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Abstract 

This study aims to determine the perceptions of undergraduates, who are receiving coding in a faculty of education, 

on modal representations employed in the teaching process and identify their transition skills between 

representations. The research used the quantitative research method, non-experimental design, and descriptive 

search models, calculating the obtained data frequencies by numerical analysis. The study was carried out with the 

participation of 58 undergraduates in the Computer and Instructional Technology Department of an education 

faculty in the 2018-2019 academic year. The representational skill-testing used in the study consists of 12 open-

ended questions developed by the researchers. The reliability of the test was calculated as .96 with the Pearson 

product-moment correlation coefficient value. Transitions between the representation of mathematics, verbal, 

flowchart, and code were rankly listed in the test, which was applied in a single session. The obtained data were 

scored with a grading key and undergraduate achievement was assessed according to the transition between 

representations. The analysis has revealed that representation transition skills may differ from each other and that 

coding teaching, which takes into account these transition skills, should be carried out with flow chart, verbal, 

mathematical and ultimately code representations, respectively.  

Keywords: coding, modal representation, perception, representational skill testing. 

1. Introduction

The rising demand for coding teaching, combined with new skills required by our age, has made the lessons related 

to coding teaching both in schools (Sterritt, Hanna & Campbell, 2015; Williams et al., 2020) and on online learning 

platforms (Lau & Yuen, 2011; Çakıroğlu et al., 2016; Zinovieva et al., 2021) the focus of attention. Besides, coding 

has been introduced to curriculums from the preliminary education levels to accelerate countries' transition from 

consumer to producer through programs and software (Saeli et al., 2011; Demirer & Sak, 2016). Considering that 

computer programs do not exist without algorithms, algorithms in the learning process have become essential with 

the spread of computer applications (Levitin, 2012). This teaching process requires some essential skills such as 

program algorithm design and coding with a specific assembly code (Skiena, 2020). Moreover, the analysis skills of 

an algorithm will also help identify ways to make the most of the programming environment (Sedgewick & Flajolet, 

2013; Gülbahar & Karal, 2018). During this process, learners are also expected to acquire basic skills such as 
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“designing, writing, testing, debugging, and maintaining a source code of computer” program (Shadiev et al., 2014). 

Furthermore, it is key to coding learners to know the assembly code rules, and above all, to be able to predict 

solutions when encountered any problem (Renumol et al., 2009). 

Any problem-solving process in coding should consists of understanding the problem, designing the solution frame, 

presenting the solution through algorithms prepared with cascaded schemes, implementing the planned solution, 

then testing the solution, fixing it if necessary (Eker, 2005; Levitin, 2012). Learners may use various modal 

representations during this process. Representations can be defined as graphics, visuals, diagrams, maps, tables, 

written and verbal languages (Pineda & Garza, 2002). Representations are also employed in coding teaching since 

they are effective for learners to experience an active learning process and to achieve substantial learning level 

(Seeger, 1996; Günel et al., 2009). Representations used in various fields may differ according to disciplines (Meij 

& Jong, 2006; Owens & Clements, 1998). Therefore, diverse representations like algorithms and flow charts are 

preferred in coding teaching and coding process, respectively. The use of flowcharts is vital to track the problem 

flow, and especially beginners in coding are recommended to prepare the program algorithm, subsequently writing 

the software (Eker, 2005; Kim & Lee, 2021). The last stage is to write software using assembly codes, according to 

the created algorithm (Ensmenger, 2016). Table 1 shows several examples of representations used by 

undergraduates in the algorithm and coding process during coding teaching. 

Table 1. Algorithm and coding steps in the coding process 

Algorithm Coding 

Simple English Flowchart Pseudocode Block-based Text-based 

Begin 

Assign 50 to X 

Multiply X by 2 

and  

Assign to Y 

Write Y 

End 

Begin 

X=50 

Y=X*2 

Write Y 

End 

Representations have different content (Table 1) and each can be used to present information distinctively 

(Ainsworth, 2006). Using various representations during the learning process facilitates undergraduates' learning, 

summarizing content, increasing the retention, and recalling of any edited display (Bodur, 2010). Undergraduates 

may display and manipulate contents through texts, flowcharts, shapes, mathematical expressions, or codes during 

the coding teaching. The role and contribution of flowcharts among these representations in coding teaching have 

been previously reviewed (Shneiderman et al., 1977). These charts have been regarded as a tool in coding teaching 

(Nickerson, 1995) and have played a key role in solving the problems encountered during the code learning-teaching 

(Robins et al., 2003). Coding teaching is still perceived as a difficult process for students (Porter & Kalder, 2004; 

Baist & Pamungkas, 2017), while continuing to pose a major challenge for instructors (Barr & Guzdial, 2015; Sáez-

López et al., 2016). The effectiveness of the used representations should be examined to overcome the difficulties 

encountered in coding teaching processes such as learners' adaptation to programming, creating a mental model of 

programming (Salleh et al.2018), understanding syntax and code structure (Salleh et al.2018), debugging (Sheard et 

al., 2009), grasping the program structure (Lahtinen et al., 2005), and building loops (Ginat, 2004). The coding 

teaching process, which is structured according to the effects of these representations, is believed to contribute to the 

learners' overcoming the difficulties they face and becoming successful in the process.  

Studies in the literature suggest the use of different teaching approaches in coding teaching. One of these approaches 

is the coding approach with seven steps: understand the problem, devise a plan, compare the strategies, devise an 

algorithm, code the algorithm, identify and correct an error in a different code and prepare and code new algorithms 
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(Erümit et al., 2019). Additionally, it is known that the use of self-regulation strategies (Çakıroğlu et al., 2018) in the 

problem-solving process (Han & Kim, 2016; Yağcı, 2018; Abdüsselam et al., 2021) is also an essential part of the 

coding process. Although the literature studies on representations that we frequently utilize in the coding teaching 

process are limited, we have observed that existing studies focus on only a single representation, and that they are 

mostly related to flowcharts, and code representation (Gajewski, 2018; Kuljis & Baldwin, 2000). In fact, the coding 

teaching process requires learners to express the software they designed with flow charts, verbal expressions, and 

pseudo-codes in the program they use, as well as mathematical representations (Sedgewick & Flajolet, 2013). Again, 

the use of different modal representations and the creation of different schemas of the same information indicate the 

existence of transitions between modal representations (Stern et al., 2003; Marton & Tsui, 2004). These transitions 

also show that a single modal representation cannot be sufficient to represent some information or situations 

(Lemke, 1998). Also, the positive changes in the learning of students who prefer a method suitable for different 

learning styles (Safari & Hejazi, 2017) feature a detailed examination of the representation types used in coding 

teaching. The literature review has not yielded any positive result regarding which representations should be used in 

each step of the coding teaching process (Skiena, 2020). In this context, it is believed that the study will contribute a 

lot to the education of prospective teachers, who are expected to become programmers or coding teachers in the 

future, revealing the role and effectiveness of using different representations in coding teaching. Against this 

background, we aimed to determine undergraduates' (i.e., teacher candidates') perception of the representations in 

the coding teaching process and their transition skills between representations. To this end, the study sought to 

answer the following questions: 

• How are the teacher candidates' transition skills regarding mathematical expressions' transition into code,

flowchart, and verbal expression?

• How are the teacher candidates' transition skills regarding verbal expressions' transition into code,

mathematical expressions, and flowchart?

• How are the teacher candidates' transition skills regarding flowchart's transition into a verbal, mathematical

expression, and code?

• How are the teacher candidates' transition skills regarding codes' transition into a flowchart, verbal, and

mathematical expression?

• How is the teacher candidates' ability to achieve transitions between representations?

2. Method

2.1 Research Desing 

The research has been done by using quantitative research method, design that is non-experimental, and descriptive 

research and the data obtained from it have been analyzed by the researchers (McMillan & Schumacher, 2006). 

Frequency analysis was used in the numerical analysis of the data and the results were presented quantitatively. 

2.2 Participant 

This research was conducted with 58 sophomores at the Computer Education and Instructional Technology (CEIT) 

Department (in the Faculty of Education) of a state university in the Eastern Black Sea Region in the spring semester 

of the 2018-2019 academic year. These undergraduates, who have successfully completed the Programming 

Languages-I course and enrolled in the Programming Languages-II, have a basic knowledge of C# programming 

language. Participant undergraduates who take the Programming Languages-I course in the first semester of the 

same academic year have sufficient knowledge of programming concepts like variables, loops, and functions. 

During the Programming Languages-II course, they are expected to develop software through the C# programming 

fundamentals they have acquired.   

2.3 Data Collection Tools 

A representational skill testing (RST) with 12 open-ended questions was created during the development of the data 

collection tool in the research. These questions were selected from the questions contained in the documents that can 
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be used in the teaching process of the C# programming language course of the CEIT department and among those 

that undergraduates described as easy, medium, and difficult during five years. Afterward, feedback on the questions 

were collected from three programming teaching experts and a representation expert. Based on the feedback from 

the experts, required modifications were made for the sake of the clarity, comprehensibility, and quality of the 

questions. To ensure the content validity of this test, the researchers consulted two experts on instructional 

technologies from the university. At the same time, they collected the opinion of an expert on measurement and 

evaluation to determine the test conformity. The pilot test was also carried out with volunteer junior undergraduates 

(N=6) who completed the programming courses of the CEIT department. The test with modal representations was 

refined and finalized according to the feedbacks from the experts' and undergraduates' observations during the pilot 

study. The data obtained from RST in the main study were scored independently by two researchers. The Pearson 

product-moment correlation coefficient value was calculated for the sake of the consistency between the two 

scorings to determine the reliability of the study. Pearson product-moment correlation coefficient value was 

calculated as .96 (r = 0.963, p <0.01), and it was assessed that this value represents a significant, positive, and high-

level relationship between the two scorings. We can thus assume that the obtained scoring is sufficiently reliable.  

The developed test is planned to be applied in 100 minutes. The questions in the test were selected and designed in a 

way that requires analyzing a program based on a problem with different modal representations. The main purpose 

is to examine undergraduates' perceptions and use of various modal descriptions to solve a problem in the text-based 

coding process. Having been graded as easy, medium, and difficult, the RST questions cover mathematical, verbal, 

flowchart, and code representations. The questions’ themes in modal representations, from easy to the complex are 

as follows: in math questions; basic calculus, arithmetic-geometric sequence, basic permutations, combinations & 

probability, in verbal questions; knowledge level, comprehension level, and analysis levels, in flowchart and code 

questions; simple flows, conditional flows, and loop structures. The implementation process of the research is 

schematized in Figure 1 accordingly. 

Figure 1.  The research's implementation process and the grading key 

RST consists of 12 questions as shown in Figure 1. RST consists of four-dimensional question representations: 

mathematical, verbal, flowchart, and code. In each dimension, a problem was defined with 3 questions classified 

from easy to difficult. The undergraduates were asked to define the algorithm and coding they will employ in the 

solution by using other representations. An example of RST questions is shown in Table 2. 
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Table 2. Examples of RST modal representation types and questions 

Type Sample Question 
 Create the multiplication table of a number to be entered externally. Finalize the relevant question 

with C # assembly codes, flowchart, and mathematical representations. 

Mathematical Code Flowchart 

 

 

 
 

2.4 Data Collection and Analysis  

The open-ended questions in the RST were analyzed according to the grading key. Qualitative data were 

transformed into quantitative data and were analyzed through descriptive statistical processes. Researchers created 

the grading key, revising and amending, if necessary, both the questions and it, in line with the feedbacks from three 

programming teaching experts. Figure 1 shows the grading key. For the answers that were scored completely 

correctly, due attention was paid to whether the required answer was correctly established with the required field 

information, calculations, and connections, and then these answers are scored as "2". Partially correct answers that 

are scored as '1' are those in which the required field information, calculations, syntax error and connections are 

partially correct. The questions answered incorrectly, or left blank were scored as "0" in the grading key.   

 

3. Results 

3.1 RQ1, How are the teacher candidates' transition skills regarding mathematical expressions' transition into code, 

flowchart, and verbal expression? 

The levels of teacher candidates' transition of mathematical expressions into code, flow chart, and verbal expression, 

as well as the number of the candidates at respective levels, are given in Chart 1. 

 

Chart 1. Transition frequencies of mathematical expressions into code, flowchart, and verbal expression 
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The candidate teachers were asked to present the code, flow chart, and verbal expressions of the relevant question 

using the mathematical expressions given in the questions. The examination of the answers given to Question 1, 

Question 2, and Question 3 prepared in easy, medium, and difficult levels, respectively, revealed that 37 candidate 

teachers in Question 1, 9 in Question 2 and 1 in Question 3 converted the mathematical expression into a code 

completely correctly. 41 teacher candidates in Question 1, 4 in Question 2, and 1 in Question 3 converted the 

mathematical expression into a flow chart completely correctly. 41 teacher candidates in Question 1, 10 in Question 

2, and 4 in Question 3 were able to convert the mathematical expression into verbal expression completely correctly. 

Chart 1 shows the scoring distributions for each representation transition. Accordingly, for easy, medium, and 

difficult level questions, students' inability, or ability to realize the transitions completely and partially at each level 

shows a parallel distribution. Among the levels, the medium level seems closer to the difficult one. For Question 1, 

the candidate teachers converted the mathematical expression into flow chart, and verbal expression better than they 

converted it into the code. For Question 2 and 3, most of the candidate teachers were unable to convert or incorrectly 

converted the mathematical expression into code, flowchart, and verbal expression. 

 

3.2 RQ2, How are the teacher candidates' transition skills regarding verbal expressions' transition into code, 

mathematical expressions, and flowchart? 

The levels regarding the verbal expressions' transitions into code, mathematical expression, and flow chart, together 

with the number of the candidate teachers in relevant levels, are presented in Chart 2. 

 

Chart 2. Transition frequencies of verbal expressions into code, mathematical expression, and flowchart 

 

The candidate teachers were asked to present the code, flow chart and mathematical expressions of the relevant 

question using the verbal expressions given in the questions. The examination of the answers given to Questions 4, 

5, and 6 prepared in easy, medium, and difficult levels, respectively, revealed that 12 candidate teachers in Question 

4, 11 in Question 5 and 1 in Question 6 converted the verbal expression into a code completely correctly. Twenty 

teacher candidates in Question 4, 16 in Question 5, and 9 in Question 6 converted the verbal expression into a 

mathematical expression completely correctly. 6 teacher candidates in Question 4, 5 in Question 5, and 3 in 

Question 6 were able to convert the verbal expression into flow chart completely correctly. Chart 2 shows the 

scoring distributions for each representation transition. Accordingly, for easy, medium, and difficult level questions, 

students' inability, or ability to realize the transitions completely and partially at each level shows a parallel 

distribution. Among the levels, the easy and medium levels are similar in that undergraduates do the transitions 

partially. For Question 5, most of the teacher candidates answered the problem's code, mathematical expression, and 

flow chart partially correctly by using verbal expressions. In Question 4, most of the candidate teachers partially 

converted the verbal expression into code but could not convert it or converted it incorrectly into mathematical 
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expression and flow chart. Most of the teachers could not convert the verbal expression into code, mathematical 

expression, and flow chart in Question 6. 

 

3.3 RQ3, How are the teacher candidates' transition skills regarding flowchart's transition into a verbal, 

mathematical expression, and code? 

The levels regarding the flow charts' transitions into a verbal and mathematical expression, and code, together with 

the number of the candidate teachers in relevant levels, are presented in Chart 3.  

The candidate teachers were asked to present the code, mathematical and verbal expressions of the relevant question 

using the flow charts given in the questions. The examination of the answers given to Question 7, 8, and 9 prepared 

in easy, medium, and difficult levels, respectively, revealed that 50 candidate teachers in Question 7, 38 in Question 

8, and 11 in Question 9 converted the flow charts into a code completely correctly. Fifty-four teacher candidates in 

Question 7, 41 in Question 8, and 23 in Question 9 converted the flow charts into a mathematical expression 

completely correctly. Fifty-two teacher candidates in Question 7, 46 in Question 8, and 24 in Question 9 were able 

to convert the flow charts completely correctly into verbal expressions. Chart 3 shows the scoring distributions for 

each representation transition. Accordingly, for easy, medium, and difficult level questions, students' inability, or 

ability to realize the transitions completely and partially at each level shows a parallel distribution, while showing a 

sequential one among the levels. For Question 8, most of the candidate teachers converted the flow charts into 

verbal expression better than they converted it into the mathematical expression and code. In Question 7, most of the 

teachers converted the relevant question into code, mathematical and verbal expression completely correctly by 

using flow charts. For Question 9, most of the candidate teachers transitioned the flow chart into mathematical and 

verbal expressions, while 29 of them partially converted it to code. 

 

Chart 3. Flowcharts transitions to verbal, mathematical and coding expressions 

 

3.4 RQ4, How are the teacher candidates' transition skills regarding codes' transition into a flowchart, verbal, and 

mathematical expression? 

The levels regarding codes' transitions into a flow chart, mathematical and verbal expression, together with the 

number of the candidate teachers in relevant levels, are presented in Chart 4. 

The candidate teachers were asked to present the flow chart, mathematical and verbal expressions of the relevant 

question using the questions' code. The examination of the answers given to Questions 10, 11, and 12 prepared in 

easy, medium, and difficult levels, respectively, revealed that 41 candidate teachers in Question 10, 5 in Question 

11, and 6 in Question 12 transferred the code to the flow chart completely correctly. Fourty-four teacher candidates 

in Question 10, 37 in Question 11, and 18 in Question 12 converted the code into a mathematical expression 

completely correctly. Fourty-four teacher candidates in Question 10, 36 in Question 11, and 19 in Question 12 were 
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able to convert the code completely correctly into verbal expressions. Chart 1 shows the scoring distributions for 

each representation transition. Accordingly, for easy, medium, and difficult level questions, students' inability, or 

ability to realize the transitions completely and partially at each level shows a parallel distribution (excluding 

flowchart's transition), while the flowchart transition between levels differentiates the structure. Most of the 

candidate teachers converted the code into a flow chart, mathematical and verbal expression in Question 10. For 

Question 11, most of the candidate teachers transitioned the code into mathematical and verbal expressions, while 

43 of them partially converted it to a flow chart. In Question 12, most of the candidates were unable to convert or 

incorrectly converted the code into flow chart, mathematical and verbal expression.  

 

Chart 4. Codes transitions to flow chart, verbal, and mathematical expressions 

 

3.5 RQ5, How is the teacher candidates' ability to achieve transitions between representations?  

The undergraduates' representations performed under the study were examined, and their ability to fully complete 

the requested transitions in 12 questions was analyzed. The obtained scores are listed in total in Table 3. 

 

Table 3. Representations and transitions used in the research.  

 Undergraduate's Representations 

Questions Representations 
 

 

 

 

TotalAnalysis 
 

 81 46 55 182 

 99  52 99 250 

 118 99  122 339 

 45 24 14  83 

TotalRendering 262 204 112 276  

 

Table 3 shows that undergraduates have obtained different scores after converting the question representations given 

to them into the other three ones. The examination of the question representations specified in the table horizontally 

shows that the representation transition in which the candidates are the most successful in the analysis is one of 

those made from the flow chart (339), according to the total scores calculated. Therefore, applying the questions to 

the students through flow charts in coding teaching can create an added value. Lastly, examining the representations, 

shown vertically in the table, created by the undergraduates of the faculty of education according to the questions 
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showed that the undergraduates were the most successful in verbal transformation (276). In teaching coding, 

undergraduates should be asked to analyze verbally first because this is the mode of representation, they are most 

successful in. 

 

4. Discussion 

The research aims to reveal the relevance and effectiveness of different representations used in coding teaching and 

has tried to answer to how the transition skills between each representation employed in the said teaching process 

are transitioned into other representations. This study showed that candidate teachers' skills of expressing 

representations used in coding teaching may differ. The examination of mathematical expressions' transition to code, 

flowchart, and verbal expressions affirms that in terms of all transformations, while the candidate teachers converted 

easy questions, they either failed to transition or incorrectly transitioned the medium and difficult ones. The 

expectation that the implementation in the teaching process should progress from easy to difficult (Demirel, 2007) 

supports the study results. Therefore, we can assume that, as is the case in all teaching processes, simple questions 

that every candidate teacher can easily apprehend should be included in the curriculum, and then the desired content 

should be taught using more difficult questions or topics. In addition, Rizvi, Humphries, Major, Jones, and Lauzun 

(2011) discovered that although the number of undergraduates in computer science departments has increased in 

recent years, they have a weak knowledge of mathematics. Similarly, undergraduates of CEIT departments in 

Turkey have relatively low mathematics scores, and therefore they take Mathematics I and II courses before the 

programming course. In this sense, although the mathematical expressions in RST are included in the curriculum of 

Mathematics I and II, the fact that these expressions could not be converted or incorrectly converted to other 

transitions may be associated with the insufficient mathematics background of undergraduate students and the fact 

that the courses taken are not effective enough to improve their background. 

The review of the candidate teachers' transition skills regarding converting verbal expressions into a code, 

mathematical expression, and flowchart has proved that significant hardship was encountered in all transitions and 

transitions at all relevant levels. However, the fact that candidate teachers have transitioned the problems presented 

by a verbal expression into the other ones can be explained by the fact that the transitions with verbal expressions in 

coding teaching were not solved as expected. Besides, according to Table 3, the undergraduates' presentation of the 

problems represented with verbal expression, their daily communication representation, more successfully than 

transitions in other representations reveals that the initial representation they will use in programming teaching 

should be verbal expressions. In such cases, Lemke (1993, 1998) specifies that students should be assisted to 

establish appropriate verbal connections with mathematical expressions, diagrams, graphics, and all the other 

representations. Thus, candidate teachers would be able to think beyond the box and have critical thinking with an 

effective questioning approach (Crafton et al., 2009; Kazimoglu et al., 2012). 

The review of the candidate teachers' transition skills regarding converting flow charts into codes, verbal and 

mathematical expressions has revealed that there is a significant success in easy, medium, and difficult transition 

levels in terms of all transformations. Visualizing the coding teaching process that is perceived as complex by 

learners, thereby making it more apprehensible, can explain this phenomenon. In that vein, Hagevik, Beilfuss, and 

Dickerson (2006) stated that modal representations, which form a visual state of knowledge, simplify complex 

meanings, and organize individuals' cognitive processes by supporting them. It is still an expected phenomenon that 

teacher candidates are more likely to be unable to do or make mistakes with difficult questions when compared to 

the other two levels during the process of flow charts' transformations. Still, we assert that the transition to codes at 

this level can be performed rather less compared to the other transitions. In fact, it is remarkable that few candidate 

teachers have completely correctly answered the transformations in flow charts compared to other transformations, 

during the teaching-learning process, where the transition from flow charts to codes is often made in the coding 

teaching. Nonetheless, several studies in the literature suggest that coding should be realized following the creation 

of the flowchart (Ergin & İpek, 2017; Gajewski, 2018; Türker & Pala, 2020). Accordingly, we assert that a difficult 

question on flow charts is more distinctive compared to questions regarding the other transitions. Also, the 

examination of the candidate teachers' transition skills regarding the converting codes into flow charts, verbal and 

mathematical expressions has shown that learners experienced difficulties in these representation transitions, 

especially in flow chart transitions compared to the others (Chart 4). Among these transitions, we have found that 

candidate teachers had problems in transitions from flow chart to code and vice versa.  
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Remarkably, the transition from flow chart to verbal and mathematical expression and codes is at the forefront 

according to candidate teachers' ability to perform all transitions. Additionally, in these transitions, what candidates 

can do best in each representation again matches the same transition. In general, coding teaching requires candidate 

teachers to set up an algorithm and then convert it into coding. The lecturer may exploit verbal and mathematical 

expressions or flowcharts during the process of creating an algorithm. The research results showed that by 

presenting the modal representations in coding teaching, the learners understood the program most successfully and 

were able to re-transition it into the other representations. Accordingly, coding teaching should be started with flow 

charts designed in shapes related to the program. In this sense, the verbal representation is the most successful one 

for candidate teachers in the case of re-representing the curriculum. Therefore, presenting flowcharts to learners and 

having discussions with them about the program can be regarded as the second step of coding teaching. The next 

step is to describe the program to be taught through mathematical expressions according to the obtained results. The 

last step of this process is code representations following the mathematical presentation. As Gajewski (2018) stated, 

flowcharts are rather effective tools for coding teaching and play an essential bridging role in the algorithm creation 

and then in the coding execution. Also, Kuljis and Baldwin (2000) affirm that the formal representations used under 

the scope of a flow chart for learners who are new to coding are highly suitable for the coding teaching. According 

to Ramadhan (2000), the reason behind this is that supporting (learning) topics related to decision structures and 

loops in coding teaching with visual tools like shapes has a positive effect on the success. However, as Hu (2004) 

stated, theories and practical applications should be handled simultaneously in coding teaching.  Similarly, this 

research has also shown that flowcharts are seized more easily by coding learners then the other representations and 

that transition to the other representations is more successful.  

This study has been carried out for the use of text-based coding tools at the undergraduate level. In this context, we 

suggest examining the relevance and effectiveness of these representations during the use of block-based tools. We 

also recommend that the coding teaching process be structured according to the order of use of the mathematical, 

verbal, flowchart, and code representations specified in the research. Finally, future studies may examine 

relationships between various variables such as the effectiveness of the newly developed representation usage order, 

and learners' attitudes and their programming self-efficacy. 
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Abstract 

This article reports on implementation of a problem-based learning intervention developed with the intention of 

finding time for computer science (CS) in the elementary school day. This study investigated differences in effects 

on students in particular socio-demographic groups using a quasi-experimental design. We first provide an overview 

of the perennial problem of group differences or “gaps” in student outcomes. Then we illustrate how, using 

component-based research (CBR), we moved beyond the question of whether the intervention worked, to focus on 

which parts of the intervention worked, for whom, and under what conditions. Using hierarchical linear modeling, 

this study draws from a sample of 16 elementary schools with 321 teachers and 5791 students in Broward County, 

Florida, the sixth largest school system in the United States. This study complements a previous paper (Century, 

Ferris, Zuo, 2020), which examined associations between intervention components and student outcomes by 

investigating how outcomes differ for students in different socio-demographic groups and whether the presence of 

particular intervention components amplify or reduce differences. Through CBR, our work illustrates that CS 

interventions which may appear to benefit students overall, may be less beneficial or even detrimental to particular 

groups.  

Keywords: computer science, elementary, component-based research, equity, implementation research 

1. Introduction

1.1 Differences in Academic Outcomes by Group Exist and Persist

Differences in academic outcomes between groups of learners are well-documented across racial, ethnic, and gender

identities, and socioeconomic, disability, English proficiency, and migrant status (Celeste et al., 2019; Chmielewski,

2019; Gilmour, et al., 2019; Hung et al., 2020; Owens, 2018). Although limited publications report on group

differences in computer science (CS) outcomes at the primary grade levels, these differences are clear in other

subjects. In the US, the 2019 National Assessment of Educational Progress (NAEP) showed that White students

scored 26 and 28 points higher than their Black peers in 4th grade and 8th grade reading assessments, respectively,

and 25 and 32 points higher in 4th and 8th grade math assessments, respectively (NAEP, 2019). Group differences in

achievement outcomes also exist between Hispanic and White students with 21 and 20 point differences for reading

in 4th and 8th grades, respectively, and 18 and 24 point differences for 4th and 8th grade mathematics, respectively

(NAEP, 2019). These racial and ethnic group differences can be explained, in part, by differential access to high

quality education and inequitable learning experiences. In the US, students who are Black or Hispanic are more

likely to attend high-poverty schools (Orfield et al., 2016; Orfield & Lee, 2005) and be denied access to STEM and

CS courses and inclusive pedagogy, which often results in segregated CS education and career pathways (Margolis

et al., 2017). School poverty rates are also associated with the size of the difference in achievement by racial group

and the rate at which these differences increase over time (Reardon et al., 2019).
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Given the strong associations between achievement and school-level poverty, it is also important to consider 

achievement differences across income groups. One study found that for every $1,000 increase in family income, 

there was an associated 2.1% increase in students’ math scores and a 3.6% increase in students’ reading scores (Dahl 

& Lochner, 2012). Additionally, academic outcome differences between students of high- and low-SES groups tend 

to increase as students get older (Caro, 2009). Unsurprisingly, the 2018 Program for International Student 

Assessment indicates that students from low SES backgrounds lag far behind more advantaged students in their 

reading, mathematics, and science performance (OECD, 2020).  

Disparities in academic achievement between gender groups also persist. For instance, only 19% of female students 

scored at a proficient level on the science NAEP test compared to 25% of male students (NAEP, 2019). Similar 

patterns were observed for scores on the NAEP mathematics test, with only 38% of female students scoring at or 

above proficiency, compared to 44% of males (NAEP, 2019). Differences also emerged based on English-language 

proficiency levels. Regardless of grade level, English Language Learners (ELLs) performed lower on reading and 

mathematics assessments compared to native English speakers, and such differences were particularly pronounced 

in domains that require more use of the English language, such as reading and writing (Abedi, 2002; Fry, 2007).  

1.2 Group Differences in Attitudes 

In STEM subjects, research on group differences in attitudes have had mixed results, and some group comparisons 

have yet to be investigated (e.g., ELLs and native English speakers). For instance, some studies indicate that Black 

students report lower science ability and mathematics beliefs compared to White students (Britner & Pajares, 2001; 

Pajares & Kranzler, 1995), whereas others have found that, compared with White students, Black students 

demonstrate higher mathematics attitudes (e.g., mathematics values), and Hispanic students exhibit higher 

mathematics interest and intrinsic motivation (Else-Quest et al., 2013; Stevens, Olivárez Jr, & Hamman, 2006). 

Another study found that Black and Hispanic boys specifically, reported lower levels of educational aspirations, 

persistence, and self-efficacy related to science compared to boys from more economically advantaged backgrounds, 

White boys, and girls from all backgrounds (Perry et al., 2012). Still other research indicates both Black and 

Hispanic students have a similar level of interest in STEM majors as their White counterparts (Anderson & Kim, 

2006; Hurtado, et al., 2010). Moreover, female students generally report less motivation and confidence in their CS 

and mathematics-related skills and abilities to learn these subjects compared to male students (Beyer, 2014; 

Cunningham et al., 2015; Doubé & Lang, 2012; Hur et al., 2017; Maste et al., 2016). Girls and women are also more 

likely to show math and spatial anxiety (Ferguson et al., 2015; Maloney et al., 2012; Sokolowski et al., 2019). 

Together, this collection of results underscores the importance of pursuing more research on discrepancies in 

STEM-related attitudes between different groups of students.  

1.3 The Importance of Addressing Group Differences in Computer Science 

The need to increase the number of learners interested in CS has never been greater (Scott et al., 2017; Vakil, 2018). 

Computing knowledge is essential to address the growing demand for CS skills in STEM jobs, yet we must also 

acknowledge that women and underrepresented minorities earn far few degrees in computing fields at this writing 

(Sax et al., 2018). Moreover, discrepancies in access to technology in the home and CS educational experiences 

persist and are particularly pronounced for Black and Hispanic students and youth from lower SES families (Wang 

et al., 2016). Together, these findings suggests that research attention must be paid to diverse learners’ experiences 

with STEM and CS, teachers’, and administrators’ roles in broadening participation in CS, instructional practices 

facilitating inclusive practice and CS learning, and educational structures and policies contributing to equitable CS 

educational opportunities (Ryoo et al., 2019; Santo et al., 2019).  

It is also essential to begin CS education in the early grades. Introducing young learners to even basic CS concepts 

(i.e., plugged and offline, unplugged lessons) is crucial during the elementary school years for several reasons. First, 

doing so helps form the foundation for future learning in the subject, and second, it allows students to experiment 

with a complex and challenging subject before they form opinions of their abilities (Prottsman, 2014). There is little 

research on CS education in the early grades and even less that examines which specific learning experiences 

contribute to diverse students’ pursuit of CS. The current study addresses these gaps in the literature by exploring 

the CS experiences of diverse learners in the early grades. This work will further increase our understanding of how 

to promote educational equity in CS education as measured by academic and attitudinal outcomes.  
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1.4 Approaches to Examining Group Differences in Outcomes 

 

Prior research considering group differences in academic achievement and attitudes has employed a variety of 

research approaches. However, many studies simply describe differences in outcomes and studies that focus on 

comparing outcomes, often privilege certain socio-demographic groups, namely White, male students, over others 

(Gutiérrez & Dixon-Román, 2011). Such ‘gap gazing’ illuminates the presence of differences but does not provide 

any insights as to the nature of disparities that can inform efforts to change them (Lubienski, 2008).  

Research that goes beyond ‘gap gazing’ operates on the assumption that instructional practices, programs, and 

educational interventions will not impact all students in the same way because members of diverse populations have 

unique needs (Gutiérrez, & Jaramillo, 2006; Rodríguez et al., 2016). Research methods need to account for the 

nuances that happen when programs are implemented (Vossoughi et al., 2016). To do so, researchers must utilize 

diverse methodological approaches that move beyond a sole focus on “what works” (Bullock, 2012) to also consider 

what works for whom and under what conditions. Approaching the study of CS achievement and attitudinal 

outcomes in this manner will elevate the importance of achieving equitable outcomes across diverse groups of 

learners.  

 

2.  Material Studied 

This research was carried out through a research-practice partnership (RPP) focused on finding time for CS in the 

elementary school day, which is often dominated by literacy and mathematics instruction. The strategy was to create 

interdisciplinary problem-based learning modules that would be taught during the literacy block. The modules were 

organized around a science or social studies theme and had science, English/Language Arts, and associated CS 

lessons. The CS lessons were part of the Code.org courses available worldwide.  

 

We referred to the modules as “Time4CS” Modules (see Century, Ferris, & Zuo, 2020 for a more detailed discussion 

of the modules). During the study, third-fifth grade teachers used two Time4CS Modules during the 2016-2017 

school year. Each module was taught over a 5-8 week period and was composed of five lesson “collections.” Each 

collection had four 60-minute lessons written in the 5E Model (i.e., Engage, Explore, Explain, Extend, Evaluate; 

Bybee, 2009) and had at least one CS lesson. Each module ended with a culminating project that entailed using CS 

to create a final product highlighting what students learned.  

 

Following a quasi-experimental design, the project’s primary research questions explored outcome differences for 

students in classrooms where teachers implemented and did not implement the Time4CS Modules. These analyses 

found that teachers who used the Time4CS Modules taught more CS than teachers in the comparison group. 

However, no differences in attitudinal or academic achievement outcomes were observed between students in 

treatment and comparison groups (Century, Ferris, & Zuo, 2020). Because this was the case, we utilized component-

based research (CBR) to conduct further, in-depth analysis to explore associations between specific components of 

the Time4CS Modules and student outcomes. Using CBR revealed positive associations between particular 

Time4CS Module components and students’ attitudinal and achievement outcomes. For example, we found positive 

associations between teachers’ use of interdisciplinary teaching practices and students’ achievement outcomes 

(Century, Ferris, & Zuo, 2020). In the findings reported here, we used CBR to conduct follow-up analyses that move 

beyond the aforementioned findings to deeply examine differences in student outcomes based on socio-demographic 

characteristics and the effect of teachers’ instructional practices on outcomes for students in different groups. To do 

so, we investigated two additional research questions: 

1. Are there differences in students’ attitudinal and academic achievement outcomes based on socio-

demographic characteristics?  

2. Does the implementation of particular Time4CS Module components amplify or reduce group differences in 

students’ attitudinal and academic achievement outcomes?   

 

3. Area and Sample Description  

The RPP team included researchers from the University of Chicago and practitioners from Broward County Public 

Schools (BCPS) in Broward County, Florida. BCPS is the sixth-largest school district in the United States consisting 

of 234 schools (i.e., 136 elementary, 37 middle, and 33 high schools) with a diverse student population (i.e., 51.2% 

White, 40.4% Black, 34.7% Hispanic, and 3.8% Asian; 11.9% English Language learners and 13.4% Exceptional 
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students [students with Individualized Education Plans (IEPs)]). Sixteen BCPS elementary schools with 321 

teachers and 5791 students from diverse racial, ethnic, and socioeconomic backgrounds participated in the study 

(Table 1; Table 2). A randomized block design (e.g., Dunlap, Cortina, Vaslow, & Burke, 1996; Kirk, 2007) was 

used to assign schools to treatment (i.e., eight schools; use of the Time4CS module) or comparison (i.e., 8 schools; 

regular classroom instructional practice) conditions.  

 

Table 1. Student demographic characteristics for the treatment and comparison conditions 

Demographics    Treatment Control 

Gender Male 1035 932 

Female 962 878 

Race White 958 854 

African American 418 345 

Multi-ethnic 331 321 

Asian  111 74 

 Other 220 186 

Ethnicity Hispanic 1081 1012 

Non-Hispanic  1859 1835 

Grade Level 3rd  775 549 

4th  672 711 

5th  726 687 

SES Students not receiving free and reduced price lunch 1064 1091 

Students receiving free and reduced price lunch 917 704 

English language 

proficiency  
Instructed on acquiring English as a second language 290 269 

Still being monitored/exiting the program to learn English 171 171 

Native English speaker 1393 1245 

Experience with  

Code. org  

Previous experience completing Code.org activities prior to completing the 

questionnaires 1784 1408 

No previous experience completing Code.org activities 93 198 

 
 

Table 2. Teacher demographic characteristics for the treatment and comparison conditions 

Demographics  Treatment Comparison 

Gender Male 3 20 

Female 67 134 

Race/Ethnicity White 38 80 

Black or African American 8 24 

Hispanic or Latino/Latina 18 30 

Other NA 4 

Prefer not to answer 3 10 

Multiethnic  3 9 

Grade Level 3rd  31 62 

4th  17 49 

5th  22 51 

Highest Degree 

Earned 
Bachelor’s Degree 43 81 

Master’s degree 25 72 

Doctoral or Professional Degree (Ph.D., Ed.D., MD, JD) 2 6 

Degree in CS Yes 1 2 

No 69 156 
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Note. The average years of teaching experience for treatment group teachers was 16.86 years, and for comparison 

group teachers was 14.38 years. The average years of teaching CS at any grade level for treatment group teachers 

was 1.41 years, and for comparison group teachers was 1.91 years. The average age for treatment group teachers 

was 42.66 years, and for comparison group teachers was 41.19 years. 

4. Methods

4.1 Theoretical Approach – Component-Based Research

This study used a component-based research (CBR) approach. CBR deconstructs an innovation into its components,

organizes those components into categories, and uses the categories as a foundation for looking beyond whether the

innovation “worked,” to examine what parts of an innovation work, for whom, and under what conditions. In this

study, CBR was guided by an innovation implementation framework (Century, Cassata, Rudnick, & Freeman, 2012)

that organized the components of the Time4CS Modules into two main categories —structural (e.g., number of CS

lessons taught, lesson omission) and interactional (e.g., teacher facilitation of cognitively-demanding work, teacher

facilitation of student intellectual risk taking). See details in Table 3. We also measured contextual factors

hypothesized to influence teachers’ Time4CS Module implementation (e.g., teachers’ years of teaching CS,

perception of their own innovativeness or resourcefulness) utilizing a framework that outlines factors that influence

implementation (Century & Cassata, 2014). By using CBR, we were able to identify the impact of specific

innovation components on students’ attitudinal and achievement outcomes and disentangle associations between

specific components and outcomes for particular student groups. Employing CBR enabled us to move beyond “gap

gazing” to generate greater understanding about potential ways to reduce group differences in attitudinal and

achievement outcomes across diverse groups of students.

Table 3. Component-based research: Structural and interactional components 

Structural Components Measure 

Time4CS Module Completion Yes/No 

Grade-level assigned Code.org CS lessons 
Percentage of lessons taught from the Code.org 

Fundamentals course assigned to the grade 

Non-grade-level Code.org CS lessons 

Percentage of lessons taught from the other Code.org 

courses available  

(Above or below grade level) 

Additional CS 

(Any other non-Code.org CS lessons) 
Yes/No 

Interactional Components 
Sample Items 

(5-point scale: never-always) 

Teacher facilitation of group work 
How often did you encourage group members to solve 

problems together?  

Teacher facilitation of cognitively demanding 

work 

How often did you ask students to explain how they 

solved a problem?  

Teacher facilitation of students taking 

intellectual risks 

How often did you ask students to answer a question even 

if they were unsure? 

Teacher use of interdisciplinary teaching 

practices 

How often did you explicitly cover standards from 

multiple subject areas in the same lessons?  

Teacher facilitation of group work 
How often did you encourage group members to solve 

problems together?  

4.2 Measures and Data Sources 

Teacher Implementation Questionnaire: This questionnaire, administered in spring 2017 using Qualtrics ©, assessed 

Time4CS Module structural and interactional component implementation and factors influencing implementation, 

such as teacher attitudes and demographic characteristics. All items and response scales included in the Time4CS 

Teacher Questionnaire are listed in Appendix A.  
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Student Attitude Questionnaire: Students completed questionnaires at the beginning and end of the 2016-2017 

academic year using Qualtrics ©. These questionnaires assessed students’ attitudes about school (i.e., school 

affinity, school self-efficacy) and CS (i.e., CS affinity, CS self-efficacy, CS identity, and CS utility) using items 

scored on a five-point Likert scale. These questionnaires also asked about previous experience with Code.org CS 

activities (i.e., yes/no) prior to the study. All items and response scales included in the Time4CS Student 

Questionnaire are listed in Appendix B. 

 

Florida Standards Assessment (FSA) and Achieve3000 scores: Measures of student academic achievement included 

the Florida Standards Assessment (FSA) and a diagnostic tool BCPS used called Achieve3000. The state 

administers FSA assessments in ELA and mathematics in 3rd, 4th and 5th grades. The FSA science test is 

administered in 5th grade, only. The FSA assesses student knowledge and critical thinking skills. The Achieve3000 

literacy test is administered three times a year to assess students’ reading level as a means to support differentiated 

instruction. In both cases, BCPS de-identified and shared these data for the 2016-2017 academic year with the 

research team.  

 

Administrative Data: BCPS also shared students’ de-identified socio-demographic data, including gender, ethnicity 

(i.e., non-Hispanic and Hispanic status), race, ELL proficiency, and socio-economic status (i.e., free and reduced-

price lunch [FRL]). Students also self-reported their gender, ethnicity, and race, and we cross-referenced these data 

with the district data to account for missing values. 

 

4.3 Using CBR to Measure Time4CS Module Implementation  

 

Studies of CS and other school interventions do not typically measure intervention implementation and when they 

do, implementation measurement is only conducted with treatment groups. However, CBR recognizes that some 

intervention components may in fact be accessible to teachers in the comparison group, and therefore, must be 

measured as well. This was the case in this study. Specifically, the Code.org CS lessons associated with the 

Time4CS Modules were publicly available to all teachers in the district. Similarly, the Time4CS Modules’ 

interactional components included instructional practices (e.g., facilitating group work, using interdisciplinary 

teaching practices) that any teacher can use, with or without the Time4CS Modules. Therefore, while teachers in the 

treatment condition were asked to report on implementation of all module components, teachers in the comparison 

condition were asked to report on the components (and related factors) they could have enacted even though they 

did not implement the modules.  

 

Structural implementation components: Teachers in the treatment group reported whether they completed (i.e., 

yes/no) the Time4CS Module with their students. They also reported on how many module lessons they completed 

and the sections of those lessons they used or omitted. Moreover, because we used a CBR approach, teachers in both 

treatment and comparison groups reported the number of grade-level assigned and non-grade-level assigned 

Code.org CS lessons they completed as well as whether they completed (i.e., yes/no) any additional, non-Code.org 

CS activities. The number of grade-level assigned, and non-grade-level assigned Code.org CS lessons were 

converted into completion percentage scores by dividing the number of lessons teachers reported completing by the 

total number of lessons available to complete. Higher completion percentage scores represented greater CS exposure 

for students.  

 

Interactional implementation components: All teachers reported on their use of interactional Time4CS Module 

components. These components entailed the instructional strategies embedded in the module, but as explained 

above, could also be carried out in “business-as-usual” (comparison) classroom instruction. The questionnaires 

asked teachers to report on use of interdisciplinary teaching practices (e.g., How often did you explicitly cover 

standards from multiple subject areas in the same lesson?) as well as their facilitation of group work (e.g., How 

often do you encourage group members to work to solve problems together?), cognitively-demanding work (How 

often did you ask students to explain how they solved a problem?), and intellectual risk-taking (e.g., How often did 

you ask students to answer a question even if they were unsure?). Each scale used a five-point Likert scale (1 = 

Never, 5 = Always) with higher scores representing greater use of each component. 

 

Influential Factors: The factor framework mentioned in section 4.1 organizes influential factors (i.e., contexts and 

conditions) into several levels (i.e., individual, organizational, and environmental) (Century & Cassata, 2014). The 

questionnaires asked teachers to report on three individual (teacher) factors, including innovativeness (e.g., I 
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experiment with new practices all the time), resourcefulness and coping (e.g., I am able to manage the pressure and 

stress at my school well), and years of teaching CS. Each scale used a six-point Likert scale (1 = Strongly disagree, 

6 = Strongly agree) with higher scores representing greater use of these practices. 

4.6 Analytic Strategy 

To conduct our analysis, we used Hierarchical Linear Modeling (HLM) with HLM7 software (Raudenbush, Bryk, 

Cheong, Congdon, & Toit, 2011). First, two-level, intercept-as-outcome models were conducted, which identified 

significant group differences in achievement and attitudinal outcomes based on students’ socio-demographic 

characteristics (i.e., Level-1 variables)1. Next, two-level, random-intercept and coefficient-as-outcome models were 

conducted to examine the interactive effects between teacher-level implementation of particular interactional 

Time4CS Module components (i.e., specific instructional practice variables) and students’ socio-demographic 

characteristics (Raudenbush & Bryk, 2002). In this second set of analyses, the Level-1 intercepts were no longer 

modeled as a function of structural or interactional component implementation or factors at Level-2 as in the first set 

of analyses; instead, they were included as random effects. More specifically, significant Level-1 coefficients for 

students’ socio-demographic characteristics identified in the first set of analyses were modeled as a function of 

structural or interactional component or factor variables at Level-2 in the second set of analyses.  

In all analytic models, students’ socio-demographic characteristic variables were entered at Level-1. These variables 

were dummy-coded as follows: gender (reference group: male); race (reference group: White students); ethnicity 

(reference group: non-Hispanic students); SES (reference group: students who do not receive free and reduced-price 

lunch); and ELL proficiency (reference group: native English speakers). Students’ previous experience completing 

Code.org activities was included at Level-1 as a control variable as were their socio-demographic characteristics. 

Students’ attitudes about school and CS collected during pre-questionnaire administration (i.e., Fall 2016) were also 

included at Level 1 in models where attitudinal outcomes were examined. Level-2 teacher variables included 

structural and interactional implementation components and factors. All categorical variables were uncentered, 

whereas continuous variables were centered around the group mean for Level-1 variables and the grand mean for 

Level-2 variables. 

5. Results

Significant findings are reported in text. Standardize beta coefficients and standard error terms are reported for all

associations between students’ socio-demographic characteristics (i.e., Level-1 variables) and their academic

achievement and attitudinal outcomes are included in Table 4 and 5, respectively. In Table 6 and 7, we report all

standardized beta coefficients and standard error terms for the interactive effects between students’ socio-

demographic characteristics (i.e., Level-l variables) and structural and interactional components of Time4CS module

implementation and factors (i.e., Level-2 variables)2. The significant group differences reported in-text and in Tables

4-7 emerged when controlling for all other student socio-demographic characteristic variables in the analytic model.

5.1 Academic Achievement Outcomes 

Gender: On the science FSA, female students scored significantly lower than males (β = -5.52, p < 0.01).  

Race: On the mathematics FSA, Asian students (β = 5.92, p < 0.01) scored significantly higher, and Black students 

(β = -8.42, p < 0.01) scored significantly lower than White students. On the ELA FSA, Black students scored 

significantly lower than White students. This main effect was qualified by a significant interaction, which indicated 

that this score differential (i.e., gap) on the ELA FSA between Black and White students was larger in classrooms 

where teachers reported completing a higher percentage of grade-level assigned CS lessons (a structural 

component) (β = -34.69, p < 0.01).  

1 In Century, Ferris, & Zuo (2020), we reported on associations between Level-2 variables and students’ attitudinal and academic 

achievement outcomes. 
2 Table 6 and 7 highlight interactive effects on Science FSA and CS Affinity. We have only included tables for these two 

outcomes due to space limitations. Tables illustrating interactive effects for additional academic achievement (i.e., Mathematics 

FSA, ELA FSA, and Achieve3000) and attitudinal (i.e., School Affinity, CS Utility, and CS Identity) outcomes are available 

from the authors upon request. 
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Table 4. Results from the two-level, intercept-as-outcome models investigating associations between level-1 

variables and students’ academic achievement outcomes 

 
Mathematics 

FSA 
ELA FSA Science FSA 

Achieve 3000 

scores 

Asian students 5.92 (1.69)* 0.85 (1.79) 8.23 (3.60)* 9.71 (10.33) 

African American students -8.42 (1.48)* -7.54 (1.59)* -8.46 (2.52)* -8.96 (7.99) 

Hispanic students -0.06 (1.16) 0.70 (1.07) 2.55 (1.81) 1.07 (5.29) 

Female students -0.77 (0.94) 0.78 (0.89) -5.52 (1.55)* -8.79 (4.47)* 

Students receiving FRL -5.70 (1.12)* -5.80 (1.15)* -6.58 (1.93)* -31.03 (5.72)* 

English language learners -8.08 (1.60)* -13.05 (1.79)* -8.78 (3.03)* -8.71 (8.48) 

Note. * p < .05. Standardized beta coefficients and standard error (SE) terms are presented in the table with SE 

reported in parentheses. 

 

Table 5. Results from the two-level, intercept-as-outcome models investigating associations between level-1 

variables and students’ attitudinal outcomes 

 
School Affinity CS Affinity CS Identity CS Utility 

Female students 0.01 (0.07) -0.13 (0.08) -0.10 (0.08) -0.03 (0.07) 

Asian students 0.22 (0.13) 0.01 (0.18) 0.28 (0.14)* 0.01 (0.14) 

African American students -0.09 (0.12) -0.10 (0.14) -0.08 (0.13) -0.10 (0.11) 

Hispanic students -0.03 (0.07) -0.09 (0.07) 0.03 (0.07) 0.07 (0.08) 

Students receiving FRL 0.10 (0.08) 0.16 (0.08)* 0.16 (0.08)* 0.11 (0.07) 

English-language learners 0.03 (0.11) 0.06 (0.11) -0.08 (0.14) -0.04 (0.1) 

Note. * p < .05. Standardized beta coefficients and standard error (SE) terms are presented in the table with SE 

reported in parentheses. 

 

On the science FSA, Asian students scored significantly higher compared to White students. This main effect was 

qualified by a significant interaction indicating that this score differential on the science FSA between Asian and 

White students was larger in classrooms where teachers reported greater use of interdisciplinary teaching 

practices (interactional component) (β = 55.60, p < 0.05). On the other hand, Black students scored significantly 

lower on the science FSA compared to White students. This main effect was qualified by a significant interaction, 

which indicated that this score differential on the science FSA between Black and White students was smaller in 

classrooms where teachers reported higher levels of resourcefulness and coping (influential factor) (β = 10.45, p < 

0.05). 

 

SES: Students receiving FRL scored significantly lower on Achieve3000 Lexile scores (β = -31.03, p < 0.05) and 

the science FSA (β = -6.58, p < 0.01). Students receiving FRL scored significantly lower on the ELA FSA as well, 

and this main effect was qualified by a significant interaction, which indicated that this score differential on ELA 

FSA between students receiving FRL and those who do not was larger when teachers completed more additional 

(non-Code.org) CS activities (structural component) (β = -6.41, p < 0.01) and reported higher levels of 

resourcefulness and coping (influential factor) (β = -5.23, p < 0.01). In addition, students receiving FRL scored 

significantly lower on the mathematics FSA. This main effect was qualified by a significant interaction, which 

indicated that this score differential on mathematics FSA between students receiving FL and those who do not was 

smaller when teachers reported higher levels of facilitation of group work (interactional component) (β = 4.84, p 

< 0.05).  

 

ELL Proficiency: ELLs (β = -8.78, p < 0.01) scored significantly lower on the science FSA than native English 

speakers. ELLs scored significantly lower on the ELA FSA than native English speakers. This main effect was 

qualified by a significant interaction, which indicated that this score differential on ELA FSA between ELLs and 

native English speakers was larger when teachers reported higher levels of facilitation of group work 

(interactional component) (β = -9.75, p < 0.01). However, this score differential on ELA FSA was smaller when 

teachers reported higher levels of resourcefulness and coping (influential factor) (β = 5.92, p < 0.05). Furthermore, 
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ELLs scored significantly lower on the mathematics FSA. This main effect was qualified by a significant 

interaction, which indicated that this score differential on mathematics FSA between ELLs and native English 

speakers was smaller when teachers reported completing a higher percentage of non-grade-level Code.org CS 

lessons (β = 30.13, p < 0.01) (structural component), facilitating higher levels of student intellectual risk taking 

(interactional component) (β = 9.98, p < 0.01), higher levels of resourcefulness and coping (influential factor) (β = 

6.60, p < 0.05), and more years of teaching CS (influential factor) (β = 1.77, p < 0.05). On the other hand, this 

score differential on mathematics FSA was larger when teachers reported higher levels of facilitation of group 

work (interactional component) (β = -12.48, p < 0.01).  

5.2 Attitudinal Outcomes 

Gender: No significant differences were observed for students’ attitudinal outcomes. 

Race: Asian students (β = 0.28, p < 0.05) reported significantly higher CS identity attitudes than White students. 

SES: Students receiving FRL reported more positive CS affinity attitudes. This main effect was qualified by 

significant interactions, which indicated that this difference in CS affinity attitudes between students receiving FRL 

and those that do not was larger in classrooms where teachers taught the Time4CS Modules (whole intervention) 

(β = 0.47, p < 0.05), and when teachers reported greater use of interdisciplinary teaching practices (interactional 

components) (β = 0.46, p < 0.01) and more years of teaching CS (influential factor) (β = 0.09, p < 0.01). In 

addition, students receiving FRL reported more positive CS identity attitudes (β = 0.16, p < 0.05).
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Table 6. Results from the two-level, random-intercept and coefficient-as-outcome model examining students’ scores on the science FSA 

Level 1 Variables 

Level 2 Variables 

Asian Students 

African 

American 

Students 

Female Students 
Students 

receiving FRL 
ELLs 

Non-grade level assigned lessons 71.00 (68.79) 26.26 (31.39) -3.11 (17.56) 13.86 (23.5) 24.55 (41.29) 

Assigned grade-level computer science lessons -170.22 (147.96) -22.82 (45.16) 1.66 (30.15) -56.46 (42.28) -35.28 (95.93)

Additional computer science 40.93 (32.41) 13.52 (8.87) -10.36 (6.17) -10.11 (8.56) -2.1 (13.49)

 Interdisciplinary teaching practices 55.60 (25.19)* -5.86 (6.91) -5.06 (4.18) 7.02 (4.94) -2.62 (7.16)

Group work -24.68 (29.07) -6.16 (6.57) -3.96 (5.59) -4.23 (6.67) -2.38 (8.99)

Cognitively demanding work 19.88 (24.42) 1.38 (6.61) 0.29 (4.91) 2.13 (6.10) -4.14 (8.34)

Student intellectual risk-taking 12.49 (14.72) 4.69 (7.46) -1.78 (4.53) -5.63 (5.88) 3.75 (8.21)

Treatment condition 24.07 (18.85) 7.57 (8.5) 2.87 (5.49) 7.62 (7.10) -0.38 (12.9)

Innovativeness -16.00 (13.37) -0.57 (5.13) 0.41 (3.69) 2.00 (4.65) -8.14 (6.93)

Resourcefulness and coping 21.37 (12.96) 10.45 (4.87)* 0.73 (4.18) 0.75 (5.04) 12.87 (7.83)

Years of teaching CS -1.03 (3.50) -2.46 (1.89) 0.53 (0.93) 1.15 (1.28) 3.56 (2.45)

Note. * p < .05. Standardized beta coefficients and standard error (SE) terms are presented in the table with SE reported in parentheses. We controlled for 

students’ ethnicity (i.e., Hispanic and non-Hispanic identity) in all models. No significant group differences emerged for ethnicity; therefore, it was not included 

in any interaction terms at Level-2. ELL = English-language learner.  
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Table 7. Results from the two-level, random-intercept and coefficient-as-outcome model examining students’ CS affinity attitudes 

 
Level-1 Variables 

 

Level-2 Variables 

Asian 

Students 

African 

American 

Students 

Female 

Students 

Students 

receiving 

FRL 

ELLs 

Non-grade level assigned lessons _ _ _ -0.25 (0.67) _ 

Assigned grade-level computer science lessons _ _ _ -1.55 (1.53) _ 

Additional computer science _ _ _ 0.05 (0.21) _ 

 Interdisciplinary teaching practices _ _ _ 0.46 (0.13)* _ 

Group work _ _ _ 0.10 (0.15) _ 
Cognitively demanding work _ _ _ -0.13 (0.17) _ 

Student intellectual risk-taking _ _ _ -0.22 (0.15) _ 

Treatment condition _ _ _ 0.47 (0.20)* _ 

Innovativeness _ _ _ -0.09 (0.15) _ 

Resourcefulness and coping _ _ _ 0.21 (0.12) _ 
Years of teaching CS _ _ _ 0.09 (0.03)* _ 

Note. * p < .05. Standardized beta coefficients and standard error (SE) terms are presented in the table with SE reported in parentheses. Group differences were 

only observed for students’ socio-economic status. We controlled for students’ ethnicity (i.e., Hispanic and non-Hispanic identity) in all models. No significant 

group differences emerged for ethnicity; therefore, it was not included in any interaction terms at Level-2. ELL = English-language learner. 



6. Discussion

6.1 Academic Achievement Gaps Persist  

Considerable efforts have been made to address inequities in achievement outcomes for diverse populations of 

students; however, gaps persist. Unsurprisingly, and consistent with previous research, findings from the current 

study indicate that Black students, students from economically disadvantaged backgrounds (i.e., students 

receiving FRL), students acquiring English as a second language, and female students scored lower on some 

achievement outcomes compared to their reference groups (Hadden et al., 2020; Xu, 2019). This study addresses 

calls from prior research (e.g., Lubienski, 2008) by moving beyond identifying group differences in outcomes to 

offering potential reasons why such gaps persist. Employing CBR in this study enabled us to identify the ways 

different structural and interactional components of the Time4CS Modules influenced the degree of group 

difference (i.e., amplifying versus reducing it).  

6.2 Structural Components of the Time4CS Modules Contributed to Larger or Smaller Group Differences in 

Outcomes 

This study found that CS-related components (e.g., implementation of grade-level assigned Code.org lessons; 

implementation of non-grade level assigned Code.org lessons; implementation of additional non-Code.org 

lessons) influenced whether the group difference was amplified or reduced. Our earlier analysis (Century, Ferris, 

& Zuo, 2020) showed no associations between the percentage of grade-level assigned Code.org lessons and FSA 

outcomes. However, by disentangling the effect of student group, we observed group differences between Black 

and White students for mathematics FSA outcomes, and this difference was amplified in classrooms where 

teachers reported teaching more grade-level assigned CS lessons. In BCPS, similar to other large, urban public 

school districts, it is possible that disproportionate numbers of Black students reside in low-income areas and 

attend under-resourced schools with fewer educational supports. When teachers dedicated more time within the 

literacy block to grade-level assigned CS lessons, this in turn, may have reduced the time Black students had 

available for instruction in FSA tested areas (e.g., mathematics). This finding suggests Black students face 

compounded inequities; attending under-resourced schools limits the instructional support present at the outset 

so when opportunities to engage in CS are presented, outcomes in these other subject areas may suffer.  

We also observed through use of CBR that teaching “additional CS activities” was associated with lower ELA 

FSA scores for students receiving FRL. Because this group by definition come from families with lower incomes 

and/or parental educational attainment, they also reside in, and attend, more under-resourced neighborhoods and 

schools. It is possible that the presence of additional CS activities took time away from the particular kinds of 

ELA instructional supports these learners needed to score highly on the state-administered examination.  

Moreover, our results about non-grade level assigned Code.org CS lessons underscore additional equity-related 

complexities. Our earlier analysis (Century, Ferris, & Zuo, 2020) illustrated that non-grade level assigned 

Code.org CS lessons were positively associated with students’ ELA and mathematics FSA scores. However, 

when examining specific student groups, the presence of more non-grade level assigned Code.org CS lessons 

reduced the group difference in mathematics FSA between ELLs and their native English speakers. This group 

difference may have been reduced for several reasons. For instance, teachers may have selected non-grade-level 

assigned Code.org CS lessons that complemented and enhanced the curricula they were already teaching, in turn 

allowing them to provide more appropriate scaffolding for language learners. Or, they may have selected non-

grade-level Code.org CS lessons to support their own, and their students’, varied experiences, and interests. 

Emphasizing students’ diverse experiences contributes to the creation of an inclusive classroom environment 
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where teaching reflects the diversity of needs of all students and teachers consider how to include rather than 

exclude learners who experience difficulty (i.e., inclusive practice; Abels, 2019), which is central to cultivating 

positive learning experiences with ELLs (de Jon et al., 2013). Teachers may also have felt that their students 

were capable of completing these optional lessons, which at times covered more-advanced CS content, because 

they felt that their students had the ability to understand more-challenging CS concepts. Thus, more non-grade 

level Code.org CS lessons may have been conducive to their learning, engagement, and growth as students, 

overall, as well as reducing potential outcome differences based on language proficiency. Conversely, teachers 

may have carried out more of these lessons covering less-advanced content (i.e., below grade level: fourth grade 

students completing non-grade level assigned lessons intended for third graders) because they believed they were 

more-closely aligned with their students’ abilities. Additional studies focusing specifically on academic 

achievement and STEM and CS attitudes are needed with ELLs in the future to better understand how to create 

equitable learning opportunities for this growing number of students and foster teachers’ inclusive practice in 

their classrooms. 

 

Significant attitudinal effects only emerged in the presence of the structural component related to whether 

teachers taught the Time4CS Module. Specifically, FRL students demonstrated higher CS affinity attitudes, and 

this difference was larger in classes where the Time4CS Module was taught. This finding suggests that although 

we found no differences between treatment and comparison groups as a whole (Century, Ferris, & Zuo, 2020), it 

appears that for students receiving FRL, engaging with the Time4CS Module (e.g., exposure to CS topics 

presented in an interesting manner) was beneficial for their CS affinity. 

 

6.3 Interactional Components of the Time4CS Modules Contributed to Larger and Smaller Group Differences in 

Outcomes 

We also observed interaction effects with some of the interactional Time4CS Module components. For example, 

for mathematics FSA outcomes, teachers’ facilitation of student intellectual risk-taking contributed to reducing 

group differences in outcomes between ELL students and native-English speakers. These findings suggest that 

ELLs may benefit from opportunities to take risks during instruction, and that those opportunities may positively 

contribute to better academic achievement. Accordingly, teachers who create intellectually safe and supportive 

learning environments when teaching CS may positively shape students’ overall outlook on learning and 

motivation to persevere when faced with uncomfortable learning challenges (Rabe, 2018). As such, risk-taking 

may be especially important for ELLs who need extra support to combat stereotypes about their abilities and 

what they are truly capable of accomplishing in the classroom (Diamond et al., 2016).  

 

Findings related to teachers’ facilitation of group work were mixed. For example, when teachers reported more 

facilitation of group work, the group difference in mathematics FSA scores between low and high SES students 

was reduced. This finding supports prior research suggesting that group work promotes academic achievement 

for disadvantaged students (Bailey & Bradbury-Bailey, 2006). Through group work, these students may receive 

extra peer-to-peer support when working with their classmates as well as increased opportunities to take 

ownership of work aligning to their skillsets (Slavin, 2014). However, when teachers reported more facilitation 

of group work, the difference widened between ELLs and Native-English speakers. This effect also emerged 

when examining ELA FSA scores. These findings may have resulted because group work requires greater 

communication and collaboration, which are areas where ELL students may be at a disadvantage due to their 

more limited English-language proficiency.  
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In addition, findings on interdisciplinary teaching practices further disentangled effects observed for all students 

in our previous paper (Century, Ferris, & Zuo, 2020). Our earlier analysis indicated that the presence of 

interdisciplinary teaching practices was positively associated with ELA FSA outcomes for the whole student 

population (Century, Ferris, & Zuo, 2020), whereas the current analysis revealed that the presence of these 

practices contributed to two instances of amplified group differences. Specifically, on the science FSA, the group 

difference between Asian and White students was larger in classrooms where teachers reported using more 

interdisciplinary teaching practices. Some research (Farris, 2015) has suggested a link between interdisciplinary 

teaching practices, multiculturalism, and culturally responsive instructional strategies, which may be beneficial 

for Asian students’ academic achievement, in particular (Change & Le, 2010). Additionally, the group difference 

in CS attitudes between FRL students and their counterparts was larger when more interdisciplinary teaching 

practices were present. The reasons behind these findings are unclear, but we recommend that future researchers 

use CBR to investigate these effects more specifically to gain a better understanding of the role of 

interdisciplinary instructional practices.  

 

6.4 Influential Factors Also Contribute to Larger or Smaller Group Differences in Outcomes 

 

Two teacher characteristics contributed to changes in group differences in outcomes. First, the group difference 

in science FSA scores was reduced between Black and White students in classrooms where teachers reported 

having more resourcefulness and coping skills. Similarly, when teachers reported more resourcefulness and 

coping skills, the group difference between ELL and native-English speakers on mathematics FSA was reduced. 

On the other hand, the group difference on the ELA FSA between FRL students and their counterparts was larger 

in the presence of more teacher resourcefulness and coping. One can speculate that teachers who perceive 

themselves as being resourceful and having coping abilities might be more adept at inclusive practice (Bentley-

Williams, Grima-Farrell, & Laws, 2017), in turn providing Black and ELL students with the opportunities and 

resources they need to increase their academic achievement. Seeing the findings for FRL students; however, 

suggests that these benefits are not universal, for reasons this study did not reveal and that should be the focus of 

future investigations.   

More commonly measured teacher characteristics – years of teaching CS – were also associated with reductions 

in group differences. We observed smaller group differences between ELL students and their native-English 

speaking counterparts for mathematics FSA and ELA FSA scores. While neither of these characteristics was 

revealed to have direct effects on student outcomes (Century, Ferris, & Zuo, 2020), one can speculate that for 

ELL students in particular, having teachers with more experience with CS content is beneficial.  

 

7.  Conclusion 

The current study explored differences in students’ attitudinal and academic achievement outcomes based on 

teachers’ implementation of the Time4CS Modules in their classrooms. We employed CBR to disentangle 

associations between specific components of the Time4CS Modules and students’ attitudes and academic 

achievement. Our results assess beyond whether the Time4CS Modules worked and indicate that academic 

achievement and CS attitudinal gaps persist. Utilizing CBR allowed us to identify potential reasons why some 

components of the Time4CS Modules (i.e., intervention) were beneficial for certain groups of students, but not 

others. Use of CBR also underscored areas of continued improvement for researchers and educators striving to 

provide equitable CS learning experiences for young learners. By pinpointing how students’ socio-demographic 

characteristics interact with aspects of their learning context (e.g., teachers’ instructional practices), researchers 
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and practitioners can better understand the contexts and conditions needed to promote desired student outcomes 

related to CS. Therefore, CBR is a valuable approach for moving beyond “gap gazing” to gain insights about 

what parts of an innovation worked, for which students, and under what conditions. Despite these promising 

findings and their implications for researchers and educational professionals dedicated to creating more-

equitable CS learning opportunities, this project represents merely a starting point. Future research must address 

the current study’s limitations to generate insights that can inform the continued development of CS educational 

experiences for today’s diverse learners.   

7.1 Limitations and Future Directions 

Our findings must be considered in light of several limitations. First, the team was unable to control for the 

BCPS academic calendar (e.g., standardized testing schedule), which likely impacted implementation of the 

Time4CS Modules given that some teachers taught the modules before FSAs were administered, whereas others 

used the module after testing took place. Greater attention must be placed on when teachers are implementing 

the intervention in future studies so accurate effects of the intervention on outcomes can be generated. Second, 

the teacher and student questionnaire data is subject to self-report bias and socially-desirable reporting, which 

may contribute to inflated (e.g., more positive) response patterns in the data (Van de Mortel, 2008). Future 

research should adopt multi-method data collection strategies (Bulsara, 2015), including interviews or focus 

groups with teachers and students. Classroom observations could also be used to capture real-time accounts of 

teachers’ use of different components to better understand the reasons particular components may be associated 

with larger or smaller group differences (Archer et al., 2016). Third, the Time4CS Modules used were in the 

early stage of development during the study, and they may have required revisions to improve usability and to 

ease teachers’ learning curve when implementing them.  

We also want to acknowledge two considerations for future examinations focused on equity. First, we did not 

use methods that accounted for intersectionality. Although our results underscore the importance of CBR when 

disentangling the effect of structural and relational components of a curriculum designed to promote more 

equitable student outcomes, follow-up investigations are also needed to better understand how different student 

characteristics intersect (e.g., race, gender). An intersectional conceptual and analytical approach (Else-Quest & 

Hyde, 2016a; Else-Quest & Hyde, 2016b) was not the primary focus of this investigation. We recognize that the 

use of additive analytic approaches (Cole, 2009) limits the conclusions that can be drawn regarding students’ 

dual and overlapping identities (e.g., being Asian and female; being Black and male; being multiethnic; being 

ELL and a FRL recipient). Nonetheless, our findings emphasize the need to look more deeply at group 

differences and recognize that instructional practices may be beneficial to some groups, but detrimental to others. 

As a result, we encourage future researchers to employ intersectional conceptual and analytical approaches to 

simultaneously examine student characteristics, attitudes, and academic outcomes as such investigations have the 

potential to better inform the creation of strategies that can promote educational equity. 

Second, we want to acknowledge the implicit and explicit biases associated with our academic outcome 

measures, standardized tests (Knoester & Au, 2017). For instance, some studies indicate that standardized tests 

are inequitable by design (Au, 2010; Morgan, 2016; Well et al., 2019). Thus, focusing on standardized testing 

outcomes when striving for educational equity across diverse student populations overlooks how the test design 

itself contributes to group differences. Students’ standardized test scores may be misleading and not accurately 
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depict student learning (Morgan, 2016). Future research needs to acknowledge these shortcomings when 

referencing empirical literature, use more equitable assessments, and investigate a wide variety of educational 

outcomes, including students’ attitudes toward different subject areas, motivations in the classroom, and 

interests. 

 

7.2 The Call for Research that Will Contribute to More Accurate and Useful Findings about Equitable CS 

Learning Opportunities 

 

In light of these limitations, the findings of this study communicate a powerful message: CBR enables 

researchers to examine the impact of specific aspects of an intervention for different groups of learners. When 

studies of CS interventions show positive or negative main effects, it is essential to look deeper through such 

approaches. Examining the components of educational interventions and their effect on particular student groups 

will enable us to learn more about how to develop more equitable CS learning opportunities and teachers’ 

inclusive practice. Although CS interventions vary widely, some of them share common components with others. 

Using a CBR approach can enable the field to accumulate knowledge about these shared components. This will 

pave the way for researchers and practitioners to develop robust knowledge about the best structures and 

interactions to use in CS instruction to meet the learning needs of all students.  
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Appendix A 

Time4CS Teacher Implementation Questionnaire Items (Module 2, Grade 4) 

School Information 

1. What is the name of your school?

2. This year, what grade STEM+C Integrated Literacy Block materials did you use?

Module Completion 

As part of the STEM+C Integrated Literacy Block project, you were provided with activities and lessons to use 

during a daily 180-minute integrated literacy block. There were two components of this180-minute block: 

1) The 90-minute Reading Block using your normal ELA curriculum and/or suggested texts and center activities

provided as part of the STEM+C materials; and 

2) The 90-minute interdisciplinary STEM+C Module, which includes the 5E lessons that integrate science,

social studies, and computer science. 

Throughout the questionnaire, we will use "Integrated Literacy Block" to refer to the entire 180-minutes. We 

will use “Reading Block” and “STEM+C Module” to refer to the two 90-minute components of the 180-

minute integrated Literacy Block. 

1. First, we'd like to ask you to think back to last semester (Fall 2016 - Winter 2016). Did you teach the

STEM+C Integrated Literacy Block Module 1?

1) Yes

2) No

2. Now we'd like you to think about the most recent semester (Winter 2016 - Spring 2017). Did you teach

the STEM+C Integrated Literacy Block Module 2?

1) Yes

2). No 

Time 

3. Now we’re interested in learning more about how you used the Integrated Literacy Block materials.

Of the total 180 minutes designated each day for the Integrated Literacy Block, how many minutes a day, 

on average, did your students spending doing the following? The times you select across all questions 

must add up to 180 minutes. 
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_______ Doing STEM+C Module 5E activities 

_______ Reading ELA texts recommended in the STEM+C Module materials 

_______ Doing ELA center activities recommended in the STEM+C Module 

_______ Doing other activities 

4. You said students engaged in other activities during the 180-minute Integrated Literacy Block. What

types of other activities did they do? Please select all that apply.

1) Literacy activities not outlined in the STEM+C Module materials (including   Achieve3000

articles)

2) Science activities not outlined in the STEM+C Module materials

3) Social studies activities not outlined in the STEM+C Module materials

4) Computer science activities not outlined in the STEM+C Module materials

5) Other (please explain):

Now we would like you to just think about the STEM+C Module component of the 180-minute Integrated 

Literacy Block. These are the 5E lesson activities on science, social studies, and computer science. 

5. The STEM+C Module lessons include “core” learning resources that you were expected to use as well

as “non-core” or supplemental elements that were optional. Please consider the entire STEM+C

Module (both the core AND supplemental activities of the 5E lessons) when answering the

following questions, unless otherwise stated.

Approximately how many weeks did you spend doing the entire STEM+C Module? 

▼ 1 week (1) ... 12 weeks

Each STEM+C Module lesson is intended to take 90 minutes, but we know there will be variations in how much 

time each teacher actually spends.  

6. Do you think 90 minutes was sufficient to complete the STEM+C Module 5E lesson activities as

outlined in the Module?

1) Yes

2) No

7. About how much more time (than the 90 minutes) each day do you feel you needed to complete all

of the STEM+C Module 5E lesson activities?

1) Less than 15 minutes

2) 15-30 minutes

3) 31-45 minutes

4) 46-60 minutes

5) More than 60 minutes
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We also know that some teachers worked with media specialists and other “specials” teachers (e.g., art, music) to 

implement the STEM+C Module 5E lesson activities. For example, some teachers had their media specialist do 

the online computer science activities that were part of the STEM+C Module. 

 

8. Did you have a media specialist or other specials teacher do any part of the STEM+C Module 5E 

lessons with your students? 

1) Yes   

2) No   

 

You said you had a media specialist or other specials teacher do parts of the STEM+C Module lessons with your 

students. Please take those activities into account and answer as best as you can for yourself and on behalf of the 

specials teacher(s) when answering the following questions. 

 

Lesson Omission 

 

9. Did you omit any of the STEM+C Module lessons entirely? By “entirely,” we mean you skipped 

the entire lesson and did not do any parts of it. 

1) Yes   

2) No   

 

10. About how many STEM+C Module lessons did you omit entirely for any reason?  

 A few About half Most 

 

 0 5 10 14 19 24 

 

Number of lessons () 

 

 

11. In all the lessons you taught, did you ever omit one or more of the 5E components (e.g., 

"Engage," "Explain") for any reason? Do not count 5E components that a specials teacher 

taught on your behalf as an omission. 

1) Yes   

2) No 

 

12. About how often did you omit each of the following 5E components for any reason? 

 (Scale: Never, Rarely, Sometimes, Often, Always) 

1) Engage 

2) Explore 

3) Explain 

4) Elaborate/Extend 

5) Evaluate 
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13. You said you omitted some portion of the STEM+C Module. From the list below, please select 

the top three reasons you did so. 

1) The activities were not identified as core parts of the lesson.  

2) I didn’t have access to the necessary technology (e.g., computers, Internet) to complete 

the activities.   

3) I had access to the necessary technology (e.g., computers, Internet) but it wasn’t working.   

4) The lesson parts were too long.  

5) The lesson parts required too much preparation.  

6) The lesson parts weren’t written clearly enough to teach them.  

7) I didn’t understand the content of the lesson parts well enough to teach them.  

8) The lesson parts weren’t relevant to my students.   

9) The lesson parts weren’t as important to teach compared to others I needed to teach.  

10) Other: (please explain) _______________________________________________ 

 

Lesson Modification 

 

Sometimes teachers modify lessons by departing from what is written in the curriculum materials. This includes 

using different materials to complete the lesson and/or teaching the lessons in a different way than written (e.g., 

doing the lesson as a whole group activity instead of partner work). Modification does not include omitting or 

skipping portions of the STEM+C Module. 

 

14. Of the STEM+C Module lessons that you taught; did you modify them in any way?  

1) Yes  

2) No   

 

15. About how many of the STEM+C Module lessons did you modify?  

 

 A few About half Most 

 

 

 0 5 10 14 19 24 

 

Number of lessons () 

 

 

 

Lesson Supplementation 

 

Sometimes teachers add to curricular materials like the STEM+C Module with their own activities or lessons.   

 

16. Did you add any new activities to the STEM+C Module? This includes anything you added that 

wasn't part of the STEM+C Module core and non-core “supplemental” activities. 

1) Yes   
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2) No   

 

 

17. In about how many STEM+C Module lessons did you add activities?  

 A few About half Most 

 

 0 5 10 14 19 24 

 

Number of lessons () 

 

 

Culminating Project 

18. Did your students complete a culminating project? 

1) Yes   

2) No   

 

19. Which version of the culminating project did your students complete? 

1) Unplugged   

2) Plugged   

3) Both   

 

20. Did your students complete any additional culminating projects that were not identified as part 

of the STEM+C Module? 

1) Yes   

2) No  

 

21. Please describe the additional culminating project that your students completed. 

________________________________________________________________ 

Student Journaling 

22. As part of the STEM+C Module, did your students use journals? 

1) Yes   

2) No  

 

23. From the options below, please select the one that best represents how your students used 

journals. 

1) My students used a separate journal for each subject (e.g., one journal for math, one for 

science, one for literacy, etc.).   

2) My students used one journal for all subjects.   
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ACHIEVE3000 

As part of the STEM+C Integrated Literacy Block project, you were asked to administer Achieve3000 diagnostic 

assessments to students. We'd like to know about your students' use of other (non-assessment) Achieve3000 

materials and activities (e.g., nonfiction texts from Achieve3000). 

 

24. On average, since the beginning of the school year, how many times per week did you have 

your students use Achieve 3000 (not-assessment) materials and activities? 

 0 1 2 3 4 5 

 

Number of times () 

 

 

 

25. When students used Achieve3000 for non-assessment materials and activities, approximately 

how much time did they spend each time they used it? Please include time spent at school and 

when assigned for homework.  

 0 15 30 45 60 75 90 

Number of minutes () 

 

Computer Science Materials 

 

Now think back to both last semester (Module 1) and the most recent semester (Module 2). 

 

26. Which of the following Code.org, Course 3 and/or Scratch activities did you use with your 

students? Please select all that apply.       

    

Please include any lessons taught by a media specialist or other specials teacher on your 

behalf.  
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 Module 1 Module 2 

Course 3, Lesson 1: Computational Thinking (unplugged)   

Course 3, Lesson 2: Maze (plugged)   

Course 3, Lesson 3: Artist (plugged)   

Course 3, Lesson 4: Functional Suncatchers (unplugged)     

Course 3, Lesson 5: Artist Functions (plugged)    

Course 3, Lesson 6: Bee Functions (plugged)    

Course 3, Lesson 7: Bee Conditionals (plugged)     

Course 3, Lesson 8: Maze Conditionals (plugged)    

Course 3, Lesson 9: Songwriting (unplugged)     

Course 3, Lesson 10: Dice Race (unplugged)    

Course 3, Lesson 11: Artist Nested Loops (plugged)   

Course 3, Lesson 12: Farmer While Loops (plugged)    

Course 3, Lesson 13: Bee Nested Loops (plugged)   

Course 3, Lesson 14: Bee Debugging (plugged)    

Course 3, Lesson 15: Bounce (plugged)    

Course 3, Lesson 16: Play Lab Create a Story (plugged)    

Course 3, Lesson 17: Play Lab Create a Game (plugged)    

Course 3, Lesson 18: Internet (unplugged)    

Course 3, Lesson 19: Crowdsourcing (unplugged)    

Course 3, Lesson 20: Digital Citizenship (unplugged)     

Course 3, Lesson 21: Artist Patterns (plugged)    

Scratch Lesson 2: Moving Sprites    

Scratch Lesson 3: Broadcasting a Message    

I did not use any of these Code.org or Scratch Lessons (25)    

 

 

27. When using the Code.org, Course 3 or Scratch lessons, approximately what proportion of time did 

your students spend in each of the following configurations? All percentages must add up to 100%. 
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If your students worked with a media specialist or other specials teacher, please answer on his/her 

behalf to the best of your ability.  

Whole Class: _______ Small Group: _______ Partner: _______   

Independent: _______ Total: ________ 

28. On average, what proportion of your students did all of the Code.org, Course 3 or

Scratch activities you used?

If your students worked with a media specialist or specials teacher, please answer on his/her behalf to 

the best of your ability. 

1) None

2) Some

3) About half

4) Most

5) All

Now we would like to know about any computer science activities you used with your students during the 

entire 180-minute Integrated Literacy Block that were not identified in the STEM+C Module. 

29. Which additional computer science materials, if any, did you use? Please select all that apply.

If your students worked with a media specialist or specials teacher, please answer on his/her 

behalf to the best of your ability.  



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 19 

1) Code.org, Course 1  

2) Code.org, Course 2  

3) Code.org, Course 4   

4) Accelerated Course  

5) Code Studio Hour of Code activities   

6) Barefoot Computing  

7) Khan Academy computer science courses   

8) Videos on computational thinking and computer science   

9) Google's computational thinking resources   

10) Programs that use Blockly programming language  

11) Computer science vocabulary  

12) Scratch  

13) Other (please explain) _______________________________________________ 

14) I did not use any additional computer science materials 

 

 

30. About how many Code.org Course 1 lessons (unplugged or stages) did most/all of your 

students complete?  

▼ 1 (1) ... 18  

31. About how many Code.org Course 2 lessons (unplugged or stages) did most/all of your students 

complete?  

▼ 1 (1) ... 19  

32. About how many Code.org Course 4 lessons (unplugged or stages) did most/all of your students 

complete?  

▼ 1 (1) ... 22  

 

Implementation - Instructional Practices (Treatment) 

 

For the following questions, please only think of your teaching during the STEM+C Module lessons. 

33. When you taught STEM+C Module lessons, about how often did you explicitly… 

  

1) Refer to the overarching Module problem 

2) Explicitly make lesson content relevant to students (e.g., ask about past experiences, apply 

content to students’ daily lives) 

3) Cover standards from multiple subject/content areas in the same lesson 

4) Make connections across content areas during discussions with students 
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34. When you taught STEM+C Module lessons, approximately what proportion of time did your students 

spend in each of the following configurations? Proportions must add up to 100% 

Whole Class: _______ Small Group: _______ Partner : _______   

Independent: _______ Total : ________  

 

35. How often did you intentionally and explicitly do the following when students were working in 

groups or pairs during STEM+C Module lessons? (Scale: Never, Rarely, Sometimes, Often, 

Always) 

1) Encourage group members to work to solve problems together  

2) Encourage group members to share ideas and strategies respectfully  

3) Encourage group members to listen to what others have to say  

 

36. During STEM+C Module lessons, about how often did you explicitly ask students to do the 

following?  

(Scale: Never, Rarely, Sometimes, Often, Always) 

1) Organize, process, manipulate, and/or evaluate data 

2) Explain how they solved a problem 

3) Consider other students' ideas in comparison to their own 

4) Demonstrate reasoning (e.g., noting relationships between concepts, making comparisons) 

5) Consider the merits of using different approaches or problem-solving strategies 

6) Solve problems in more than one way 

7) Communicate their thought process to others 

 

37. During STEM+C Module lessons, about how often did you explicitly ask students to do the 

following?  

 (Scale: Never, Rarely, Sometimes, Often, Always) 

 

1) Answer a question even if they were unsure 

2) Try new things even if they might make mistakes 

3) hare their ideas even if they were different from others 

 

Support – Implementation 

 

38. Apart from the professional development workshops at the beginning of the school year, did 

you receive additional support in implementing the STEM+C integrated module? Please select 

all that apply.  

1) Broward STEM+C Module contacts (i.e., Annmargareth Marousky, Kelly Thomas, and/or 

Lisa Milenkovic)   

2) Your school’s STEM+C Module designee   

3) Media specialist(s)   

4) Other teachers at your school implementing STEM+C Module materials   

5) Other teachers from different schools implementing STEM+C Module materials   

6) Other teachers not implementing STEM+C Module materials   
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7) PLC facilitator(s)

8) In-service facilitator(s)

9) School leaders (e.g., principal, assistant principal)

10) Canvas website

11) Online discussion boards or forums

12) Other online resources

13) Other (please explain) ________________________________________________

14) I did not receive any additional support.

Attitudes Toward Interdisciplinary Teaching Practices (Treatment) 

Now we’re interested in learning about your attitudes toward interdisciplinary teaching practices. The STEM+C 

Module is an example of interdisciplinary teaching that integrates literacy, science, computer science, and social 

studies. 

39. Prior to teaching the STEM+C Module, how much experience did you have teaching

interdisciplinary modules?

1) None

2) A little bit

3) A fair amount

4) Quite a bit

5) A lot

For the following questions, please think about interdisciplinary teaching practices in general, not just about the 

STEM+C Module.  

40. How much do you agree or disagree with the following statements about your interdisciplinary

teaching practices in general? (Scale: Strongly Disagree, Disagree, Somewhat Disagree,

Somewhat Agree, Agree, Strongly Agree)

1) I have sufficient content knowledge across multiple subject areas to be very effective at

teaching interdisciplinary modules.

2) I have nearly every skill I need to teach interdisciplinary modules well at the elementary

school level.

3) I have nearly every skill I need to teach interdisciplinary modules well at the elementary

school level.

4) I am really good at teaching interdisciplinary modules at the elementary school level.

5) I am effective at making interdisciplinary modules relevant to my students.

6) I have sufficient access to the hardware and/or software I need to teach interdisciplinary

modules effectively
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41. How much do you agree or disagree with the following statements about interdisciplinary 

teaching practices in general? Interdisciplinary teaching… (Scale: Strongly Disagree, Disagree, 

Somewhat Disagree, Somewhat Agree, Agree, Strongly Agree) 

1) Is more valuable for elementary students’ content understanding than teaching each subject 

separately. 

2) Is more engaging for elementary students than teaching each subject separately.  

3) Helps students understand the relevance and applicability of the subjects they are learning. 

 

42. How much do you agree or disagree with the following statement? (Scale: Strongly Disagree, 

Disagree, Somewhat Disagree, Somewhat Agree, Agree, Strongly Agree) 

 

Teaching interdisciplinary modules is a feasible instructional model for elementary 

classrooms. 

 

43. You said you disagree that teaching with interdisciplinary modules is a feasible instructional 

model for elementary classrooms. What are the top three reasons why you disagreed? 

1) I don't have enough time.   

2) I lack content knowledge across multiple subject areas.  

3) I don't have sufficient access to adequate hardware and/or software.   

4) I am not confident teaching with technology.   

5) I have difficulty managing my students.  

6) I don't have adequate materials.  

7) Other (please explain):______________________________________________ 

 

Leadership Attitudes Toward CS (Treatment) 

 

We're interested in your perception of your school leaders' attitudes towards computer science. Your answers are 

confidential and will not be shared with anyone outside of the research team. 

 

44. How much do you agree or disagree with the following statements?  

My school leaders… (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat 

Agree, Agree, Strongly Agree) 

1) Think it’s important for all students to learn computer science in elementary school. 

2) Believe that learning computer science in elementary school will help students get a good job 

someday. 

3) Communicate the value of computer science to students, parents, teachers, and staff. 
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Teacher Attitudes Survey (All) 

45. How much do you agree or disagree with the following statements about your teaching in

general? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree,

Strongly Agree)

1) I have nearly every skill I need to teach elementary school well.

2) I am really good at teaching elementary school.

3) I am effective at making schoolwork relevant to my students.

46. How much do you agree or disagree with the following statements about your teaching in

general? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree,

Strongly Agree)

1) I experiment with new practices all the time.

2) I am always looking for new ways of doing things in my teaching.

3) I am constantly the first to try new things in my school.

47. How much do you agree or disagree with the following statements about your teaching in

general? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree,

Strongly Agree)

1) I am able to manage the pressure and stress at my school well.

2) I see difficult tasks through to the end.

3) I find ways to accomplish my goals.

4) When planning for my work, I prepare for potential challenges.

5) I am able to manage my work even when there are unexpected changes and constraints.

After this last set of questions about computer science, you will be done! 

48. On a scale of 0-5, how familiar are you with the term "computer science?"

Not familiar Somewhat familiar Very familiar 

0 1 3 4 5 

Level of Familiarity () 
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49. If someone asked you what computer science is, what would you say? 

 

50. If you had to pick, which one of the following would you choose to explain what computer science 

is? 

1) Keyboarding and typing.   

2) Designing websites, apps, and video games. 

3) Studying how computers work.   

4) Fixing computers when they break.   

5) Building computers and other hardware.  

6) Making spreadsheets and graphs.   

7) Using computers to solve complex problems.   

8) Doing science on a computer.   

9) Analyzing data.   

10) Robotics.  

11) Other (please explain):  

 

Thanks for telling us what you think computer science is. For this survey, when we say computer science, we 

mean:   

 

Studying and using computers to help solve problems and to create technology, like video games and 

apps. 

 

51. How much do you agree or disagree with the following statements about your teaching of 

computer science?  (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat 

Agree, Agree, Strongly Agree) 

1) I understand computer science concepts well enough to be a very effective teacher of computer 

science at the elementary school level. 

2) I have nearly every skill I need to teach computer science well at the elementary school level.  

3) I am really good at teaching computer science at the elementary school level.  

4) I am effective at making computer science relevant to my students. 

 

52. How much do you agree or disagree with the following statements about computer science?  

(Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat Agree, Agree, Strongly 

Agree) 

1) I enjoy computer science 

2) I am interested in computer science 

3) I like doing computer science. 

 

53.  What part of computer science do you like the most? Please select only one answer. 



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 25 

1) Designing websites, apps, and/or video games.  

2) Computer programming and coding   

3) Data analysis   

4) Robotics   

5) Fixing computer hardware problems  

6) Fixing computer software problems  

7) Studying how computers work   

8) Building computers and other hardware   

9) Learning new computer programming languages (e.g. Python, C++, Java)   

10) Other (please explain):  

 

54. How much do you agree or disagree with the following statements regarding learning computer 

science in elementary school? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, 

Somewhat Agree, Agree, Strongly Agree) 

1) Is just as important for students to learn as non-core subjects, like art, music, and foreign 

language. 

2) Is just as important for students to learn as core-subjects, like math, science, and 

English/Language Arts. 

3) Is not developmentally-appropriate for elementary school children. 

4) Will ensure students are prepared for future academic success. 

5) Will ensure students get good jobs in the future. 

 

55. How much do you agree or disagree with the following statements regarding learning computer 

science in elementary school? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, Somewhat 

Agree, Agree, Strongly Agree) 

 

Learning computer science in elementary school can help students learn how to... 

1) Consider alternative approaches to their work.  

2) Analyze (organize, process, manipulate, evaluate) data.  

3) Problem solve when something doesn’t work the way they want it to work. 

 

56. How much do you agree or disagree with the following statements regarding learning computer 

science in elementary school? (Scale: Strongly Disagree, Disagree, Somewhat Disagree, 

Somewhat Agree, Agree, Strongly Agree) 

 

Learning computer science in elementary school can help students learn how to... 

1) Explain the logic and reasoning supporting their solutions. 

2) Explain why they agree or disagree with the work of other students. 

3) Communicate their thought processes to others. 

 

School Grade (Control) 

57. What grade(s) do you teach? Please select all that apply. 

1) 3rd grade  
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2) 4th grade

3) 5th grade

Essential Program Elements (Control) 

First, we’d like to ask you some questions about Achieve3000. 

As part of the STEM+C Integrated Literacy Block project, you were asked to administer Achieve3000 diagnostic 

assessments to students. We’d like to know about your students’ use of other (non-assessment) Achieve3000 

materials and activities (e.g., nonfiction texts from Achieve3000).  

58. About how many times did you have your students use Achieve3000 (non-assessment)

materials and activities?

0 5 10 15 20 25 30 35 40 45 50 

Number of times () 

59. When students used Achieve3000 (non-assessment) materials and activities, approximately how

much time did they spend each time they used it? Please include time spent at school and when

assigned for homework.

0 15 30 45 60 75 90 

Number of minutes () 

Now we are interested in learning about your use of Code.org's computer science activities. This includes the 

Computer Science Fundamentals Courses 1-4, the Accelerated Course, and the eight Code Studio Hour of Code 

activities (e.g., Play Lab, Artist, Frozen).   

60. Since the start of the school year, which Code.org materials, if any, have you used with your

students? Please select all that apply.

1) Course 1

2) Course 2

3) Course 3

4) Course 4

5) Accelerated Course

6) Hour of Code activities

7) I did not use any Code.org materials with my students.

A Code.org “lesson” may be either an unplugged lesson, or a “stage” (that is composed of a series of puzzles). 

61. About how many Code.org Course 1 lessons (unplugged or stages) did most/all of your

students complete?
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▼ 1 (1) ... 18 (18) 

62. About how many Code.org Course 2 lessons (unplugged or stages) did most/all of your students 

complete?  

▼ 1 (1) ... 19 (19) 

63. About how many Code.org Course 3 lessons (unplugged or stages) did most/all of your students 

complete?  

▼ 1 (1) ... 21 (21) 

64. Q112 About how many Code.org Course 4 lessons (unplugged or stages) did most/all of your 

students complete?  

▼ 1 (1) ... 22 (22) 

65. About how many Code.org Accelerated Course lessons (unplugged or stages) did most/all of 

your students complete?  

▼ 1 (1) ... 20 (20) 

66. About how many Code.org Hour of Code lessons (unplugged or stages) did most/all of your 

students complete?  

▼ 1 (1) ... 8 (8) 

 

67. Now we would like a little more specific information on Course 2 lessons only. Which Course 2 

lessons did all/most of your students complete? 

1) Course 2, Lesson 1: Graph Paper Programming (unplugged)   

2) Course 2, Lesson 2: Real-Life Algorithms (unplugged)   

3) Course 2, Lesson 3: Maze Sequence (plugged)   

4) Course 2, Lesson 4: Artist Sequence (plugged)  

5) Course 2, Lesson 5: Getting Loopy (unplugged)   

6) Course 2, Lesson 6: Maze Loops (plugged)   

7) Course 2, Lesson 7: Artist Loops (plugged)   

8) Course 2, Lesson 8: Bee Loops (plugged)  

9) Course 2, Lesson 9: Relay Programming (unplugged)  

10) Course 2, Lesson 12: Conditionals with Cards (unplugged)    

11) Course 2, Lesson 13: Bee Conditionals (plugged)   

12) Course 2, Lesson 14: Binary Bracelets (unplugged)  

13) Course 2, Lesson 15: The Big Event (unplugged)   

14) Course 2, Lesson 16: Flappy (plugged)   

15) Course 2, Lesson 17: Play Lab: Create a Story (plugged)  

16) Course 2, Lesson 18: Your Digital Footprint (unplugged)   

17) Course 2, Lesson 19: Artist: Nested Loops (plugged)  

 

68. Please select any other (not from Code.org) computer science activities that you used in the last 

semester.  

1) Barefoot Computing   
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2) Khan Academy computer science courses

3) Videos on computational thinking and computer science

4) Google’s computational thinking resources

5) Programs that use Blockly programming language

6) Scratch

7) Other (please explain): ______________________________________________

8) I did not use any other computer science-related activities.

Implementation - Instructional Practices (Control) 

69. For the following questions, please only think of your teaching from the past 12 weeks.

Over the past 12 weeks, about how often did you… (Scale: Never, Rarely, Sometimes, Often, 

Always) 

1) Explicitly make lesson content relevant to students (e.g., ask about past experiences, apply

content to students’ daily lives)

2) Cover standards from multiple subject/content areas in the same lesson

3) Make connections across content areas during discussions with students

70. Over the past 12 weeks, approximately what proportion of time did your students spend in each

of the following configurations? All proportions must add up to 100%.

Whole Class: _______  Small Group: _______  Partner: _______

Independent: _______ Total: ________

71. Over the past 12 weeks, about how often did you intentionally and explicitly do the following

when students were working in groups or pairs? (Scale: Never, Rarely, Sometimes, Often,

Always)

1) Encourage group members to work to solve problems together

2) Encourage group members to share ideas and strategies respectfully

3) Encourage group members to listen to what others have to say

72. Over the past 12 weeks, about how often did you explicitly ask students to do the

following? (Scale: Never, Rarely, Sometimes, Often, Always)

1) Organize, process, manipulate, and/or evaluate data

2) Explain how they solved a problem

3) Consider other students' ideas in comparison to their own

4) Demonstrate reasoning (e.g., noting relationships between concepts, making

comparisons)

5) Consider the merits of using different approaches or problem-solving strategies

6) Solve problems in more than one way

7) Communicate their thought process to others
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73. Over the past 12 weeks, about how often did you explicitly ask students to do the 

following? (Scale: Never, Rarely, Sometimes, Often, Always) 

1) Answer a question even if they were unsure 

2) Try new things even if they might make mistakes  

3) Share their ideas even if they were different from others' 

 

Attitudes Toward Interdisciplinary Teaching Practices (Control) 

 

Now we’re interested in learning about your attitudes toward interdisciplinary teaching practices. Here is an 

example of what we mean by "interdisciplinary teaching practices": 

  

You teach a 7-week module on North American Regions by: 

-integrating reading, researching, writing, and presenting about a North American region (ELA); 

-studying the geography and natural/man-made landmarks of a region (social studies); 

-researching and studying the climate, vegetation, and natural resources of the region (science); 

-and using models/simulations to create a map of the region (computer science). 

 

74. How much experience do you have teaching interdisciplinary modules like the one described in 

the example above? 

1) None   

2) A little bit   

3) A fair amount   

4) Quite a bit   

5) A lot  

 

75. How much do you agree or disagree with the following statements about interdisciplinary 

teaching practices?  

1) I have enough time to teach interdisciplinary modules. 

2) I have sufficient content knowledge across multiple subject areas to be very effective at 

teaching interdisciplinary modules.  

3) I have nearly every skill I need to teach interdisciplinary modules well at the elementary 

school level.  

4) I am really good at teaching interdisciplinary modules at the elementary school level. 

5) I am effective at making interdisciplinary modules relevant to my students. 

 

76. How much do you agree or disagree with the following statements about interdisciplinary 

teaching practices? 

 

1) I have sufficient access to the hardware and/or software I need to teach interdisciplinary 

modules effectively. 

 

77. How much do you agree or disagree with the following statements about interdisciplinary 

teaching practices? Interdisciplinary teaching…  
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1) Is more valuable for elementary students’ content understanding than teaching each

subject separately.

2) Is more engaging for elementary students than teaching each subject separately.

3) Helps students understand the relevance and applicability of the subjects they are

learning.

78. How much do you agree or disagree with the following statement?

1) Teaching interdisciplinary modules is a feasible instructional model for elementary

classrooms. 

79. You said you disagree that teaching with interdisciplinary modules is a feasible

instructional model for elementary classrooms.  What is the main reason you disagreed?

Please select only one.

1) I don't have enough time.

2) I lack content knowledge across multiple subject areas.

3) I don't have sufficient access to adequate hardware and/or software.

4) I am not confident teaching with technology.

5) I have difficulty managing my students.

6) I don't have adequate materials.

7) Other (please explain):

Leadership Attitudes Toward CS (Control) 

80. We’re interested in your perception of your school leaders’ attitudes toward computer

science. Remember, your answers are confidential and will not be shared with anyone

outside of the research team. How much do you agree or disagree with the following

statements? My school leaders…

1) Think it’s important for all students to learn computer science in elementary school.

2) Believe that learning computer science in elementary school will help students get a

good job someday.

3) Communicate the value of computer science to students, parents, teachers, and staff.
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Appendix B 

Time4CS Student Questionnaire Items 

School Background Questions 

1. What school do you go to? [drop-down menu listing schools]

2. What is your teacher’s last name? [drop-down menu listing teachers’ names and a free-response option if

students did not see their teacher’s name]

General School Affinity 

How much do you agree or disagree with the following statements about school? 

1. I like schoolwork.

2. My schoolwork is interesting.

3. I enjoy doing my schoolwork.

General School Self-Efficacy 

How much do you agree or disagree with the following statements about school? 

1. I have the ability to do my schoolwork.

2. I am better at schoolwork than most of the other kids at my school.

3. I am very good at doing my schoolwork.

4. I can figure out how to solve the most difficult problems in school if I try.

Knowledge of Computer Science 
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1. Have you ever heard of “computer science” before? [Yes/No]

2. If someone asked you what computer science is, what would you say? [Free-response]

3. Which one of the following would you choose to explain what computer science is? [Single response choice]

3.1. Computer science is…

3.1.1. Being good at computers. 

3.1.2. Doing science on a computer. 

3.1.3. Engineering. 

3.1.4. What is inside a computer? 

3.1.5. Learning how computers work. 

3.1.6. Building computers. 

3.1.7. Making websites, apps, and video games. 

3.1.8. Studying computers. 

3.1.9. Using computers to solve problems. 

3.1.10. Computer programing and coding. 

3.1.11. Typing. 

3.1.12. Robotics. 

3.1.13. Other (please explain) [Free-response] 

3.2. Prompt: Thank you for telling us what you think computer science is. For this survey, when we say 

computer science, we mean: Studying and using computers to help solve problems and to create 

technology, like video games and apps. 

Computer Science Affinity 

How much do you agree or disagree with the following statements about school? 

1. I like computer science.

2. I think computer science is interesting.

3. I want to learn more computer science.

4. I like doing computer science activities.

Computer Science Self-Efficacy 

How much do you agree or disagree with the following statements about school? 

1. I have the ability to learn computer science.

2. I am better at computer science than most of the other kids at my school.

3. I am very good at computer science.

4. I can figure out how to solve hard problems in computer science if I try.
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Computer Science Identity 

How much do you agree or disagree with the following statements about school? 

1. Kids like me do computer science.

2. I like computer science more than other kids at my school.

3. I think I could become a computer scientist one day.

4. I do computer science in my free time.

Computer Science Utility 

How much do you agree or disagree with the following statements about school? 

1. It’s important for me to learn computer science.

2. Computer science is useful for me to learn.

3. Learning computer science can help me get a job someday.

Prior Computer Science Experience 

1. Have you ever done robotics before? [Yes/No]

2. Have you done activities on Code.org before [Yes/No]

Demographics 

Now we’d like to ask you some questions about you? 

1. Are you a boy or a girl? [Boy/Girl]

2. Are you Hispanic/Latino? [Yes/No]

3. What is your ethnicity? [Select all that apply]

3.1. African American

3.2. Asiana

3.3. White

3.4. Other

4. How old are you? [Drop-down menu listing age choices]
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Note. 

1. Researchers should contact the authors prior to use of items from this questionnaire or the questionnaire in its

entirety. All requests can be sent to Jeanne Century at outlieruchicago@gmail.com

2. Researchers planning to utilize items from this questionnaire, or this questionnaire in its entirety, should use

the following citation in their reference list.

Century, J., Ferris, K. A., & Zuo, H. (2020). Finding time for computer science in the elementary school day: a 

quasi-experimental study of a transdisciplinary problem-based learning approach. International Journal of STEM 

Education, 7, 1-16. 
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Abstract 

The aim of this study was to assess the domain-general CT skills of 8th grade students in Turkey. In the study, 

first, the domain-general CT scale was adapted to Turkish, and then relations of the CT skills with gender, 

computer possession, internet access, and programming experience were examined. This survey research was 

conducted with the 284 eighth grade students. The data were analyzed through confirmatory factor analysis, 

independent sample t-test and Pearson correlation test. The results of the confirmatory factor analysis and 

Cronbach alpha showed that the Turkish version of the domain-general CT scale was valid and reliable. T-test 

results showed no significant difference in the CT skills of the students according to gender, computer 

possession and internet access. A statistically significant difference in algorithm, evaluation, generalization, and 

general CT skills was found between students who learned programming and those who did not. Correlational 

tests revealed that there was a positive and significant relationship between the programming experience of 

students who learn programming and their CT skills. As students' programming experience increased, their CT 

skills also increased. The results of the research were discussed, and recommendations for policymakers and 

implementers were included. 

Keywords: Computational thinking, domain-general computational thinking, scale adaptation, middle school 

students 

1. Introduction

It is important for students to have Computational Thinking (CT) skills in order to be successful in professions in

today's digital world (Vallance & Towndrow, 2016). CT plays the role of a bridge between the fields of science,

technology, engineering, and mathematics (STEM), which are the main source of innovation of 21st century

digital economies, and computer science, and is an important skill for the development of computer literacy and

thinking skills including problem solving (Barr & Stephenson, 2011). Since CT requires deep learning compared

to superficial or rote learning (Wing, 2006), it can be transferred to other areas and problem-solving contexts. In

this respect, it is argued that CT is a necessary skill not only for STEM professions but also for all other

professions (Denning, 2017). What is more, CT, which is one of the skills sets that all students should have such

as reading, writing and mathematics in the current century, has become a necessary skill not only for computer

science but also for all fields of learning (Wing, 2006).

It is necessary to integrate CT into education systems in order to provide students with the skills they will need

in the future (Grover & Pea, 2013). For this reason, CT has been included in the Next Generation Science

Standards (NGSS) in the USA and integrated into STEM curricula at K12 levels (Tang et al., 2020). In parallel

with these developments, CT has been integrated into education programs in many countries including Finland,

Norway, South Korea, Israel, Poland, New Zealand, Estonia (Tikva & Tambouris, 2021). Studies examining CT

studies published between 2006 and 2018 reported that CT was integrated into primary school curricula in 52

countries (Tang et al., 2020).

Although there is no common ground on the definition of CT, which has attracted the attention of educators for

the last 15 years, it is widely accepted that CT is a thinking skill that includes a cognitive problem-solving

process that can be developed in many ways, not only through computer programming (Aho, 2012; Guzdial,

2008; Selby & Woollard, 2013; Shute et al., 2017; Tsai et al., 2021; Wing, 2011; Yadav et al., 2016). Similarly,
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Denning (2017) argues that CT is not only the way computer scientists think, but also a necessary thinking skill 

for other fields. Shute et al. (2017) argued that CT can be defined as “the conceptual foundation required to solve 

problems effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with 

solutions that were reusable in different contexts”. Previous studies have examined students' domain-specific CT 

skills (computer science or programming) in different contexts. (Erümit et al., 2020; Günbatar, 2020; Korucu et 

al., 2017; Oluk et al., 2018; Oluk & Korkmaz, 2016; Wu & Su, 2021) However, little is known about how the 

programming skills acquired from different programming environments change their domain-general CT skills; 

whether there is a difference between the domain-general CT skills of students who gain programming skills and 

those who do not especially in middle school. For this reason, two purposes were adopted in the study. First, due 

to lack of domain-general CT scale in Turkish version, it was aimed to adapt the “Computational Thinking Scale 

for Computer Literacy Education” (CTSCLE) developed by Tsai et al. (2021) to Turkish. Secondly, it was aimed 

to assess students' domain-general CT skills. The following questions were sought in the study: 

• What is the reliability and validity of the domain-general CT scale?

• Is there a significant difference between students' domain-general CT skills and gender?

• Is there a significant difference between students' domain-general CT skills and programming

experiences?

• Is there a significant difference between students' domain-general CT skills and computer possession?

• Is there a significant difference between students' domain-general CT skills and internet access?

• Is there a significant relationship between students' domain-general CT skills and programming

experiences?

1.1 CT Definition 

There is no consensus definition on CT. Although the first emergence of CT was based on the book 

"Mindstorms: Children, computers, and powerful ideas" written by Papert in 1980 (Zhang & Nouri, 2019), it was 

Wing (2006) who was first to introduce the concept of "Computational Thinking". He stated that CT includes 

problem solving, system design and understanding human behavior by using concepts related to computer 

science. Wing later changed the definition to highlight that CT is a thinking process, and CT is defined as a 

process that involves presenting problems and their solutions in a form that can be effectively processed by an 

information-processing agent (Wing, 2011). Later, Aho (2012) stated that the concept of formulating the 

problems emphasized in this definition includes the algorithm. According to Aho's definition, CT is emphasized 

as a thinking process in which the solution of its problems can be presented through algorithms containing 

sequential steps. In the functional definition developed by the Computer Science Teachers Association (CSTA) 

and the International Society of Technology in Education (ISTE), it was emphasized that CT is a thinking skill 

consisting of but not limited to 6 skill sets (ISTE & CSTA, 2011). These skill sets: (1) Formulate problems so 

that they can be solved by information processing units. (2) Organize and analyze data rationally. (3) Presenting 

data through abstractions such as simulations and models. (4) Automating problem-related solutions using 

algorithmic thinking. (5) Identifying, organising, and implementing appropriate solutions in the most efficient 

and effective way. (6) Transferring the solution of the problem to other problems, making generalisations. 

Although the definitions differ, it can be stated that CT is a thinking process that includes problem solving and 

consists of a set of skill sets obtained by modeling the mental processes that a computer scientist uses while 

solving the problem.   

CT is an umbrella concept that includes many sub-skill sets. In the literature, different classifications are made 

regarding the sub-skill sets included in CT (Barr & Stephenson, 2011; Brennan & Resnick, 2012; Denner et al., 

2012; Grover & Pea, 2013; ISTE & CSTA, 2011; Kalelioglu et al. al., 2016; Selby & Woollard, 2013). As stated 

by Tsai et al. (2021), approaches other than Selby and Woollard (2013) include sub-skills specific to computer 

science or programming, making it difficult to measure domain-specific CT skills. The Selby and Woollard 

(2013) approach, which includes domain-specific CT sub-skills, consists of five sub-skills: abstraction, 

decomposition, algorithmic thinking, evaluation, and generalization. Abstraction refers to a mental process that 

involves focusing on the main points rather than the details to solve a problem. Decomposition states a mental 

process that involves breaking down the problems into small and manageable parts in order to solve them. 

Algorithmic thinking refers to a mental process in which it is determined how to solve a problem step by step. 

Evaluation is a mental process that involves determining the best solution from different solutions to a problem, 
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taking into account the resources. Generalization states a mental process that involves determining how to solve 

certain problems and applying them in solving other similar problems.  

 

1.2 CT Assessment Tools 

Due to the lack of a commonly accepted definition of CT, different approaches have emerged regarding how to 

measure CT skills. Measurement tools developed for these approaches are based on Román-González et al. 

(2019) under seven titles. CT diagnostic tools are the tools aiming to measure the CT capability level. CT result 

evaluation tools are the tools that aim to measure whether the learners have gained sufficient content knowledge 

thanks to a training on CT skills. CT process assessment tools are intended to provide feedback to the student, 

which are usually provided by automated means to develop and increase learners' CT skills. CT data mining 

tools are to aim to provide feedback to students by applying data mining on students' interaction records in 

online environments. CT skill transfer tools are intended to measure whether students are able to transfer their 

CT skills to different types of problems, contexts, and situations. CT perception and attitude tools are tools that 

aim to measure learners' perceptions and attitudes towards CT and related subjects (computer, computer science, 

programming, digital literacy, etc.). CT word evaluation tools are amied to measure CT dimensions and 

components, which are emphasized as CT language and can be expressed verbally. Tsai et al. (2021) emphasized 

that all of the above evaluation approaches are specific to computer science or programming, and that there is a 

need for domain-general CT measurement tools. Similarly, Alsop (2019) suggested that children's learning of CT 

skills cannot be measured by focusing only on programming constructs (CT concepts), it should also include 

learning behavior and metacognitive practices.  

 

In the literature, there are several Turkish instruments to assess students’ CT skills. However, these scales are 

domain dependent scales that are specific to programming, or they include 21st century skills. For example, 

“Computational Thinking Levels Scale” developed by Korkmaz, Çakır, and Özden (2015, 2017) for university 

and middle school students includes five skills such as “algorithmic thinking”, “problem solving”, “critical 

thinking”, “creative thinking” and “cooperativity”. However, this scale does not include the core CT skills such 

as abstraction and decomposition stated by Selby and Woodland (2013). The other available scale for assessing 

CT skills of Turkish middle school students is “Self-Efficacy Perception Scale for Computing Thinking Skills” 

developed by Gülbahar, Kert, and Kalelioğlu (2019). This scale includes factors related to programming, which 

make it a domain-specific scale. Since CT skills are problem-solving-based thinking skills that are necessary to 

not only computer science but also other fields including science, mathematics etc., there is a need for domain-

general (non-computer science or programming-specific) Turkish scales. In this study, it was aimed to adapt the 

CTSCLE scale developed by Tsai et al. (2021) into Turkish in order to provide a domain-general CT skill scale. 

 

1.3 Factors Related to CT Skills 

Studies addressing students’ CT skills have associated the different factors on students’ CT skills. Some studies 

focused on effect of gender on CT skills. The effects of gender on CT skills are controversial. Some studies 

reported that there was no difference between CT skills mean score of male and female students. For instance, 

Alsancak (2020) examines the gender difference on CT skills with 722 Turkish secondary school students. T-test 

results showed that there was no significant difference between female and male students’ CT skills mean score, 

on the one hand, (t (719) = -.98, p = .33). On the other hand, Gulbahar et al. (2020) reported that there was 

significant difference between female and male CT skills in favor of female students (t (43748) = 7.42, p <.01). 

Therefore, there is a need to test the relations between gender and CT skills measured in the CTSCLE. 

Other studies addressing CT skills mostly focused on effects of having a computer, Internet access, mobile 

device, or other technological tools, or programming experience on CT skills. For instance, Oluk and Korkmaz 

(2016) investigated that the relations of CT skills with Scratch programming skills and computer use. They 

found that Scratch programming skills were highly correlated with the CT skills (Spearman rho= .93, p <.01) 

whereas no relation between computer use and CT skills (U = 102, p = .74). In another study, Alsancak Sarıkaya 

(2019) reported that students did not differ based on their computer experience (F (5,253) = 2.25 p = .05) but 

they did in internet use (F (5,253) = 2.27 p = .048). In another study, İbili et al. (2020) reported that CT skills did 

not differ based on students’ programming experience (F (2, 588) = 1.423, p >.05). These findings of 

aforementioned studies indicate that relations between programming experience and CT skills are controversial. 

Thus, it would be important to examine the links of these variables with the CT skills by utilizing a domain-

general CT skills scale, the CTSCLE, to better understand the role of computer related experiences on CT skills.  
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2. Method 

2.1 Research Method 

In this study, one of the quantitative research models, the survey model was used. Survey model is based on 

collecting data from the sample of the population and interpreting these data in order to determine the 

characteristics of a population or to reveal the existing situation (Fraenkel et al., 2012). This method was chosen 

because the aim of this study is to examine the domain-general CT skills of middle school students. In addition, 

comparative analysis of CT skills according to various variables were made using the relational research method. 

Relational research model is a method used to examine the relationships between variables (Fraenkel et al., 

2012). 

 

2.2 Participants 

The population of this study is 8th grade students in Turkey. Since collecting data from the entire population is 

not possible in terms of economy and time, the researcher can define an accessible population. Therefore, one of 

Turkey's western provinces where it could be easily accessed by researchers was determined to be the accessible 

population. Six public schools (3 rural and 3 urban areas) in this province were randomly determined. 284 

middle school students studying in these schools voluntarily participated in the study. Characteristics of the 

participants were given in Table 1. 

 

Table 1. Demographic characteristics of the participants 

Demographic feature Frequency Percent 

Gender   

 Boy 137 48.2 

 Girl 147 51.8 

Computer possession   

 No 103 36.3 

 Yes 181 63.7 

Internet access   

 No 23 8.1 

 Yes 261 91.9 

Programming environments experienced (multiple choice be selectable) 

 Scratch 152 0.54 

 Code.org  103 0.36 

 Arduino 22 0.08 

 Other (Google CS First, Hour 

of Code, Blockly.games, 

CodeMonkey, 

Codecademy, Codesters 

etc.)   

78 0.27 

 No programming experience 60 0.21 

2.3 Data Collection Tools 

The data collection tool in this study consisted of two parts. In the first part, the personal information form aimed 

at collecting the students' demographic information (gender, etc.) was included and in the other part, the Turkish 

version of the CTSCLE was placed. 

The CTSCLE was developed by Tsai et al. (2021) with 19 items in five factors (abstraction, decomposition, 

algorithmic thinking, evaluation, and generalization). The abstraction, algorithmic thinking, evaluation, and 

generalization sub-dimensions of the scale consist of four items and the decomposition sub-dimension consists 

of three items. The scale was originally administrated with 388 students (255 boys, 132 girls, mean age 14.58) 

studying at a secondary school in Taiwan. A 5-point Likert-type scale was used in the form of Strongly Disagree 

(1) and Strongly Agree (5). Tsai et al. (2021) found that 19 items were grouped under five factors and the total 
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variance explained by 19 items was 64.03%. It was reported that the Alpha reliability coefficient value of the 

whole scale was 0.91 and varied between 0.74 and 0.83 in the sub-dimensions (See Table 2). For the 

discrimination validity of the scale, the AVE (average variable extracted) values of each sub-dimension were 

examined and whether the square roots of the AVE values were greater than the correlation values between the 

sub-dimensions. Since the AVE values of the scale sub-dimensions were greater than 0.50 (0.74 - 0.83) and the 

square roots of the AVE values of each sub-dimension were larger than the correlation values in the related sub-

dimensions, it was concluded that the scale provides the decomposition validity. The reliability and validity 

analysis showed that the scale was reliable and valid in Taiwanese sample. 

 

Table 2. Sample example of sub-dimensions in the CTSCLE and their Cronbach values 

Sub-dimension Example item Item number Cronbach alpha* 

Abstraction  
I usually try to analyze the common 

patterns of different problems. 
4 .81 

Decomposition  
I usually think about how to split a big 

problem into several small ones. 
3 .74 

Algorithmic 

thinking 

I usually try to lay out the steps of a 

solution. 
4 .77 

Evaluation 
I usually try to find the most effective 

solution for a problem. 
4 .83 

Generalization 
I usually think about how to apply a 

solution to other problems. 
4 .75 

* Cronbach alpha values reported by Tsai et al. (2021). 

 

2.4 Process and Data Analysis 

Turkish version of the CTSCLE was prepared by following steps suggested by Çapık et al. (2018). First, the 

permission was granted from the authors who developed the scale. Later, two doctoral experts who graduated 

from the United States translated the scale into Turkish. In the translation form English to Turkish, semantic and 

conceptual deduction were made. Next, the opinions of three researchers from the departments of Turkish 

Language Education, Computer Education and Instructional Technologies, and English Language Education 

were taken about the semantic translation. According to their opinions, revisions were made. Then, back-

translation to English was made by two independent experts and compared with the original version of the scale 

to ensure that each version was semantically compatible with each other. Later, two information technologies in-

service teachers checked the Turkish scale to determine its comprehensibility by the target audience. After taking 

the opinions of the information technologies teachers, the Turkish version of the scale was finalized.   

More than one statistical technique was used in data analysis. First, outliers and missing data were checked. 

Then, the normality values of the data were examined. Since the skewness and kurtosis values were in the range 

of -1 and +1, the data were accepted as having a normal distribution (Hair et al., 2019). Next, Cronbach alpha 

coefficient was calculated to determine the level of reliability. In the literature, data with a Cronbach alpha value 

above .70 can be considered reliable (Hair et al., 2019). In order to examine the factor structure, measurement 

model or confirmatory factor analysis (also known as the measurement model or confirmatory factor analysis 

[CFA]), which is one of the structural equation model methods, was performed in the MPlus 7.0 program. CFA, 

a statistical technique that tests the construct validity of the scale, was used to test how fit the data obtained to 

the previously determined model. CFA is recommended to use when the factor structures are pre-determined. 

Because the factor names and structures had been already known in the study, CFA was used to confirm that. 

The maximum likelihood method was used as the estimation method in the CFA because the normal distribution 

assumptions were not severely violated. Parallel to the literature, good fit values were accepted as Chi-square / df 

ratio less than 3, RMSEA value lower than .06 and CFI value greater than .95 (Hu & Bentler, 1999). In addition, 

t-test and one-way ANOVA tests were used to test the difference according to demographic variable groups, 

since the data showed normal distribution. Lastly, Pearson correlation test was used to test the relationship 

between the programming environments experienced and their domain-general CT skills. 
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3. Results 

3.1 Reliability and Validity of the Adapted CTSCLE 

In this study, the validity and reliability analysis of the scale were done before interpreting the data. First, 

Cronbach's alpha value was calculated for each sub-dimension for reliability. In Table 3, Cronbach's alpha 

values for each sub-dimension were given along with descriptive statistics. Since the Cronbach alpha values 

were higher than the acceptable level of .70, the scale was at a reliable level. 

 

Table 3. Descriptive statistics 

 Mean SD Skewness Kurtosis Alpha 

Abstraction 3.49 0.95 -0.35 -0.33 .86 

Decomposition  3.37 1.01 -0.36 -0.28 .86 

Algorithmic Thinking  3.75 0.99 -0.76 0.20 .90 

Evaluation  3.83 0.99 -0.80 0.29 .89 

Generalization  3.62 0.91 -0.51 0.25 .82 

Total 3.61 0.85 -0.70 0.53 .96 

Results of CFA showed that the chi-square value was found to be 325.25, χ2(142) = 325.37. The chi-square / df 

ratio was calculated as 2.29. Although this ratio is lower than the 3.00 value accepted in the literature, the chi-

square value is a statistic that is affected by the number of people in the sample. For this reason, other fit values 

are recommended to be checked.  
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Figure 1. Factor loadings of the CTSCLE 

 

The most accepted and more reliable (robust) fit indices in the literature are generally RMSEA, TLI and CFI 

values. The RMSEA value was found as .057 CI (.047, .067). This value is smaller than the limit value .06 and 

indicates a good fit. In addition, CFI and TLI values were calculated as .95 and the limit value was around .95. 

SRMR value was found as .035. These values showed that the factor structure of the scale was in good fit with 

the data and accepted as evidence for the construct validity of the scale. In addition, factor loadings higher than 

.30 indicated that each item was related to the factor (Figure 1). Finally, there was a high level of correlation 

between the factors of the scale. This shows that the structure is similar. After testing the validity and reliability 

of the scale, the average value for each factor was calculated and given in Table 3. According to these average 

values, it showed that students had intermediate level skills in abstraction, decomposition and generalization sub-

dimensions, and high skill level in algorithm and evaluation sub-dimensions (low level: 1.00-2.33, medium 

level: 2.34-3.66 and high level: 3.67- 5.00). While the lowest mean score was in the decomposition dimension, 

the highest one was in the evaluation sub-dimension. 

3.2 Students' CT Skills and Gender 

It was found for females in the highest mean score in evaluation and the lowest one was in the decomposition 

sub-dimension. Similar findings were observed for male students. Whether the students' CT score changed 

according to their gender was tested with the independent sample t-test. Although female students had a higher 

average than boys in all sub-dimension and total, results of the t-test showed that these differences were not 

statistically significant (See Table 4). 

Table 4. Gender comparison on the domain-general CT skills 

 Boy (n = 137)  Girl (n = 147)   

 Mean SD  Mean SD t Cohen’s d 

Abstraction 3.45 0.98  3.53 0.92 0.74 0.08 

Decomposition  3.31 1.05  3.42 0.96 0.90 0.11 

Algorithmic Thinking  3.66 1.01  3.83 0.96 1.48 0.17 

Evaluation  3.78 1.04  3.88 0.94 0.90 0.10 

Generalization  3.57 1.00  3.66 0.81 0.84 0.10 

Total 3.55 0.91  3.67 0.80 1.10 0.13 

Note. df = 282. 

3.3 Students' CT Skills and Programming Experiences 

The CT skills of students who had never learned programming and those who have taken any programming 

course were compared in order to test the effect of students’ programming experiences on their CT skills. 

According to the results of the independent sample t-test, there was a significant difference in some sub-

dimensions while not in others (See Table 5). A statistically significant difference was found in favor of students 

taking programming language in algorithm, evaluation, generalisation and total averages. The highest significant 

difference was in the evaluation sub-dimension (Cohen's d = .37), while the lowest significant difference was 

calculated in the total mean score (Cohen's d = .30). These findings showed that Algorithmic Thinking, 

Evaluation and Generalization skills can be gained with programming skills while Abstraction and 

Decomposition skills can be improved without programming experiences. 

Table 5. Students’ programming experiences comparison on the CT skills 

 Yes (n = 224)  No (n = 60)   

 Mean SD  Mean SD t Cohen’s d 

Abstraction 3.53 0.92  3.32 1.04 1.54 .21 

Decomposition  3.39 0.97  3.29 1.13 0.68 .09 

Algorithmic Thinking  3.83 0.92  3.46 1.16 2.59 * .35 

Evaluation  3.91 0.94  3.53 1.10 2.68 * .37 

Generalization  3.68 0.87  3.38 1.01 2.32 * .32 

Total 3.67 0.81  3.40 1.00 2.21 * .30 
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Note. * p < .05. df = 282. 

3.4 Students' CT Skills and Computer Possession 

CT skills of students who had a computer and those who did not was compared by utilizing independent sample 

t-test. Descriptive statistics and results of t-tests were given in Table 6. Students who had a personal computer 

rated the highest mean value on the evaluation sub-dimension whereas the lowest one was the decomposition. 

Similarly, students who did not have a personal computer did the highest mean value on the evaluation and the 

lowest was on the decomposition. Results of t-tests yielded no significant difference between students who had a 

personal computer or not on their CT skills. 

Table 6. Students’ computer possession comparison on the CT skills 

 Yes (n = 181)  No (n = 103)   

 Mean SD  Mean SD t Cohen’s d 

Abstraction 3.46 0.97  3.54 0.92 .71 .08 

Decomposition  3.33 1.05  3.43 0.92 .80 .09 

Algorithmic Thinking  3.73 1.00  3.79 0.98 .52 .05 

Evaluation  3.84 1.00  3.82 0.97 .14 .02 

Generalization  3.63 0.94  3.60 0.85 .26 .03 

Total 3.60 0.87  3.64 0.82 .38 .03 

Note. df = 282. 

3.5 Students' CT Skills and Internet Access 

CT skills of students who had internet access and those did not was compared by utilizing Welch’s t-tests 

because of extremely unequal sample size across the groups. Descriptive statistics and results of t-tests were 

given in Table 7. Both student groups rated the highest mean value on the evaluation sub-dimension whereas the 

lowest one was the decomposition. Results of Welch’s t-tests yielded no significance difference between 

students who had internet access or not on their CTs. 

 

Table 7. Students’ internet access comparison on the CT skills 

 Yes (n = 261)  No (n = 23)   

 Mean SD  Mean SD t Cohen’s d 

Abstraction 3.49 0.94  3.46 1.06 .17 .03 

Decomposition  3.38 1.00  3.26 1.09 .53 .11 

Algorithmic Thinking  3.78 0.97  3.40 1.09 1.76 .37 

Evaluation  3.85 0.98  3.62 1.07 1.08 .22 

Generalization  3.62 0.90  3.58 0.99 .23 .03 

Total 3.62 0.84  3.46 0.98 .87 .18 

Note. df = 282. 

3.6 The Relationship between Students' CT Skills and Programming Experiences 

Students can take computer and programming courses as elective or compulsory courses at different grade levels 

and generally learn programming in Code.org, Scratch, Ardunio and other programming environments. Scoring 

was made according to the order of importance of programming languages in order to determine the level of 

programming courses. Accordingly, Code.org and others (Google CS First, Hour of Code, Blockly.games, 

CodeMonkey, Codecademy, Codesters etc.) created a scale-type measurement tool with one score, Scracth two 

points, and Ardunio three points. In this scale, the scores were between the highest score "7 (experiencing all 

programming environments)" and the lowest "0 (no programming experiences)". Programming experiences 

average value was calculated as 1.94 (SD = 1.61) which showed that students had low-level programming 

experiences. The correlation coefficient between the level of programming environments experienced and CT 

skills were given in Table 8. 

 

All correlation coefficients between CT sub-dimensions were statistically significant and the highest correlation 

coefficient was found between abstraction and decomposition (r = .78). On the other hand, a statistically 

significant relationship of the programming experiences was found to be the algorithm, evaluation, and the total 
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score. Accordingly, this result showed that as the students' experience in different learning environments 

increases, algorithmic thinking, evaluation and total computational thinking skills would increase. 

 

Table 8. Relationship between students’ programming experiences and CT skills 

  1 2 3 4 5 6 7 

1 Abstraction 1       

2 Decomposition  .78** 1      

3 Algorithmic Thinking  .75** .74** 1     

4 Evaluation  .72** .65** .63** 1    

5 Generalization  .68** .65** .69** .77** 1   

6 Total  .78** .76** .71** .70** .65** 1  

7 Programming experiences  .11 .06 .15* .18** .11 .14* 1 

Note. * p <.05. ** p <. 01. 

4. Discussion 

Little has been known about how different programming environments would promote students’ domain-general 

CT skills and whether there is a difference between the CT skills of the middle school students who have 

programming experience and those who do not. In this study, due to the lack of domain general CT skill scale in 

Turkey, first, it was aimed to adapt the CTSCLE developed by Tsai et al. (2021) to Turkish and then, to examine 

the domain-general CT skills of the students through this scale.  

 

Results showed that there was no significant difference in CT skills of the students according to gender. This 

finding is parallel to many studies (Alsancak Sarıkaya, 2019; Atmatzidou & Demetriadis, 2016; İbili et al., 2020; 

Korucu et al., 2017; Mindetbay et al., 2019; Oluk & Korkmaz, 2016; Tsai et al., 2021; Wu & Su, 2021; Yağcı, 

2018). In the light of these findings, it can be said that gender does not play an active role in CT. However, there 

are also studies that contrast with this finding. A study conducted with 5th and 6th grade level 2015-2016-2017-

2018-year Bebras (International Challenge on Informatics and Computational Thinking) activity to participate in 

the 97.494 students in Turkey reported that girls were more successful than boys in CT skills (Gulbahar et al., 

2020). The large sample size and the environments used in teaching programming may have caused this 

difference. There may also be differences in CT skills of students in different programming learning 

environments (Ardito et al., 2020; Pala & Mıhçı Türker, 2019; Wu & Su, 2021; Yildiz Durak, 2020).  

One important finding of the study is that there was a significant difference in the CT skills of the students 

according to whether they have gain programming skills or not. In this study, it was also found that the 

algorithmic thinking, evaluation, and generalization skills of students who gained programming skills in different 

environments were statistically higher than students who did not learn programming skills whereas no significant 

difference in abstraction and decomposition skills was found. This finding showed that students could improve 

their abstraction and decomposition skills even without learning any programming. In the study conducted by 

Günbatar (2020), it was found that middle school students who took the Information Technologies & Software 

(IT&S) course and learned programming had significantly higher CT skills than those who did not take the 

course. The development of students’ CT skills after they are exposed to programming courses is actually 

expected. Moreover, learning any programming language is seen as one of the most effective ways to improve 

students’ CT skills (Lye & Koh, 2014). In the previous studies, it was found that there was a high-level 

significant relationship between Scratch programming skills of middle school students and their CT skills (Oluk 

& Korkmaz, 2016). Also, students 'algorithmic thinking skills were improved through learning any programming 

language (Grover et al., 2016). Furthermore, programming teaching with Scratch improved middle school 

students' CT and algorithmic thinking skills (Erümit et al., 2020; Oluk et al., 2018) and problem solving, 

algorithmic thinking and creative thinking skills (Alsancak Sarıkaya, 2019; Yünkül et al., 2017).  

Another result of the research was that there was no significant difference in the CT skills of the students who 

had a computer or not and internet access or not. In previous studies, CT skills did not differ in terms of having a 

computer (İbili et al., 2020), duration of computer use (Oluk & Korkmaz, 2016), weekly internet usage duration, 

mobile technology usage qualification and mobile technology (Korucu et al., 2017). In a study, Alsancak 

Sirakaya (2020) found that students' CT skills differed according to their internet experience, mobile device 

experience, mobile internet experience and daily mobile internet usage time but did not differ according to their 

computer experience, the number of times they checked their mobile devices in a day and the purpose of using 

mobile technology.  
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A significant positive relationship was found between the programming experience and CT skills. This finding 

implies that as students' programming experience in different environments such as Code.org, Scartch, Arduino 

increase, their CT skills also increase significantly. In the study conducted by Oluk and Korkmaz (2016), it was 

found that there is a highly significant relationship between the Scratch programming skills of middle school 

students and their CT skills. Tsai et al. (2021) found that students with 1 year or more programming experience 

had higher CT skills than those who did not. These findings show that students' programming experience is an 

important factor in terms of CT skills. However, there are studies that contradict these findings. In the study 

conducted by Alsancak Sarıkaya (2019), it was concluded that there was no significant difference in CT skills 

between students who saw themselves as novice and intermediate level programming skills. In another study, 

Ibili et al. (2020) reported that CT skills did not differ based on students’ programming experience. That may be 

due to the difference in educational approaches, techniques, and activities in the teaching programming 

environment (Erümit et al., 2020). 

 

As a result of the study, it was found that some students were about to graduate from middle schools without 

programming experiences; however, their abstraction and decomposition skills developed in some way, but 

algorithmic thinking, evaluation and generalization skills were not developed sufficiently. Results of this study 

suggest to complete the lack of computer laboratories in these schools and to employ qualified information 

technology teachers in order to provide CT skills, especially for students at schools located in rural areas where 

they suffer the lack of equipped computer laboratories. By doing so, students in rural areas will be provided with 

equal opportunities in order for them to be effectively prepared for 21st century professions by improving their 

CT skills. 

 

This study has some limitations. The first limitation of the study is that the number of middle school students is 

small; therefore, the generalizability should be approached with caution. Nevertheless, the number of the sample 

in the study was above the recommended participants for statistical tests and research findings have potential to 

portray middle school students' CT skills in Turkey. The second limitation of the study is that different variables 

other than gender, programming experience, computer possession, and internet access could be used to explain 

the CT skills. Lastly, the future studies could examine students’ CT skills in more depth with qualitative studies. 

5. Conclusion 

In this study, the Computational Thinking Scale for Computer Literacy Education, developed by Tsai et al. 

(2020), was adapted to Turkish, and its validity and reliability were examined. The CFA and Cronbach alpha 

results showed that the adapted scale was valid and reliable. Although the scale adapted in the study was a 

domain-general, as suggested by Tsai et al. (2021), the scale can be used for measuring students’ domain-

specific CT skills in other disciplines including physics and STEM by adding appropriate words in expression. 

Addition to this, it was emphasized that the scale can be used to measure CT skills of all participants at the 

secondary school level and above (Tsai et al., 2021). Moreover, the scale should be used by researchers working 

in different fields to measure CT skills, regardless of domain-general or domain-specific. 

 

It was also concluded that the domain-general CT scale was suitable for Turkish culture, and there was no 

significant difference in students' CT skills according to gender, computer possession and Internet access. A 

statistically significant difference in algorithmic thinking, assessment, generalization, and general CT skills was 

found between students who learned programming and those who did not, in favor of students learning 

programming. In the study, it was concluded that there was a positive and significant relationship between the 

programming experience of students who learn programming and their CT skills. As students' programming 

experience increased, their CT skills also increased. 

References 

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 833–835. 

https://doi.org/10.1093/comjnl/bxs074 

Alsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach. International 

Journal of Child-Computer Interaction, 19, 30–55. https://doi.org/10.1016/j.ijcci.2018.10.004 

Alsancak Sarıkaya, D. (2019). Programlama öğretiminin bilgi işlemsel düşünme becerisine etkisi [The effect of 

programming teaching on computational thinking]. The Journal of Turkish Social Research, 23(2), 575–

590. 



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 45 

Alsancak Sirakaya, D. (2020). Investigation of computational thinking in the context of ICT and mobile 

technologies. International Journal of Computer Science Education in Schools, 3(4), 50–59. 

https://doi.org/10.21585/ijcses.v3i4.73  

Ardito, G., Czerkawski, B., & Scollins, L. (2020). Learning computational thinking together: Effects of gender 

differences in collaborative middle school robotics program. TechTrends, 64(3), 373–387. 

https://doi.org/10.1007/s11528-019-00461-8 

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students' computational thinking skills through 

educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 

75, 661–670. https://doi.org/10.1016/j.robot.2015.10.008 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the 

role of the computer science education community? ACM Inroads, 2(1), 48–54. 

https://doi.org/10.1145/1929887.1929905 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 

computational thinking. Annual American Educational Research Association Meeting, Vancouver, BC, 

Canada, 1–25. https://doi.org/10.1.1.296.6602 

Çapık, C., Gözüm, S., & Aksayan, S. (2018). Kültürlerarası ölçek uyarlama aşamaları, dil ve kültür uyarlaması: 

Güncellenmiş rehber [Intercultural scale adaptation stages, language and culture adaptation: Updated 

guideline]. Florence Nightingale Journal of Nursing 26(3), 199–210. https://doi.org/10.26650/fnjn397481 

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to 

measure understanding of computer science concepts? Computers & Education, 58(1), 240–249. 

https://doi.org/10.1016/j.compedu.2011.08.006 

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 

60(6), 33–39. https://doi.org/10.1145/2998438 

Erümit, A. K., Şahin, G., & Karal, H. (2020). YAP programlama öğretim modelinin öğrencilerin bilgi-işlemsel 

düşünme becerilerine etkisi [The effects of YAP programming teaching model on students' computational 

thinking skills]. Kastamonu Education Journal, 28(3), 1529–1540. https://doi.org/10.24106/kefdergi.3915 

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th 

ed.). Boston, MA: McGraw Hill. 

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational 

Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051 

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in middle school. 

Proceedings of the 47th ACM Technical Symposium on Computing Science Education - SIGCSE '16, 

March, 552–557. https://doi.org/10.1145/2839509.2844564 

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of ACM, 51, 25–27. 

https://doi.org/10.1145/1378704.1378713 

Gülbahar, Y., Kalelioğlu, F., Doğan, D., & Karataş, E. (2020). Bilge Kunduz: Enformatik ve bilgi-işlemsel 

düşünmeyi kavram temelli öğrenme için toplumsal bir yaklaşım [Bebras: An approach for concept based 

learning of informatics and computational thinking]. Ankara University Journal of Faculty of Educational 

Sciences, 53(1), 241–272. https://doi.org/10.30964/auebfd.560771 

Gülbahar, Y., Kert, S. B., & Kalelioglu, F. (2019). Bilgi işlemsel düşünme becerisine yönelik öz yeterlik algısı 

ölçeği: Geçerlik ve güvenirlik çalışması [The self-efficacy perception scale for computational thinking skill: 

validity and reliability study]. Turkish Journal of Computer and Mathematics Education, 10(1), 1–29. 

https://doi.org/10.16949/turkbilmat.385097 

Günbatar, M. S. (2020). Computational thinking skills, programming self-efficacies and programming attitudes 

of the students. International Journal of Computer Science Education in Schools, 4(2), 24–35. 

https://doi.org/10.21585/ijcses.v4i2.96 

Hair, J. F., Blacks, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Andover, 

Hampshire, UK: Cengage Learning. 

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional 

criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. 

https://doi.org/10.1080/10705519909540118 

İbili, E., Günbatar, M. S., & Sarıkaya, M. (2020). Bilgi-işlemsel düşünme becerilerinin incelenmesi: Meslek 

liseleri örneklemi [An examination of the computational thinking skills: Sample of vocational high 

schools]. Kastamonu Education Journal, 28(2), 1067–1078. https://doi.org/10.24106/kefdergi.683577 

ISTE, & CSTA. (2011). Operational definition of computational thinking for K-12 education. 

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf 



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 46 

Kalelioglu, F., Gülbahar, Y., & Kukul, V. (2016). A framework for computational thinking based on a 

systematic research review. Baltic Journal of Modern Computing, 4(3), 583–596. 

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking 

scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005 

Korkmaz, Ö., Çakır, R., & Özden, M. Y. (2015). Bilgisayarca düşünme beceri düzeyleri ölçeğinin (BDBD) 

ortaokul düzeyine uyarlanması [Computational thinking levels scale (CTLS) adaptation for secondary 

school level]. Gazi Journal of Educational Science, 1(2), 143–162. 

Korucu, A. T., Gencturk, A. T., & Gundogdu, M. M. (2017). Examination of the computational thinking skills of 

students. Journal of Learning and Teaching in Digital Age, 2(1), 11–19. 

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through 

programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. 

https://doi.org/10.1016/j.chb.2014.09.012 

Mindetbay, Y., Bokhove, C., & Woollard, J. (2019). What is the relationship between students' computational 

thinking performance and school achievement? International Journal of Computer Science Education in 

Schools. https://doi.org/10.21585/ijcses.v0i0.45 

Oluk, A., & Korkmaz, Ö. (2016). Comparing students' Scratch skills with their computational thinking skills in 

terms of different variables. International Journal of Modern Education and Computer Science, 8(11), 1–7. 

https://doi.org/10.5815/ijmecs.2016.11.01 

Oluk, A., Korkmaz, Ö., & Oluk, H. A. (2018). Effect of Scratch on 5th graders' algorithm development and 

computational thinking skills. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 

9(1), 54–71. https://doi.org/10.16949/turkbilmat.399588 

Pala, F. K., & Mıhçı Türker, P. (2019). The effects of different programming trainings on the computational 

thinking skills. Interactive Learning Environments, 0(0), 1–11. 

https://doi.org/10.1080/10494820.2019.1635495 

Román-González, M., Moreno-León, J., & Robles, G. (2019). Combining assessment tools for a comprehensive 

evaluation of computational thinking interventions. In S.-C. Kong & H. Abelson (Eds.), Computational 

Thinking Education (pp. 79–98). Singapore: Springer. https://doi.org/10.1007/978-981-13-6528-7_6 

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. 

https://eprints.soton.ac.uk/356481/ 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research 

Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003 

Tang, K. Y., Chou, T. L., & Tsai, C. C. (2020). A Content analysis of computational thinking research: An 

international publication trends and research typology. Asia-Pacific Education Researcher, 29(1), 9–19. 

https://doi.org/10.1007/s40299-019-00442-8 

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic 

review of empirical studies. Computers and Education, 148, 1-22. 

https://doi.org/10.1016/j.compedu.2019.103798 

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A 

conceptual model based on a systematic literature Review. Computers and Education, 162, 1-23. 

https://doi.org/10.1016/j.compedu.2020.104083 

Tsai, M.-J., Liang, J.-C., & Hsu, C.-Y. (2021). The computational thinking scale for computer literacy education. 

Journal of Educational Computing Research, 59(4), 579–602. https://doi.org/10.1177/0735633120972356 

Vallance, M., & Towndrow, P. A. (2016). Pedagogic transformation, student-directed design and computational 

thinking. Pedagogies: An International Journal, 11(3), 218–234. 

https://doi.org/10.1080/1554480X.2016.1182437 

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. 

https://doi.org/10.1145/1118178.1118215 

Wing, J. M. (2011). Research notebook: Computational thinking - what and why? The Link. 

http://www.cs.cmu.edu/sites/default/files/11-399_The_Link_Newsletter-3.pdf 

Wu, S. Y., & Su, Y. S. (2021). Visual programming environments and computational thinking performance of 

fifth- and sixth-grade students. Journal of Educational Computing Research, 2. 

https://doi.org/10.1177/0735633120988807 

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to 

embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565–568. 

https://doi.org/10.1007/s11528-016-0087-7 



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 47 

Yağcı, M. (2018). A study on computational thinking and high school students' computational thinking skill 

levels. International Online Journal of Educational Sciences, 10(2), 81–96. 

https://doi.org/10.15345/iojes.2018.02.006 

Yildiz Durak, H. (2020). The effects of using different tools in programming teaching of secondary school 

students on engagement, computational thinking and reflective thinking skills for problem solving. 

Technology, Knowledge and Learning, 25(1), 179–195. https://doi.org/10.1007/s10758-018-9391-y 

Yünkül, E., Durak, G., Çankaya, S., & Abidin, Z. (2017). Scratch yazılımının öğrencilerin bilgisayarca düşünme 

becerilerine etkisi [The effects of Scratch software on students' computational thinking skills]. Necatibey 

Faculty of Education Electronic Journal of Science and Mathematics Education, 11(2), 502–517. 

Zhang, LC, & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. 

Computers and Education, 141. https://doi.org/10.1016/j.compedu.2019.103607 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computer Science Education in Schools, August 2021, Vol. 5, No. 1 
ISSN 2513-8359 

 48 

 

Use Hopscotch to Develop Positive Attitudes Toward Programming 

for Elementary School Students  

 

Jiahui Wang 

 

Kent State University 

 

DOI: 10.21585/ijcses.v5i1.122 

 

 

Abstract 

With the advancement in technology and the emphasis on computer science education, there has been a strong 

push for more widespread programming instruction at K-12 and higher education levels. Existing research has 

mostly focused on students at the secondary and post-secondary levels. Not much research has involved students 

at the elementary school age, which has been considered a critical age to cultivate an interest in programming. 

The current study aimed to investigate the effects of a block-based programming interface (e.g., Hopscotch) on 

elementary school students’ attitudes toward programming. In this study, eighteen elementary school students in 

4th -5th grades participated in a programming curriculum for about seven weeks in the US. A survey on attitudes 

toward programming was distributed before and after the curriculum, to explore the change in attitudes toward 

programming. Students’ views about the block-based programming interface (e.g., Hopscotch) were also 

examined after the curricular activities. Students’ activities in lessons and artifacts from the culminating project 

were observed. The findings indicated that elementary school students had positive views about programming in 

the block-based programming interface. Also, the block-based programming activities contributed to more 

positive attitudes toward programming. Implications and limitations of the study were discussed.   

 

Keywords: Computer science, block-based programming, elementary school students, attitudes toward 

programming, Hopscotch 

 

1. Introduction 

1.1 Computer Science Education 

United States has an increasing demand for STEM workers than at any time in history, and teaching computer 

science to students is essential for recruiting STEM workers (Guzdial & Morrison, 2016). However, existing 

findings indicated that K-12 educators in the United States did not attach enough importance to computer science 

education (Google Gallup, 2015). Many colleges and universities have also reported declines in enrollment in 

computer science related courses and majors (Bowman, 2018). As a result, United States has been confronted 

with a pronounced lack of talents in computer science related professions (Seehorn et al., 2011). The shortage is 

especially pronounced among females (Grover & Pea, 2013) and non-Asian minorities (Banning & Folkestad, 

2012).  

 

1.2 Benefits of Programming Learning 

Programming learning has been found to be beneficial to students. According to Wing (2006), the most 

important skill students can acquire from learning computer science is computational thinking, which refers to 

the use of abstract thinking to seek a solution to a problem. More specifically, computational thinking is defined 

as “the thought process involved in formulating problems and their solutions so that the solutions are represented 
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in a form that can be effectively carried out by an information-processing agent” (Wing, 2011, p. 20). 

Computational thinking has been theorized as a multi-dimensional construct, which encompasses computational 

concepts, computational practices, and computational perspectives (Brennan & Resnick, 2012). Wing also 

emphasized the important role computational thinking plays in learning of all subject domains, as she said, “to 

reading, writing, and arithmetic, we should add computational thinking to every child’s analytical ability” 

(Wing, 2006, p. 33).  

In addition to facilitating the development of computational thinking, previous work has also identified some 

positive effects brought by computational way of thinking, which includes promoting divergent thinking and 

metacognitive skills (Clements & Gullo, 1984), critical thinking (Clements, & Gullo, 1984; Liao & Bright, 

1991), as well as enhancing spatial relations and problem-solving abilities (Fessaki, Gouli, & Mavroudi, 2013; 

Miller, Kelly, & Kelly, 1988). 

 

1.3 Block-Based Programming Environments  

Despite the increasing importance of programming and the benefits of programming learning, computer science 

education has faced certain challenges, indicated by previous studies (Denner, Werner, & Ortiz, 2012; Robins, 

Rountree, & Rountree, 2003). Most importantly, programming is a complex mental process and a challenging 

task (Law, Lee, & Yu, 2010). The conventional text-based environments could burden the learners with syntax 

and cause frustrations. The learners could lose interest in programming very quickly in these text-based 

programming environments. To overcome these barriers, various efforts have been made to develop tools and 

activities to popularize computer science education and engage students in programming activities within K-12 

and higher education contexts (Lye & Koh, 2014). With the advancements in learning technologies and their 

widespread applications in students’ learning, several block-based programming interfaces have been designed 

and introduced to teachers and students to support programming learning at various education levels (Amanullah 

& Bell, 2020; Denner, Werner, & Ortiz, 2012; Leidl et al., 2017). These block-based interfaces allow the design 

of programming logics using children-friendly drag-and-drop of blocks. Compared to text-based programming, 

block-based programming interfaces are useful in reducing the abstractness of syntax and the complexity of 

programming. They could alleviate frustrations associated with writing abstract syntax and debugging syntax. 

These programming environments could help novice programmers focus better on the core aspects of 

programming, that is, the logical thinking process. These environments would allow learners to see how the 

commands work immediately and detect errors much more easily (Lye & Koh, 2014). Often, the block-based 

programming interfaces adopt cartoon characters that appeal to the young learners and attract them to construct 

animations, games, or digital stories relevant to their interests and passions.    

Regarding the effects of block-based programming compared to text-based programming, a recent meta-analysis 

on this topic (Xu et al., 2019) compared block-based programming environments with text-based environments 

with respect to their impacts on students’ cognitive and affective outcomes. With most of the studies examined 

focusing on secondary education and higher education, the meta-analysis revealed a small effect size favoring 

block-based programming interfaces on cognitive outcomes; while for affective outcomes, the analysis only 

identified a trivial effect size. Moreover, the meta-analytic study revealed a significant effect size for elementary 

school, but only one study focused on the elementary school-age population. 

The block-based programming interfaces include but are not limited to Hopscotch, Alice, Scratch, and 

Minecraft. It has been suggested that students became less burdened by the syntax of programming and became 

more motivated about programming as exposed to a block-based programming environment named Scratch 

(Kaucic & Asic, 2011). Block-based programming tools have become an essential component of computer 

science curricula for high school and university classrooms. Empirical evidence has suggested these block-based 

programming environments have been proven successful at the secondary level (Burke & Kafai, 2012; Campe et 

al., 2020; Grover, Pea, & Cooper, 2015; Gunbatar & Karalar, 2018; Meerbaum-Salant, Armoni, & Ben-Ari, 

2013; Price & Barnes, 2015) and in higher education (Cetin, 2016; Korkmaz, 2016; Yukselturk & Altiok, 2017). 

For example, in the study conducted by Burke et al. (2012), researchers explored the effect of Scratch on 

enhancing middle school students’ programming skills. The findings suggested the middle school students were 

able to master basic programming concepts (e.g., loops, events) to create digital stories. Similarly, another study 

(Meerbaum-Salant, Armoni, & Ben-Ari, 2013) introduced middle school students to Scratch and the students 

were found to be able to acquire some important programming concepts, despite having troubles learning some 

concepts such as repeated execution and variables. Furthermore, Grover and colleagues (2015) introduced 

middle school students to block-based programming in an introductory programming course. The results 
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revealed that students achieved significant learning gains in algorithmic thinking skills, and they were also able 

to transfer the knowledge from the block-based programming activities to a text-based programming context. 

Another study that involved pre-service teachers in a university (Yukselturk & Altiok, 2017) reported that a 

block-based programming environment (e.g., Scratch) was effective in alleviating negative attitudes such as low 

self-efficacy among pre-service teachers who came from non-CS backgrounds. Taken together, these studies 

suggested that exposing learners to block-based programming would be effective in helping young learners 

acquire basic programing concepts that could be transferrable to text-based programing contexts. It is also 

reasonable to speculate that the block-based programming tools would be effective in prompting more positive 

attitudes toward programming among the young learners, due to the fact that the drag-and-drop interface would 

engage the learners in the logical thinking process while preventing the frustration associated with writing 

syntax. 

 

1.4 Programming Learning at an Early Age 

Developing positive attitudes and stimulating interests in programming at an early age is essential for broadening 

participation in computer science career (Hainey et al., 2019). Thus, more work focusing on introducing 

programming at earlier education levels are needed to identify effective approaches and curriculum to facilitate 

programming education at a young age.  

Literature review revealed that the majority of existing research efforts have primarily focused on the contexts of 

secondary education and higher education, and not so much research has been undertaken on programming 

education at early age. Among these efforts for young learners, Bers and her colleagues’ work has focused on 

integrating programming in the early childhood classroom (e.g., Bers, 2019, 2020). For example, programming 

robots have been adopted to support early learning of programming (Kazakoff et al., 2013; Strawhacker & Bers, 

2015; Sullivan & Bers, 2013). In one study, Kazakoff and colleagues (2013) found that early learners’ 

sequencing skills could be improved after taking part in a workshop involving the use of programming robots. 

Moreover, research has been conducted to examine the use of a block-based programming environment - 

ScratchJr among learners in early childhood (Flannery et al., 2013; Strawhacker & Bers, 2019; Sullivan & Bers, 

2019). Specifically, it was suggested that ScratchJr was an effective tool in that the young students (Grade K-2) 

acquired the foundational programming concepts (Strawhacker & Bers, 2019). 

In recent years, growing attention has been given to integrating programming instruction in elementary school 

(Allsop, 2019; Bell, Duncan, et al., 2016; Bell, Witten, et al., 2016; Duncan et al., 2017). For example, Hainey 

and colleagues (2019) utilized a novel approach called games-based construction learning (GBCL) to teach 

programming concepts in upper elementary school. Their findings indicated that the games-based construction 

learning (GBCL) approach was an effective approach to teach programming concepts in upper elementary 

school. The elementary school students were able to learn programming concepts effectively. Additionally, other 

work has focused on methods to evaluate the Computational Thinking (CT) process in an elementary school 

classroom (Allsop, 2019) and measure students’ understanding of computer science concepts (Denner, Werner, 

& Ortiz, 2012). 

With existing evidence showing the effectiveness of block-based programming among students in secondary 

schools and universities, as well as limited evidence in early childhood education, it is reasonable to expect these 

block-based interfaces could also benefit elementary school students by involving less complicated programming 

tasks. It is safe to postulate that block-based programming environments would be useful in stimulating 

elementary school students’ interest, familiarizing them with introductory programming concepts, and eventually 

building a foundation for text-based programming. In fact, a recent study (Chen et al., 2019) provided some 

evidence for this assumption. The researchers examined the relationship between undergraduate students’ final 

grades in introductory computer science courses and their very first programming languages before adolescence. 

The findings revealed that those who received higher final grades in CS courses had their initial exposure to 

programming in graphical language rather than textual, in or before early adolescent years. The findings 

suggested graphical language should be adopted for young learners’ initial exposure to programming, if 

programming is to be taught before early adolescence.  

A recent meta-analysis, however, indicated that the effects of block-based programming among elementary 

school students were not adequately studied (Xu et al., 2019). Only a few empirical studies have focused on this 

population with specific attention given to the cognitive outcomes of block-based programming environments, 

but findings on the cognitive effects were mixed. For example, adopting a pretest and posttest design, Lai & 

Yang (2011) examined if block-based programming (e.g., Scratch) would have a positive effect on elementary 
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school students’ problem-solving skills and the findings indicated block-based programming activities improved 

students’ problem-solving abilities significantly. On the contrary, Kalelioglu & Gülbahar (2014) failed to 

replicate the positive effects of block-based programming on problem-solving abilities. Besides examining the 

influence on problem-solving skills, Sáez-López, Román-González, & Vázquez-Cano (2016) studied the impact 

of block-based programming on computational thinking and computational practices, and their findings 

suggested significant improvements in these two areas.  

Additionally, the study conducted by Baser (2013) suggested a positive relationship between students’ attitudes 

toward programming and their achievements in programming. It also needs to be pointed out that one of the most 

significant obstacles in computer science education is the negative attitudes towards programming among 

students (Bishop-Clark, Courte, & Howard, 2006; Yukselturk & Altiok, 2017). If students could develop early 

interests in and positive attitudes toward programming, it is more likely they would pursue a major in computer 

science related disciplines, leading to a career in computer science later on. Thus, it is important to cultivate 

positive attitudes toward programming, especially at an early age. However, the effects of block-based 

programming on elementary school students’ affective outcomes are not fully understood, either (Xu et al., 

2019). Empirically, Duncan & Bell (2015) implemented a programming course for elementary school students 

aged 11-12. The researchers surveyed the participants to see if the programming course changed their attitudes to 

computing as career. It was pointed out the study did not measure learners’ attitudes prior to the programming 

course. As all the tests were administered after the course, it was not possible to identify the improvement in 

attitudes toward programming. More empirical work following a pretest and posttest design is needed to 

examine the effects of block-based programming on learners’ attitudes, especially at the elementary level. Thus, 

the current study aimed to close the gap in the existing literature by providing data to illustrate the effects of 

block-based programming on elementary school students’ attitudes toward programming. 

 

1.5 Current Study   

For teaching programming in elementary classrooms, many tools and resources are available (Duncan, Bell, & 

Tanimoto, 2014). For example, ScratchJr was developed as an introductory programming environment for young 

learners aged 5-7, where learners could create a program/story by sequencing different types of programming 

blocks (e.g., triggering blocks, motion blocks, looks blocks, sound blocks, control blocks, and end blocks, Leidl 

et al., 2017). In contrast, Hopscotch was designed to target ages 10-15 and was considered as an age-appropriate 

tool for teaching programming concepts such as loops, randomization, and conditionals to these elementary 

school students who participated in the current study. Hopscotch was selected also due to its ease of use and 

compatibility with iPad. Hopscotch, as a typical block-oriented interface, adopts a drag-and-drop graphical 

programming environment (see a screenshot in Figure 1). Learners don’t need to write complicated syntax, and 

instead, they could construct a programming work (e.g., animation, game, digital stories, etc.) by building a 

number of blocks in the interface. Hopscotch could introduce novice programmers to fundamental programming 

concepts such as loops, randomization, and conditional, just to name a few. The current study explored the 

effects of block-based programming (e.g., Hopscotch) for developing elementary school students’ positive 

attitudes toward programming by adopting a pretest and posttest design.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A screenshot of the Hopscotch interface. 
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The study was designed to address the following two research questions:  

RQ1: How does block-based programming experience in Hopscotch influence elementary school students’ 

attitudes toward programming?  

RQ2: How do the elementary school students view block-based programming in Hopscotch? 

 

2. Method 

2.1 Context & Participants  

The study was situated and carried out in a weekend school in the United States. Eighteen elementary school 

students in grades 4-5 (13 males and 5 females) who had no prior experience in programming participated in the 

curricular activities. Informed consents were obtained from parents and students. The curriculum comprised 

seven 1-hour lessons and presented an introduction to elementary programming for this group of students. The 

curriculum began with an introduction to the field of computer science, which included topics such as careers in 

computer science, solving problems with computer science, as well as applications of computer science in daily 

life. The Hopscotch interface was also briefly introduced in the first lesson. Lesson 2 through 6 introduced the 

students to basic programming concepts such as variables, loops, randomization, and conditionals. Students were 

first instructed how these concepts could be used in daily life situations to solve real-world problems. The 

programming instruction was then provided to demonstrate examples and model the process of implementing the 

commands in the Hopscotch interface. The iPad used by the instructor was projected to the whole classroom to 

demonstrate the process in the Hopscotch interface. Figure 2 presents an example of how a loop could be 

accomplished in the Hopscotch interface. Then the students were instructed to exercise the commands and 

implemented a similar (but not exactly the same) program that incorporated the concepts in the Hopscotch 

interface on their individual iPads. During the process, the instructor circled around the room and provided 

scaffolding and feedback for the students as they worked on their own individual programs in Hopscotch. The 

instructor provided hints and showed how she might approach executing certain commands, instead of giving a 

direct answer to the problem. The final lesson challenged the elementary school students to self-design a 

program that incorporated the programming concepts (e.g., variables, loops, randomization, and conditionals) 

they had learned throughout the first six lessons of the curriculum. For the final project, the students were 

expected to test and revise the commands to ensure the program could run properly as intended. The final work 

required the students to apply the previously learned programming concepts in a new context. Each student 

shared their finished work at the end.  

 

Figure 2. An example of a loop in block-based programming (e.g., Hopscotch). 
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2.2 Data Collection and Measures 

In order to understand how block-based programming (e.g., Hopscotch) influences elementary school students’ 

attitudes toward programming, multiple data sources were collected. First, the study adopted a within-subjects 

pretest and posttest design. A survey was distributed to the students before the class, which included four Likert-

scale questions (see Table 1) that were adapted from a previously validated scale on attitudes toward computer 

science (Hoegh & Moskal, 2009). The survey was readministered to the participants as a posttest after the 

learning experience in Hopscotch. While the learners responded to the statements, the researcher circled around 

the room and provided clarifications as needed. In fact, no student raised any questions about the statements. The 

reliability for the pretest is Cronbach’s Alpha α = .645, and the reliability for the posttest is α =.762. On the 

posttest, students also responded to an additional question, “Programming in Hopscotch is a positive experience 

for me,” on a 5-point Likert scale from strongly disagree to strongly agree. They were also requested to provide 

more explanations for their selections. Students’ activities throughout the lessons and their artifacts created in the 

Hopscotch interface were observed. 

 

3. Results 

3.1 RQ1: How does block-based programming in Hopscotch influence elementary school students’ attitudes 

toward programming? 

To decide the appropriate statistical test to examine if there was a significant difference between the pretest and 

posttest responses to the four statements that gauged students’ attitudes toward programming, data were checked 

for normality using the Shapiro-Wilk test. The assumption of normal distribution was rejected, which indicated 

the need to use Wilcoxon signed-rank tests to conduct the analyses. Table 1 presents the descriptive statistics for 

the level of agreement with each individual statement. The results indicated a significant increase in agreement 

with the statement after participating in the programming curricular activities. Specifically, for “I will take more 

programming courses and learn more about programming in future”, participants agreed more with the statement 

after the programming experience, Z = 3.755, p = .000. For “I hope that my future career will involve 

programming”, the results showed a statistically significant difference between pretest and posttest, Z = 3.906, p 

= .000. For “Having background knowledge and understanding of computer science is valuable in daily life”, 

there was a significant increase in agreement with the statement after the curricular activities, Z = 2.887, p = 

.004. For “The challenge of solving problems using computer science appeals to me”, participants had a 

significantly higher level of agreement with the statement on the posttest than on the pretest, Z = 3.317, p = .001. 

For all the statements, participants’ levels of agreement with the statements significantly increased from the 

pretest to the posttest. This result may show that Hopscotch-based programming activities led to more positive 

attitudes toward programming among elementary school students. Overall, these findings suggested that block-

based programming (e.g., Hopscotch) was helpful in getting elementary school students interested in 

programming and motivated to learn more about computer science in future.  

 

Table 1. Descriptive Statistics for the level of agreement with the statements 

 Before 

(n = 18) 

After 

(n = 18) 

Please circle the number below that indicates how 

much you agree or disagree with each statement: 

(1) strongly disagree, (2) disagree, (3) neither 

agree nor disagree, (4) agree, (5) strongly agree.    

M SD M SD 

S1: I will take more programming courses and 

learn more about programming in future.   

2.94 0.87 4.00 0.49 

S2: I hope that my future career will involve 

programming.  

3.11 0.47 4.39 0.61 
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S3: Having background knowledge and 

understanding of computer science is valuable in 

daily life. 

3.44 0.51 4.00 0.59 

S4: The challenge of solving problems using 

computer science appeals to me. 

3.00 0.69 3.61 0.98 

 

3.2 RQ2: How do the elementary school students view block-based programming in Hopscotch? 

The results demonstrated that elementary school students’ views about block-based programming in Hopscotch 

were positive after participating in the Hopscotch-based programming curriculum. As students were asked their 

level of agreement with the statement “Programming in Hopscotch is a positive experience for me”, 12 strongly 

agree with the statement, and 6 agreed with the statement. One participant wrote, “I really enjoyed the app; I 

would like to learn more about programming.” It was also mentioned by two participants, “Hopscotch is easy to 

use.” Another participant expressed her appreciation of the app by noting, “I like the way how the app works; it 

allows me to see how my codes work right away.” Other comments from the participants included the following:  

 

• Programming is fun.  

• I like the app.   

• Programming is interesting.  

• I had lots of fun with programming.  

• I like the idea of building animations with my favorite characters.  

 

Overall, the elementary school students felt positive about and engaged in using Hopscotch to practice 

programming, and the researcher’s in-class observations also corroborated this finding. Although the curriculum 

only involved some basic programming concepts, students learned how to apply abstract thinking to solve a 

problem (e.g., implement a simple program in Hopscotch). It can be argued that Hopscotch-based programming 

instruction helped elementary school students comprehend the fundamental programming concepts, which can 

be gleaned from their final programming products. The final projects students created demonstrated they had 

mastered the previously learned knowledge and skills throughout the curricular activities (see an example of a 

student’s final project codes in Figure 3). The findings suggested block-based programming activities in 

Hopscotch were beneficial in assisting the development of programming skills for elementary school students. 

 

Figure 3. An example of students’ final project in Hopscotch. 
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4. Discussion 

The study contributed to the effort to expand programming education at the elementary level. The study sought 

to enhance our understanding of how block-based programming influences elementary school students’ attitudes 

towards programming. The findings revealed block-based programming was effective in cultivating positive 

attitudes toward programming among elementary school students. It was observed that the students were able to 

make sense of the programing concepts and were able to apply the concepts to the culminating project. The 

present results contributed to a growing body of literature seeking to understand the effects of block-based 

programming at various age levels. 

Results further showed participants’ views about the block-based programming environment were positive, as 

evidenced by their responses to the statement “Programming in Hopscotch is a positive experience for me” and 

the explanations they provided for their selections. Generally, the block-based programming environment was 

well received by the students, for example, one comment was “I like the app”. Participants also thought 

programming in Hopscotch was a fun experience. For example, three participants respectively commented, 

“programing is fun”, “Programming is interesting”, and “I had lots of fun with programming”. Another 

participant expressed similar feeling in the response, “I really enjoyed the app”. The fun in the programming 

experience could possibly be attributed to the fact that the programming interface provided characters that appeal 

to the young participants, and they can build programs that incorporate these characters. For example, one 

participant provided support for this speculation and mentioned that “I like the idea of building animations with 

my favorite characters”. Another factor that possibly contributed to the positive views about the Hopscotch 

programing environment is that the Hopscotch app is easy to use and allows the learners to test the program 

immediately and fix errors (i.e., debugging and problem solving) as needed. For example, one participant 

commented, “I like the way how the app works; it allows me to see how my codes work right away”. Based on 

the observation, the students enjoyed the process of building up an animation/program through the app, and a 

high level of interest and engagement was observed throughout the curricular activities. 

This finding is in line with two studies that focused on a different block-based programming environment called 

Scratch. For example, Sáez-López and colleagues (2016) involved elementary school students in 5th-6th grades in 

block-based programming activities. Based on students’ responses to the questionnaire, students demonstrated 

positive attitudes toward the block-based programming interface. More recently, Mladenović and colleagues 

(2017) compared block-based programming (e.g., Scratch) and text-based programming (e.g., Python) for game-

based programming among 5th-grade elementary school students. By surveying learners’ attitudes toward the 

programming interfaces after the activities, learners displayed more positive attitudes toward programming to 

Scratch compared to Python. This observation provided more support for learners’ positive attitudes toward the 

block-based programming activities. 

The study yielded several practical implications. The current study demonstrated the possibility of developing 

positive attitudes toward programming by exposing elementary school students to a programming curriculum 

involving the use of the Hopscotch block-based programming environment. Teachers and parents of elementary 

school students should take that into consideration.  

Hopscotch-based programming instruction represented the very first exposure to computer programming among 

the learners who participated in the current study. The results of the study indicated Hopscotch was helpful in 

developing an early interest in programming among the young learners. The findings provided important 

implications for computer science educators in the elementary school setting. Next, the study revealed that 

elementary school students demonstrated interest in using Hopscotch for programming, but teachers’ guidance is 

also important in identifying meaningful curricular activities that are educationally valuable in the Hopscotch 

interface.   

The current study also benefited a broader population of elementary school students and teachers, including 

students from traditionally underrepresented groups in computer science. The curriculum also provided 

implications for the design of an effective curriculum to arouse children’s early interest in programming and 

develop programming skills, which will help broaden participation in computer science careers in the long-term. 

The findings of the present study should be interpreted in light of several limitations, and future work should 

seek to address these limitations.  

One limitation is that the study adopted a small sample size, and it needs to be acknowledged that the present 

findings may be limited in generalizability. Future studies could benefit from adopting larger sample sizes to 
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explore the effects of block-based programming activities on attitudes toward programming among young 

learners.  

Second, the study investigated the effects of Hopscotch-based programming instruction on attitudes toward 

programming. A future study should continue to examine the effects of block-based programming instruction on 

learners’ attitudes toward programming by adopting a more comprehensive scale to measure learners’ attitudes.  

Another limitation of the study was that the attitude survey was conducted right after the curricular activities. 

Future research is recommended to adopt a longitudinal design and also examine the long-term effects of 

programming curriculum on learners’ attitudes toward programming in the long run. 

Previous studies have shown that boys tend to have more positive attitudes toward programming as compared to 

girls (Baser, 2013; Rubio et al., 2015). These gender differences in students’ attitudes towards programming 

could possibly influence their interests in pursuing computer science majors and eventually undertake careers 

involving computer science. Future studies could focus on exploring approaches to bridge the gender-based 

differences in learners’ attitudes toward programming.  

It is also worth conducting more work to understand the processes of programming learning. For example, a 

future study could use screen recording and think-aloud protocols (Ericsson & Simon, 1998) to study the 

processes of programming among elementary school students. The study could examine how novice 

programmers build and comprehend the block-based codes, which can be used to then improve the learning 

processes as well as the instructional approaches that target novice learners.  

Finally, future work is also recommended to examine ways to integrate programming instruction into elementary 

school STEM learning by infusing computational thinking into the project-based learning of STEM contents.      
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