ≥  𝑧𝛼 , where 𝛼 is the approximate level of 

the test. The results for the six questions along with the computed p-values are given in Table 

4. For Questions 3, 5b, 5c, and 5d, we note a statistically significant result for nearly any typical 
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level of significance. Additionally, the p-value for question 5a is significant depending on the 

desired level of significance.  

 

Table 4. One-sided alternate hypothesis 

Question 𝑝0 x n �̂� Ztest statistic p-value 

3 0.40 25 37 25

37
= 0.676 

3.42 0.00031 

4 0.40 13 38 13

38
= 0.342 

-0.730 0.77 

5a 0.40 20 38 20

38
= 0.526 

1.59 0.056 

5b 0.40 28 38 28

38
= 0.737 

4.24 0.000011 

5c 0.40 28 37 28

37
= 0.757 

4.43 0.0000047 

5d 0.40 26 38 26

38
= 0.684 

3.58 0.00017 

 

4.1.2 Two-sided Hypothesis Test 

The preceding calculations and analysis used hypothesis tests found in almost any statistics text. 

In practice, these standard confidence intervals and tests of hypotheses often have poor 

performance even when the sample size is rather large (Agresti and Caffo, 2000). Agresti and 

Coull (1998) suggested the "add two successes and two failures'' interval given by �̃� ±

𝑧𝛼

2
√

�̃�(1−�̃�)

�̃�
, where �̃� = 𝑛 + 4  and �̃� =  

𝑋+2

𝑛+4
. Careful analysis has shown that this interval 

performs dramatically better than the standard Wald intervals and their associated hypothesis 

tests explored earlier in this analysis, even when working with small samples (Agresti and 

Coull, 1998). This confidence interval corresponds to the test statistics |𝑍| = |
�̃�−𝑝0

√
𝑝0(1−𝑝0)

�̃�

| ≥

𝑧𝛼

2
, 𝑜𝑟 |𝑍| = |

�̃�−𝑝0

√�̃�(1−�̃�)

�̃�

| ≥ 𝑧𝛼

2
, where the difference in the denominator is somewhat up to the 

practitioner. Using the latter of these two we compute the results reported in Table 5.  
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Table 5. Two-sided alternate hypothesis 

Question 𝑝0 x n �̃� Ztest statistic p-value 

3 0.40 25 37 25 + 2

37 + 4
= 0.659 

3.49 0.00048 

4 0.40 13 38 13 + 2

38 + 4
= 0.357 

-0.58 0.56 

5a 0.40 20 38 20 + 2

38 + 4
= 0.524 

1.61 0.11 

5b 0.40 28 38 28 + 2

38 + 4
= 0.714 

4.51 0.0000065 

5c 0.40 28 37 28 + 2

37 + 4
= 0.732 

4.79 0.0000017 

5d 0.40 26 38 26 + 2

38 + 4
= 0.667 

3.67 0.00024 

 

In any of the preceding calculations, the results are consistent across the inferential 

structures. Questions 3, 5b, 5c, and 5d are all statistically significant indicating there is evidence 

for increased confidence with coding, feelings of creativity, playfulness and engagement after 

the treatment. The Question of student confusion depends on the desired level of significance 

but at the traditional level of α = 0.05 the results are significant. The effect of combining dance 

and coding is statistically relevant for certain key features central to student comfort level and 

merit further study. 

 

5. Conclusions 

STEAM education is growing rapidly as an important approach to teaching and retaining 

students in STEM, especially coding (Graham and Brouillette, 2016). Teaching coding with a 

STEAM approach increases the excitement and creativity around coding and brings 

underrepresented groups into STEM (Barate et al., 2017; Bell & Bell, 2018; Horn et al., 2020; 

Ruthmann et al., 2010, Shamir et al. 2019). However, we feel it is important that the STEAM 

connections to coding be authentic and transdisciplinary, which is why coding and dance are 

such a natural fit. 
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The numerous connections and parallel concepts between coding and dance make it a natural 

and authentic pairing for instruction. It is approachable to people with a variety of backgrounds 

or comfort levels with either activity and promotes creativity and playful exploration of both. 

In each of the venues where we collected data, we measured students' attitudes towards coding 

as a possible measure of future success as described by Else-Quest, Mineo, and Higgins (2013) 

and in each case, we found that there was increased comfort with coding, feelings of creativity, 

playfulness and engagement using this approach. Like Wanzer et al. (2020), we saw an 

increased feeling of affiliation toward coding and coding activities in students self-reporting 

after participation in the activities. In addition to the statistical data we gathered, we received 

lots of enthusiastic verbal feedback from participants. Of particular note, one 8th grade girl 

commented that "I really was expecting us to do some normal coding, like we do at school. But, 

this was totally different. It’s more hands-on. And I think if we did more of this, more girls 

would take coding" after the workshop.   

 

While this outcome can't help but be exciting, we must acknowledge some of the limitations in 

our study. First, our sample sizes are small, and we did not have a control group. Our project is 

in its early stages, so the data must be viewed as preliminary. Second, our samples, while 

diverse, were not entirely randomly selected; the summer camp participants self-selected and 

the workshop participants had teachers who had selected to involve their classes with these 

activities, which could indicate previous exposure to coding and coding concepts, though does 

not account for changes in attitude. 

 

Our future work includes using this approach in a quarter-long class at the college level and 

attempt to measure any change in the understanding of coding basics in addition to attitudes. 

We will also continue to provide workshops and summer camps and collect data on student 

attitudes. We hope to start collecting data on race and gender, and as our sample gets bigger, 

disaggregate the data to further explore underrepresented groups. 

 

Over the course of this project we have met with a variety of individuals from classroom 

teachers to large tech company executives, and many expressed frustrations about the difficulty 

of sparking excitement for coding. Based on our results, our project provides one avenue to 

address that frustration by combining learning coding with a topic that some already feel 

passionate about. This approach to teaching coding can be implemented by K-8 teachers as well 

as informal science educators. While our workshops utilized puppets and dedicated laptops, the 

approach does not require these. Instructors can utilize existing software and platforms, such as 

Scratch or Blockly and still emphasize the authentic connections between coding and dance or 
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another activity that combines similar concepts. An example of this might be creating artwork, 

finger weavings, or music based on coding concepts. Explicitly describing and utilizing 

computer science concepts, such as iteration, looping, and variables, while doing that activity, 

then showing how that concept is also used in the context of creating code can make powerful 

connections in students’ minds. The efficacy of pairing coding and dance compared to other 

combinations of artistic endeavors and coding is unknown, but there may be an advantage to 

having a variety of STEAM approaches to getting individuals excited about coding. We are 

enthusiastic about the inroads into coding that these STEAM projects provide and are interested 

in how the results of other STEAM pairings compare to ours. 
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Abstract 

In this study, the effects of interactive video usage in programming education on academic 

achievement and self-efficacy perception of programming were investigated by taking into 

account learning styles. The research was patterned according to the causal-comparative model, 

and also, correlation analysis was performed for related research. Sixty-one students attending 

3rd grade in Computer and Instructional Technology Education (CEIT) of Yıldız Technical 

University participated in the study. Research data were collected with “Interview form,” 

“Academic Achievement Test,” “self-efficacy scale for programming,” “learning styles index” 

and “interactive Video system.” ANCOVA, Correlation and Kruskal Wallis H-test were used 

in the analysis of the data. The data was analyzed on the computer with the SPSS package 

program. According to research findings, interactive video monitoring rates did not differ 

significantly in the students ' academic achievement and self-efficacy perceptions of 

programming. It was found that students ' learning style preferences had no impact on 

interactive video viewing rates. The relationship between the change in students ' academic 

achievement and the change in self-efficacy perception scores related to programming has been 

examined; as academic achievement increases; it has been concluded that the perception of self-

efficacy about programming has fallen.  

 

Keywords: Interactive video; computer science education; learning style; programming; self-

efficacy of programming. 
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1. Introduction 

With the technology that develops day by day, internet tools have been affected by these 

developments and have brought up a new concept with them.: Web 2.0 (Akar, 2010). Different 

researchers offer various definitions of Web 2.0. For example, Tu, Blocher, and Ntoruru (2008) 

define it as "a Web technology that aims to enhance creativity, information sharing and 

collaboration among users" (p. 336).  Scrum and Levin (2009) emphasize the same features 

and explain it as the second generation of the internet that supports creativity, information 

sharing and collaboration. Akar (2010) states that  Web 2.0 is a technology that makes the 

internet more participatory, creative and social. Bustamante (2017) prefers to use the term as 

one of the key mediums of technology-based teaching and defines it as effective interactive 

media used to improve students' achievement in the classroom.  .  Web 2.0 is emerging 

development to increase the usability and functionality of web technologies (Karaman, Yıldırım 

& Kaban, 2008). In this research,  with the perspective of interaction, Web 2.0 is operationally 

defined as the technology improving interactivity among all stakeholders of the internet.   

Some of the Web 2.0 tools can be listed as follows: Social networking systems-Twitter, 

Facebook, video sharing sites-YouTube, Google video, image sharing sites-Flickr, Instagram, 

wikis, blogs, virtual worlds, podcasts, interactive video systems (Munoz and Towner, 2009; 

Brame, 2016). Videos are one of the Web 2.0 technologies, which is becoming very popular 

and also used frequently (Kolowich, 2016). Additionally, it can be said that there has been an 

increase in video usage rates in educational contexts (Yıldırım & Özmen, 2012). Improving 

learner motivation is one of the important reasons for using video content in educational 

environments. Videos increase the motivation of tech students if used as learning and teaching 

tools (Duffy, 2008). However, if the non-interactive video was used during the teaching 

process, an insufficient level of satisfaction was revealed (Kozma, 1986). The reason for this is 

that video surveillance provides a passive experience as in reading (Brame, 2016). Interactive 

video (Schaffer & Hannafin, 1986), also known as hyper video (Petan, Petan &Vasiu, 2014), is 

an instructional technology that combines the computer's ability and capabilities of video, 

allowing the student to interact with an instructional video from a passive audience position 

(Zhang, Zhou, Briggs & Nunamaker Jr., 2006). Some of the ways to make a video interactive 

video are: 

• Embedding open-ended and multiple-choice questions on video and giving feedback based 

on responses (Schaffer & Hannafin, 1986; Yin, Lin, Yang and Chen, 2013),  

• Repeating of the specific section on the video according to the answers given to the 

questions and continuing to this repetition until the correct answer is answered (Schaffer & 

Hannafin, 1986),  

• Displaying chapter titles on video, including sections of topics within the video (Petan, 

Petan & Vasiu, 2014), 
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• Showing and drawing text, tables, and images on the video. (Yin, Lin, Yang and Chen, 

2013) 

 

Interactive video usage increases attention, remembering, satisfaction and video viewing times 

(Clothier, 2013). In this context, in academic studies (Barthel, Ainsworth & Sharsples, 2013; 

Hrastinski & Monstad, 2014; Yin, Lin, Yang & Chen, 2013) it has been observed that video-

based systems including technological futures to support user-computer interactions.  

 

In this study, interactive videos were used in the process of graphics-based programming 

language education. The interactive videos are based on “how-to” videos which are used to 

teach new skills or new techniques/technologies.  It is seen that “how-to” videos are becoming 

more and more popular in video distribution environments. In the Twenty-First Century, 

individuals are expected to make production on their own as well as consumption (Kalelioğlu, 

2015). Interactive videos can help them to create new things on their own. The value given to 

the training of individuals who can produce on their own by learning programming is evident 

(Ersoy, Madran & Gülbahar, 2011; Kukul and Gökçearslan, 2014). The value given to 

programming in Turkey is increasing day by day (Kert and Uğraş, 2009). Nowadays, various 

approaches are being used by practitioners to improve the programming skills of the students.  

This research has been focused on the effect of interactive videos on the success of the students 

in programming courses. Additionally, Self-efficacy and learning styles of the individuals have 

been thought of as two important factors affecting video-supported education and therefore 

added to the investigation of the correlations.  

 

Self-efficacy for programming is one of these areas (Altun and Mazman, 2012). Programming 

skills are seen as more challenging to understand than university-level courses such as 

mathematics and science (Aşkar and Davenport, 2009). This is because individuals see 

programming as a more difficult issue to understand, in other words, their perceptions of self-

efficacy about programming are low (Altun and Mazman, 2012). In the field of literature, 

several studies have been examined between academic achievement and self-efficacy, but it has 

been observed that there is an inadequate number of studies taking into account the impact of 

self-efficacy on programming skills (Aşkar and Davenport, 2009). Because of the different 

mental processes of the students in the research, it has been found that they have configured 

and identified information differently (Samancı & Keskin, 2007). The self-efficacy of the 

individual can be seen as an essential factor in the development of programming skills. Self-

efficacy is defined as "self-judgment about the capacity of the individual to organize and 

successfully perform activities necessary to show a certain performance" (Gözüm and Aksayan, 

1999). This concept is used by adapting to different disciplines and fields (Seferoğlu & Akbıyık, 

2005).  
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Learning styles affect the structure of learning-teaching environments (Arslan and Aksu, 2006). 

Therefore, in educational settings, teachers need to have general knowledge about the profiles 

of learners (Arslan and Aksu, 2006; Felder and Henriques, 1995). There are many inventories 

developed to identify learning styles. One of them is the learning style index which was 

developed by Felder and Silverman in 1994 (Felder and Soloman, 1994). This index determines 

the learning style preference in 4 factors with 44 questions. Felder's learning factors are doing-

thinking, feeling-intuitive, visual-verbal, sequential-holistic (Howard, Carver, and Lane, 1996). 

Before preparing the index of learning style factors and learning styles, Felder examined four 

learning model styles: The Myers-Briggs Type Indicator(MBTI), Kolb’s Learning Style Model, 

The Herrman Brain Dominance Instrument (HBDI) (Thomas, etc., 2002).  

 

The main aim of the research is to examine the effect of interactive course video support on the 

process during the programming education process. Given the possible effect of self-regulation 

skills  and  learning style of the students it is aimed to find the answers to the following sub-

problems:   

RQ1: Is there a significant correlation between interactive video monitoring rates and self-

efficacy perception scores for programming? 

RQ2: Is there any effect of learning styles on video monitoring rates of the students?  

RQ3: Is there a significant correlation between students' academic achievement and interactive 

video viewing rates? 

RQ:4 Is there a significant correlation between the change in students' academic achievement 

and the change in self-efficacy perception scores related to programming? 

 

2. The study 

List of Abbreviations 

AAT  : Academic Achievement Test  

CPSES : Self-efficacy Scale For Programming  

ILS  : Index of Learning Styles 

IVMR : Interactive video monitoring rates  

IVS  : Interactive video system 

G   : Study Group 

ILS  : Index of Learning Styles 
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2.5.Method 

The study was designed according to the causal-comparative model, and the correlation 

research model was used in the research. A causal-comparative research pattern is a pattern 

used to determine the causes or consequences of differences between groups within existing 

groups (Fraenkel, Wallen& Hyun, 2011). The correlation model is the model used to determine 

the relationship between variables (Sönmez & Alacapınar, 2013). In the correlation model, a 

causal comparison model is needed because no interpretation can be made in the context of the 

cause-effect model. The causal-comparative research model is the study of “determining the 

causes that influence the results of a completed case.” (Sönmez & Alacapınar, 2013). In this 

model, the researcher does not insert any variables in the environment, nor does he interfere 

with the results. Therefore, this model is used to determine the differences between individuals. 

(Büyüköztürk, Çakmak, Akgün, Karadeniz & Demirel, 2010).  

The dependent variables of the research are the perception of self-efficacy in programming and 

academic achievement. The independent variables are the learning styles, the IVS (interactive 

video system) monitoring rates, and the number of questions they answer correctly in IVS. 

Scale and tests were applied to all students in the study group. At the same time, all students 

had the opportunity to use IVS. The symbolic representation of the study with these 

explanations is presented in Table 1: 

 

Table 1. The Symbolic Representation Of The Research Model 

Group Pre-Test Process Post-Test 

G AAT1 

CPSES1 

ILS 

Conventional Course 

Use of IVS as a supportive 

source 

AAT2 

CPSES2 

 

2.6.Participants 

This research was carried out with 66 students in 2 groups who took Multimedia Design and 

production courses while studying in the computer and instructional technologies Education 

Department of Yıldız Technical University Faculty of Education. However, during the research 

process, six students who did not attend the courses regularly and who did not support the 

studies were excluded, and the study was completed with 60 students. All students who 

participated in the study were provided with access information for IVS, which was developed 

by the researcher, and they were allowed to use IVS.  

 

In this study, groupings were made by causal-comparative research pattern: IVS never 

used/viewers (never viewed), IVS infrequent users/viewers (1.5 hours or fewer), IVS active 

users/viewers (1.6 hours and more). The reason for the preference of this course is that students 
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have taken courses in the first grade, second grade, and the first semester of third grade, and 

have gained fundamental knowledge and skills on this subject. Besides, students who failed to 

take the course in previous years and who took the course from the upper grade even though 

they were in a lower grade are not included in the study. Nobody was forced to watch videos 

throughout the semester. Just, gift cards were used as motivators of the process. In the first 

week,  It has been announced that 10 students with the highest video viewing rates will be 

rewarded with a gift card from a book store.   

 

Students have taken three hours of Multimedia Design and Production courses per week. The 

course is given in the classroom environment and by CEIT faculty members. The videos on 

IVS were obtained weekly by using the Camtasia program at the end of the course, which was 

conducted by the researcher, and uploaded to IVS. The researcher and the lecturer of the course 

have provided the recording of the videos in a coordinated way, before and after each course, 

in the same way as the content of the course. After the videos were taken, the interaction was 

added and made available to students at IVS. 

 

Table 2. Demographics of the Participants 

 

The study included 60 students, 29 of them are males (48.33%), and 31 of them are females 

(51.67%). When students’ ages were examined, the age distribution was found to be between 

18-20 (21.67%) and 21-25 (73.3%). Also, 5% of the students were found to be in the age group 

of 26 and above. Additionally, In Table 3, The results of the students according to the Felder 

and Soloman learning styles index are given. In the results, each student is presented in detail 

as weak-medium-strong according to four factors and two poles of each factor. 

Table 3. Learning Styles of Students in 4 Factors 

Learning Style Efficacy f % 

Doing-Thinking 

Doing – Weak 31 50.82 

Doing – Medium 10 16.39 

Doing – Strong 4 6.56 

Thinking – Weak 13 21.31 

Age (Year) f %  Gender f % 

18-20 13 21.67  Male 29 48.33 

21-25 44 73.3  Female 31 51.67 

26-35 3 5  Total 60 100 

Total 60 100     
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Thinking – Medium 3 4.92 

Thinking – Strong 0 0 

 Total 61 100 

Intuitive - Feeling 

Intuitive – Weak 6 9.83 

Intuitive – Medium 2 3.28 

Intuitive – Strong 0 0 

Feeling – Weak 32 52.46 

Feeling – Medium 19 31.15 

Feeling - Strong 2 3.28 

 Total 61 100 

Visual - Auditory 

Visual – Weak 21 34.42 

Vısual – Medıum 19 31.15 

Visual – Weak 15 24.60 

Auditory – Weak 3 4.92 

Auditory – Medium 2 3.28 

Auditory - Strong 1 1.64 

 Total 61 100 

Sequential - Holistic 

Holistic – Weak 15 24.60 

Holistic – Medium 3 4.91 

Holistic – Strong 0 0 

Sequential – Weak 28 45.90 

Sequential – Medium 14 22.95 

Sequential - Strong 1 1.64 

 Total 61 100 

 

As shown in Table 3, students' apparent distributions of learning styles are as follows: 50.82% 

Doing-Weak, 52.46% Feeling-Weak, 45.90% Sequential-Weak.  

 

2.7.The Data Collection Tools 

The data obtained in this study were collected through tests and scales, a. Pre-test, self-efficacy 

perception scale and learning styles index, which are achievement tests, were applied before 

the use of IVS. In the process of using IVS, information about using IVS has been collected. 

After the use of IVS, the self-efficacy scale for programming and final-test was applied.  

The “Academic Achievement Test” was developed by the researcher to scale the success of the 

interactive video system for students in software education. To have a measurement tool 

validity, “all observed and measurable properties of the desired quality should be present in a 
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measurement tool.” (Sönmez and Alacapınar, 2013). The validity of the academic achievement 

test has been decided by taking expert opinion from the faculty member of the course. The 

Achievement Test has been prepared as 40 questions to measure target behaviors. The test was 

applied to 51 students in the study group. It is not possible to reach consistent and accurate 

judgment with the data obtained through reliable and non-valid measurement tools (Sönmez 

and Alacapınar, 2013). In this respect, the reliability of the test was determined by Kuder-

Richardson-20 (KR-20) technique. As a result of the application, the KR-20 Reliability 

Coefficient was calculated as 0.59. For each subject in the Achievement Test, difficulty and 

differentiation indices were calculated. There are 20 questions in the final of the Achievement 

Test after the removed substances. KR-20 Reliability Coefficient was calculated as 0.77. The 

average degree of difficulty of the substances was found as 0.48. The degree of difficulty of the 

substances in the test varies between 0.21 and 0.79. The test includes four simple questions, 

nine moderate questions, and seven difficult questions.  

 

To determine learning styles, we used the “Learning Style Index” developed by Felder and 

Silverman (1988) which is based on the learning style model and scaled by Felder and Soloman 

(1994) and adapted to the Turkish language by Samancı and Keskin (2007). The web-based 

version of the Felder-Soloman Learning Style Index has been used by more than 100,000 people 

each year to determine the learning style and has been involved in many studies (Litzinger, Lee, 

Wise & Felder, 2005). The validity and reliability of the index were made by Samancı and 

Keskin (2007) and by Litzinger and colleagues (2005). Reliability Coefficients are shown in 

Table 4. 

 

Table 4. Reliability Coefficients of Four Learning Styles in The Index 

Doing 

Thinkin

g 

Feeling 

Intuitive 

Visual 

Auditory 

Sequential 

Holistic 

N Study 

0.43 0.54 0.59 0.32 
38

1 

Samancı and Keskin 

(2007) 

0.60 0.77 0.74 0.56 
57

2 

Litzinger and colleagues 

(2005) 

For all of the learning factors, Samancı and Keskin (2007) found that the correlation between 

factors was quite close to zero and statistically equal to zero. Litzinger and his colleagues (2005) 

also stated that each factor corresponds to all the objectives of the scale. Forty-four substances 

contained in this index are made up of four factors. These factors are Doing-Thinking, Feeling-

Intuitive, Auditory-Visual, and Sequential-Holistic. Each factor is matched with 11 
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expressions. Each expression consists of two options: A and B. According to the number of A 

and B responses given for each factor, it defines the level of the respective factor to be strong, 

medium and weak (Samancı and Keskin, 2007). 

 

In this study, the “Self-Efficacy Perception Scale For Programming” developed by Ramalingam 

and Wiedenbeck (1998) and adapted to Turkish by Altun and Mazman (2012) was used to 

determine the perception of self-efficacy in programming. The scale developed by Ramalingam 

and Wiedenbeck (1998) for C++ programming language is used in Java programming language, 

Aşkar and Davenport (2009). The scale, which was developed in English and consisted of 32 

items, was determined by the research conducted by Altun and Mazman (2012), which 

consisted of 9 items and 2 factors in Turkish form. 

 

2.8.Interactive Video System (IVS) features  

IVS is the general name of the system that the learner uses continuously during a teaching 

process. The student on the IVS performs all transactions and all processes. The 

administrator/instructor/teacher communicates with this system through the management panel. 

The overall structure of the system is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

     Figure 1. Interactive Video System (IVS) usage scheme 

 

Students entered the IVS system through the student login screen. It is also stated that the 

student number and password must be in a specific pattern and the warning should be given in 

case of an incorrect entry. The first screen of the student after logging in to IVS is the IVS 

Home Screen. This screen contains topics and sub-topics. The middle section shows the video 

about the sub-topic clicked. The video opens in the middle of the page to fit the screen 
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resolution, clicking on one of the topics in the left menu. A view of the IVS video display page 

is shown in Figure 2. 

 Figure 2. IVS Video Display Page 

 

The student encounters the interaction added by the teacher while watching the video. Here, the 

student can respond or continue to follow without responding. The images used in the samples 

in the videos are downloaded through the screen, shown in the screenshot below, which is 

opened by clicking on the “download images” link. The application files of the samples 

developed in the videos can be downloaded from the “download application files” screen shown 

in the screenshot below. The views for the file download pages are presented in Figure 3.  
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Downloading images used in samples      Downloading sample files 

Figure 3. File download pages on IVS 

 

The management panel of IVS is the administration section of the system. A view of the IVS 

management panel is presented in Figure 4.  

 

 

 

 

 

 

 

 

 

 

  Figure 4. IVS Management Homepage 

 

In this screen, the number of students currently using the application, answers to questions, total 

video time, number of entries, number of videos watched per student, number of students 

watching video per day, number of entries per day and number of entries per student are 
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statistically shown. In addition to this, the administrator can do the following: changing students 

log in information; viewing, listing, adding, deleting, and updating courses; viewing, listing, 

adding, deleting, and updating videos; viewing, listing, adding, deleting, and updating 

interactions; viewing, listing, adding, and updating students; adding, deleting, and updating 

students.  

 

2.9.Data Analysis 

The SPSS package program was used to analyze research data. When interpreting results, p≤.05 

as a level of significance accepted. Information about five students collected through interview 

form is presented in the study by correcting spelling errors. No coding or additional 

commentaries have been made. First of all, parametric and non-parametric controls were 

performed in the analysis of the data. A Single Factor Covariance Analysis (One Factor 

ANCOVA) was used to analyze whether the change in self-efficacy perception scores for 

programming differs significantly compared to interactive video monitoring rates. The Kruskal 

Wallis(KW) H-test was used to analyze whether interactive video monitoring rates differ 

according to students' learning style preferences. Correlation is used to interpret the amount and 

direction of the association between variables (Büyüköztürk, 2014). A correlation was used to 

examine the association between the amount of change in students' academic achievement and 

the amount of change in perceptions of self-efficacy regarding programming.  

 

“In planning a study, researchers have the responsibility to evaluate carefully any ethical 

concerns.” (Fraenkel, Wallen & Hyun, 2011, p. 62). The whole process was carried out in 

compliance with the ethical standards of scientific research.  First of all, it can be mentioned 

that the underlying reason for using causal-comparative design instead of an experimental one 

in the research was avoiding possible ethical issues. The authors wanted to deliver interactive 

videos to all students instead of only those in the experiential group. Any part of the process 

was not manipulated by the researchers. Watching the videos was not compulsory and entirely 

up to the students' decision.  Additionally, the students did not see each other's follow-up times. 

The names of the students were not used in any part of the research. The consent of the 

participants was obtained for the user data of the research.    

     

3. Results 

In this section, the data obtained using the data collection tools, together with the results of the 

analysis of this data through the appropriate statistical methods and comments on these findings 

are included. When interpreting the findings, p<.05 was considered as a level of significance. 
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3.1 Self-efficacy perception 

Interactive video monitoring rates were obtained in hours/seconds by IVS. Twenty students 

who did not fill one or both of the self-efficacy scales for programming (CPSES) fill missing 

or write their name on the scales were excluded. The analysis was carried out with 40 student 

data (N=40) as shown in Table 5.  

 

Table 5. Grouping of Interactive Video Monitoring Rates 

Group No  Including Criteria Condition N 

Group 0 Who Never Viewed The Interactive 

Video 

Never viewed 12 

Group 1 Who Viewed The Interactive Video 

Infrequently 

Who watches for 1.5 hours 

or less 

15 

Group 2 Who Viewed The Interactive Video 

Actively 

Who watches 1.6 hours or 

more 

13 

 

Since the group capacity is less than 50, the Shapiro-Wilks Test (Büyüköztürk, 2014) was used 

for normality analysis. According to the results, p-values were greater than a=.05 can be 

interpreted as the scores did not show a significant deviation from a normal distribution 

(Büyüköztürk, 2014). The normal distribution of data in the self-efficacy perception scale for 

programming has shown that parametric analysis methods can be used in data analysis 

(Büyüköztürk, 2014). A Single Factor Covariance Analysis (One Factor ANCOVA) was used 

to analyze whether there was a significant correlation between interactive video monitoring 

rates (independent variables) and CPSES final application scores (dependent variables). CPSES 

pre-application scores were used as a covariate. Explanations of the Covariance Analysis 

Results are shown in the table below. 

 

Table 6. CPSES Final Application Scores Covariance Analysis Results  

Source 
Sum of 

Squares 

Degree of 

Freedom 
Mean of Squares F p 

CPSES Pre- 

Application 

2649.848 1 2649.848 75.83

8 

.00

0 

Group 178.209 2 89.105 2.550 .09

2 

Bug 1257.879 36 34.941   
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When table 6 was examined; It was inferred that CPSES scores did not differ significantly from 

the interactive video monitoring rates (groups), (F(2, 36) = 2.550; p >.05). In other words, the 

perception of self-efficacy of programming has no relation to interactive video monitoring rates. 

Correlation between the amount of change in students' academic achievement and their 

perception of self-efficacy related to programming were analyzed using a simple correlation 

technique. Results are shown in Table 7.  

 

Table 7. Results of Correlation Analysis Between the Growth of Academic Achievement and 

CPSES Scores of the Students.  

 Pre-Post  CPSES 

Scores 

Pre-Post  Academic Success Pearson Correlation -.036 

Sig. (2-tailed) .841 

N 34 

 

In Table 7, it is seen that there is a negative and low-level significant relationship between the 

growth of academic achievement and CPSES scores of the participants (r = -0.036; p <.05). 

Accordingly, it can be said that CPSES scores decrease when academic scores increase. 

 

3.2. Interactive Video Monitoring and Academic Achievement 

Interactive video monitoring rates were obtained in hours/seconds through IVS. In this context, 

the grouping is done as shown in Table 8. The study was carried out with 48 student data 

(N=48), as displayed in Table 8, by subtracting 12 students who did not complete one or both 

of the academic achievement tests and missing ones and did not write their names. 

 

Table 8. Distribution of Students Completing Academic Achievement Tests According to 

Interactive Video Monitoring Groups  

 Tag N 

Group No 

0 Never viewed 17 

1 Viewed 14 

2 Actively Viewed 17 

  Total 48 
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Since the number of students to be used in the analysis is less than 50, the Shapiro-Wilks test 

was used for normality analysis (Büyüköztürk, 2014). The normality distribution of 

achievement test data shows that parametric analysis methods can be used in data analysis. A 

Single Factor Covariance Analysis (One Factor ANCOVA) was used to analyze whether there 

was a significant correlation between interactive video monitoring rates (independent variable) 

and achievement test final application scores (dependent variable). Achievement test pre-

application scores were used as the covariate. Explanations of the covariance analysis results 

are displayed in the table below. 

 

Table 9. Results of Covariance Analysis of Final Application Scores 

Source Sum of Squares 
Degree of 

Freedom 

Mean of 

Squares 
F p 

Achievement 

Test Pre-

Application 

44.289 1 44.289 5.18

4 

.028 

Group 35.596 2 17.798 2.08

3 

.137 

Bug 7099.000 44 34.941   

 

Table 9 shows that there was no significant difference in achievement scores compared to 

interactive video monitoring ratios (groups), F(2, 44) = 2.083, p >.05. In other words, academic 

success has no relation to interactive video viewing rates. 

 

3.3. Interactive Video Monitoring and Learning Styles 

In the second sub-problem of the study, it was investigated whether the learning style 

preferences differ significantly according to the interactive video monitoring rates. Learning 

style preferences were collected through the "Felder and Soloman Learning Styles Index." The 

results of this index show that each student has a learning style preference of 4 different factors 

and 2 different poles in each factor (Felder & Silverman, 1988). Each pole has three different 

levels: strong, medium and weak (Felder & Silverman, 1988).  

The study was carried out with 46 students' data (N=46) by eliminating 14 students who did not 

fill out the learning styles index, fill out missing or write down their names. The non-parametric 

test, Kruskal Wallis(KW) H-test (Büyüköztürk, 2014), was used because the video monitoring 

rates did not show normal distribution. As shown in Table 10, According to the results of this 

study, interactive video monitoring rates (IVMR) did not differ according to learning style 
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preferences (p>.05), in other words, it was found that learning style preferences do not have 

different effects on interactive video monitoring (viewing) rates.  

 

Table 10. Comparison Learning Style Preferences with the IVMR “Kruskal Wallis” Tests 

Learning Style Factor N 
Mean 

Rank 
sd  p 

Think–strong and do– weak 19 20.92 2 1.230 .541 

Do–strong and think– weak 14 25.39    

Medium 13 25.23    

Intuitive–strong and feeling– weak 19 22.37 2 .331 .848 

Feeling-strong and intuitive– weak 8 25.50    

Medium 19 23.79    

Auditory–strong and visual– weak 10 26.40 2 .708 .702 

Visual-strong and auditory – weak 17 23.41    

Medium 9 22.05    

Holistic – strong and sequential – weak 14 26.36 2 1.284 .526 

Sequential – strong and holistic – weak 16 20.88    

Medium 16 23.63    

 

It was observed that students with SEQUENTIAL – Strong and HOLISTIC – Weak) learning 

style preference had the lowest video-monitoring average (Mean Rank: 20.88). Additionally, 

AUDITORY–Strong and VISUAL– Weak learning style preference had the highest video-

monitoring average (Mean Rank: 26.40). 

 

4. Discussion and Conclusion 

In this study, the effects of interactive videos on students' academic achievement and self-

efficacy perceptions on programming were investigated in the third-grade students of the 

Department of Computer Education and Instructional Technology. As the main result, it was 

found that interactive videos are not a significant variance in students' academic achievement 

and self-efficacy perceptions in programming education.  Most of the studies in the literature, 

On the contrary of this research, has shown the positive effects of interactive video content on 

education (Duffy, 2008; Clothier, 2013; Altınpulluk, Kılınç, Mehmet & Onur, 2020). The 

underlying causes of this finding can be explained with quotations from the literature. Ronchetti 
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(2010) found that students thought that watching videos was tedious and burdensome. In this 

research, even in interactive content, students may have felt similar emotions.  The size of 

videos can be another reason for the finding. Altınpulluk, etc. (2020), emphasized the 

segmentation and flexibility of video content and suggested to designers to divide the 

educational videos into “meaningful” parts to reach effective learning. If the case in the point 

is programming education, then the “meaningful” part is much more important, it can be 

suggested to researchers to think on this point meticulously.  Similarly, Afify (2020), points 

out the length of interactive videos.  He found that students watching short videos were more 

successful than others working with medium and long videos.  

 

Secondly, it was found that students' learning style preferences did not have any impact on 

interactive video monitoring rates. In the literature, some of the studies support this finding.  

Guido and O’Connell(2015), investigated the link between learning style and online content 

usage in their studies. They found that the learning style of the individuals cannot be used as 

predictive data of online learning measures. Besides, Allert (2004) found no correlation 

between learning style and performance. As the result, it can be mentioned, even the content is 

programming language education, there is no relationship between learning styles and video 

monitoring rates of the students. 

 

Additionally, the correlation between the variance in students' academic achievement and the 

variance in self-efficacy perception scores related to programming has been examined.  It has 

been concluded that as academic achievement increases, the perception of self-efficacy about 

programming has decreased. This finding is opposite to the findings of Altun and Mazman 

(2012). Likewise, Tsai, Wang and Tsue (2019), have found a positive relationship between the 

programming experience and programming self-efficacy level of the students. Different results 

of the studies can be sourced from the characteristics of the research groups. The participants 

of this research were teacher candidates. Korkmaz and Altun (2014), has found that there was 

a significant difference between the programming self-efficacy perception scores of computer 

engineering and electrical-electronics engineering students. Therefore, it is believed that the 

change in the education process of students from different departments can be different.   

In this research, the education of a script-based authoring tool was supported through interactive 

videos. The interaction of the videos was provided by using questions embedded in the video 

stream. For future research, the effects of different interaction technics in video-content to 

different programming courses can be investigated. 
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