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Abstract 
 
The underrepresentation of certain groups in computing has led to increasing efforts to develop computing 
curricula that is responsive and relevant to a more diverse group of learners. The current paper used a Quick 
Scoping Review methodology to identify research that has implemented and evaluated culturally responsive and 
relevant K-12 computing curricula, and to understand how they have been designed, the methods used for 
evaluation, and the factors affecting their success. In total, 12 papers were included in the review, and all were 
from a United States setting. Successes included changing learners’ attitudes towards computing and increased 
learning gains. Key factors in the implementation of the curricula were teacher confidence and understanding of 
the socio-political context of computing, opportunities provided for collaboration and sharing knowledge and 
opinions, and allowing time for difficult discussions without oversimplifying the issues. The review identifies 
important lessons to be learned for educators around the world who are aiming to increase diversity in 
representation in computing in their schools. 
 
Keywords: culturally relevant, culturally responsive computing, equity, curriculum 
 
 
 
1. Introduction 
 
Recently, increasing attention has been paid to the cultural relevance of computing curricula. In this paper, we 
aim to highlight key areas of research and practice and identify factors influencing the success of interventions 
focused on underrepresented ethnic and cultural groups in computing. We will begin by providing an overview 
of key theories underpinning the work on cultural responsiveness in teaching. We will then review research 
focusing on the design and evaluation of computing resources that have culture, equity, and social justice as their 
focus. Finally, we will consider the implications of the research for the future development of computing 
curricula. 
 
1.1 Theoretical Background 
 
1.1.1 Cultural capital and Critical Race Theory 
 
Cultural capital is an important, and often neglected, consideration when developing curricula or resources in 
education. The term refers to internal aspects of individuals that they share with members of their families and 
their communities, such as language, knowledge, and belief systems, but also to external products of culture, 
such as artistic expression (Bourdieu, 1986). Yosso (2005) has argued that the culture of dominant groups is that 
which is most valued in society and becomes the ‘norm’ by which other cultures or groups are judged.  
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According to Yosso (2005; p.75), although educational institutions may aim to provide neutral settings for 
learning, in reality they tend to promote standards and topics valued by the dominant groups in society, often 
resulting in “deficit thinking”. This results in students from non-dominant, or minority, groups being viewed as 
problems to be fixed, and who need to learn the dominant group’s cultures and ways in order to succeed in life 
(Cabrera, 2019). Several authors have highlighted how Critical Race Theory can help to identify, examine and 
challenge these deficit models, drawing from law, history and social theory to bring attention to how race and 
racism can implicitly bias and impact educational practices (e.g., Ladson-Billings & Tate, 1995; Lynn & Dixson, 
2013; Yosso, 2005). 
 
For example, having a computer at home allows a young person to develop computing skills and vocabulary, 
which is cultural capital that is valued in the school environment. Other children may have developed skills 
which are of great value in their culture but are not those that are valued by the dominant groups (Yosso, 2005). 
Thus, children from minority backgrounds can often be labelled sub-standard or deficient in certain ‘basic’ skills 
that are based on norms of middle-class white children which have been assumed to be applicable to children 
from all backgrounds (Lachney, 2017). Understanding these implicit assumptions and being open to identifying 
and supporting minority groups’ cultural capital is of great importance in the education system. One step towards 
this goal is through the development of more culturally relevant and accessible teaching approaches and 
resources for young people from different backgrounds, on which we will focus for the rest of this paper. 
 
1.1.2 Developing a theory addressing culture and equity in computing education 
 
Theories of equitable teaching and learning practices which focus on cultural relevance and responsiveness have 
developed over several decades, leading to frameworks such as Culturally Relevant Pedagogy (Ladson-Billings, 
1995), Culturally Responsive Teaching (Gay, 2000), and Culturally Sustaining Pedagogy (Paris, 2012; see 
Madkins et al., 2020, for an overview of these approaches). The key elements of these frameworks all focus on 
how teachers understand, respond to and use the cultural diversity within their communities to help all students 
achieve, build relationships, celebrate and sustain their cultures, and understand and challenge inequitable 
practices and belief systems that marginalise minority groups. 
 
Building on these frameworks in education, Scott and colleagues (2013, 2015) developed Culturally Responsive 
Computing (CRC) theory to focus on equitable teaching approaches in computing specifically. Through an 
extracurricular club for girls from minority groups (COMPUGIRLS) that was held over a period of two years, 
the authors promoted three main tenets of an equitable teaching approach: asset building, reflection, and 
connectedness. To address these tenets, the teacher/mentors were encouraged to identify and integrate the girls’ 
technological and subject area knowledge into the curriculum, to support the girls in reflecting on their own 
knowledge and how it had developed, and to explicitly make links with their peers and communities, and wider 
cultural/socio-political issues (Scott & White, 2013). After implementing the COMPUGIRLS program with a 
range of different groups, Scott et al. (2015) revised the theory to incorporate more nuance, resulting in the 
following five principles: 
 

1) All students are capable of digital innovation 
2) The learning context supports transformational use of technology 
3) Learning about one’s self along various intersecting sociocultural lines allows for technical innovation 
4) Technology should be a vehicle by which students reflect and demonstrate understanding of their 

intersectional identities 
5) Barometers for technological success should consider who creates, for whom, and to what ends, rather 

than who endures socially and culturally irrelevant curriculum. 
 

Scott et al. (2015; pp. 420-421) 
 
These theoretical principles move away from a deficit model of thinking, in which the focus of computing 
teaching for minority groups is decontextualised ‘basic’ skills that they are seen to lack, and allows students to 
express their identities and their culture through technology in a way that is meaningful to them and their 
communities (Scott et al., 2015). They provide authentic learning experiences, in which students experience 
teaching and learning that is both interesting and relevant to them (“personal authenticity”) and which reflects 
ways of working within computer science that will be of use in their future careers (“professional authenticity”; 
Means & Stephens, 2021, pp.19-20).  
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The theory also promotes a critical engagement with technology and social justice issues to allow students to 
innovate and create technological solutions to address issues that affect them (Madkins et al., 2020). It allows 
students who have a focus on communal goals (i.e., those that involve working with, or for the good of, others; 
Brinkman & Diekman, 2016) to identify computing as a means of addressing these goals and, therefore, to feel a 
sense of belonging within the subject. Given that students from minority groups may have a greater focus on 
communal goals than those from dominant groups (Lewis et al., 2019), it is of great importance that computing 
as a discipline is seen to align with these goals in order to encourage more diversity in those choosing the subject 
and career.  
 
Although based on implementation in an extracurricular setting, the COMPUGIRLS program and CRC theory 
have important applications for teaching computing in both formal and non-formal learning environments. The 
next section provides an overview of a range of curricula that have been developed for use in both environments 
that are focused on culture and equity, and that incorporate many of the principles of CRC theory. 
 
1.2 Teaching computing through the lens of culture and equity 
 
Over the last 20 years, researchers and practitioners have increasingly aimed to develop computing curricula that 
are culturally responsive and relevant. Designing equitable and authentic learning experiences in computing 
requires a conscious effort to take into account characteristics of learners and their social environments, and to 
deal with topics that are relevant to a wide range of students.  
 
Means and Stephens (2021) outline three key areas on which educators should focus when developing authentic 
computing experiences: the learners (understanding who they are and the experiences they bring to the 
computing classroom), the community (recognising and understanding the knowledge, opinions and experiences 
of both the local and the learning community, and building on the cultural wealth in these communities), and the 
activities (identifying both personally and professionally meaningful computing tasks, as well as considering 
meaningful learning outcomes and how they are valued).  
 
Madkins et al. (2020) describe three overlapping but separate equitable teaching practices in computing: 
promoting identity development by understanding the learners but also by allowing them to express themselves 
through computing; highlighting the personal and sociopolitical relevance of technology by situating technology 
ideas within their local community and wider sociopolitical context and allowing learners to address issues that 
are meaningful to them; and positioning learners as creative agents/change agents by empowering them to use 
technology to innovate and solve problems with personal relevance.  
 
Both sets of principles suggest that students should not only be given the opportunity to express their cultural 
knowledge and identities in computing tasks, but also to develop a sense of identity and belonging within 
computing as a discipline and a profession. This involves challenging stereotypes of who can be a computer 
scientist and what computing should be used to achieve in society, as well as understanding and addressing 
power relationships and biases within the community of learners. Learners should feel empowered to be creative 
and work with others to innovate and solve problems important to them, their communities, and wider society.  
 
1.3 The current paper 
 
The current paper aimed to identify key approaches to embedding culturally responsive and relevant pedagogy 
into computing curricula and to understand the design principles that were used in the development of the 
curricula. Specifically, we were interested in approaches that had been used in formal and non-formal learning 
spaces with K-12 students and had been evaluated in terms of student outcomes. We utilised a Quick Scoping 
Review (QSR) methodology (Collins et al., 2015) to allow us to synthesise the evidence available and provide an 
informed conclusion concerning the previous literature. Although less rigorous than a full systematic review or 
meta-analysis, the QSR method remains transparent and minimises bias while allowing the author to answer 
more open-ended questions about the evidence on a subject (Collins et al., 2015). For the current paper, we 
aimed to address the following questions: 
 

1) Which design principles have been embedded into the curricula to promote cultural relevance, equity 
and justice in computing? 

2) How has the success of the teaching approaches or curricula been evaluated? 
3) Which factors positively or negatively influence the success of the teaching approaches or curricula? 
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2. Methodology 
 
2.1 Initial search 
 
Our investigation of the literature took place between January and March 2021. We began by searching for a 
recent review paper on culturally relevant pedagogy in computing through Google Scholar, using the term 
“culturally relevant computing review”. This identified a narrative review conducted by Morales-Chicas et al. 
(2019) which included 22 papers from JSTOR Arts and Sciences, Web of Science, and ERIC databases on three 
key themes that had been identified in a previous scoping exercise, and which were used in the systematic 
literature search: culturally responsive computing, ethnocomputing, and Culturally Situated Design Tools. 
Ethnocomputing relies on the use of relevant cultural artifacts and symbols, as opposed to Western ones that 
pervade most computing curricula (Tedre et al., 2006). Culturally situated design tools (CSDTs) are developed to 
this end, producing visual programming media reflecting different cultural practices and artifacts, and co-
designed with the community for whom the practice or artifact is relevant (Eglash et al., 2006). The term ‘e-
textiles’ had also been added to the search terms as these teaching activities often include elements of culturally 
relevant pedagogy, although they do not specifically adopt a culturally responsive approach (Morales-Chicas et 
al., 2019). Papers were included in the review if they were written in English in peer-reviewed journals between 
1998-2018, and if they focused on K-12 education. 
 
2.2 Initial review  
 
We read the review paper by Morales-Chicas et al. (2019), along with the 22 papers included in the review. For 
our current purposes, we decided to focus on studies evaluating outcomes for K-12 students receiving culturally 
relevant and responsive curricula, in both formal and non-formal education settings. Evaluations included 
quantitative or qualitative measures of learning, attitudes, engagement, or other outcomes, and were gathered 
from both students and teachers/instructors. Papers must be written in English.  
 
From the 22 papers, two position and two review papers were excluded, along with one paper focused on teacher 
professional development, and four that did not specifically aim to take a culturally responsive approach. Seven 
more papers that described culturally relevant approaches without full evaluation were also excluded, resulting in 
a total of 6 studies remaining in the current paper from the original systematic review.  
 
 
2.3 Additional search, review, and analysis 
 
Since the review had covered literature up to 2018, we conducted an additional search for papers using the same 
search terms as the original review between 2018 and March 2021. We added the search term “Exploring 
Computer Science” to identify papers evaluating the school-based curriculum developed for high school students 
using culturally relevant and equity-focused approaches (Goode, 2010). We replaced the Web of Science 
database, to which we did not have access, with the ACM Digital Library. From JSTOR Arts and Sciences, we 
retrieved 8 additional papers across the original search terms, but none of them met the inclusion criteria. In 
ERIC, a further 9 papers were retrieved, with one paper meeting our inclusion criteria. ACM Digital Library 
produced three papers for inclusion from 86 results. Two additional papers from 94 potential results using the 
“Exploring Computer Science” search term were also found across the three databases.    
 
The final QSR therefore included 6 papers from the original systematic review by Morales-Chicas et al. (2019), 
and 6 additional papers published between 2018 and March 2021.  
 
3. Results 
 
The 12 studies emerging from the QSR are presented in Table 1 and are linked to key design principles 
recommended by Madkins et al. (2020) and Means and Stephens (2021).  
 
Table 1 
Studies evaluating culturally relevant and responsive computing curricula in formal and non-formal K-12 
settings 
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Author 
and Year 

Focus of curriculum Participants Key equitable / authentic 
design principles 

Reviewed by Morales-Chicas et al. (2019) 

CSDTs    

Eglash et 
al. (2011) 

6 days of lessons using websites 
for fractal design - standard vs. 
culturally situated design tools 
(CSDTs) 

40 10th Grade computing 
students (US) 

  
  
Identity development and 
expression 
  
Building on 
community/cultural 
knowledge 

Eglash et 
al. 
(2013) 

After school clubs over period of 
4 years using CSDTs  

81 Grade 1-6 students in 
after school club (US) 

Babbitt et 
al. 
(2015) 

3 days of lessons using websites 
for mathematical concepts in 
Ghanaian Adrinka symbols - 
standard vs. culturally situated 
design tools (CSDTs) 

19 7th-8th grade students 
(Ghana) 

Vernacular culture   

Scott & 
White 
(2013) 

After school/summer clubs over a 
2-year period focusing on asset 
building, reflections, and 
connectedness 

41 13–18-year-old girls 
from low income 
backgrounds (US) 

 
Identity development and 
expression 
  
Positioning students as 
creative agents/change agents 
 
Highlighting 
personal/sociopolitical 
relevance of technology and 
challenging biases 
  
Providing professionally 
authentic computing 
experiences 

DiSalvo 
et al. 
(2014) 

Out-of-school program 
incorporating video games testing 
and workshops on programming 

30 14–18-year-old male 
students (US) 

Ashcraft 
et al. 
(2017) 

3 out-of-school courses over 9 
months focusing on digital 
storytelling, designing and 
programming educational video 
games, and design and program 
projects in virtual worlds 

28 12–17-year-old girls 
from low income 
backgrounds (US) 

Additional studies of curricula with a culture/equity focus since 2018 

CSDTs 
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Davis et 
al. (2019) 

In-class lessons incorporating 
cultural art and designs into a 
standard Python programming 
unit of work, using CSDTs 

33 high school students 
(US) 

Identity development and 
expression 
  
Building on 
community/cultural 
knowledge 

Scratch curricula 

Franklin 
et al. 
(2020) 

In-class Scratch Encore 
curriculum over one year (pilot), 
representing three strands: 
multicultural, youth culture, and 
gaming.  

271 5th-8th Grade 
students (US) 

 
Identity development and 
expression 
 
 
Building on 
community/cultural 
knowledge 
 

 

Yang et 
al. (2021) 

11-week library-based club with 
Scratch-based curriculum, 
focusing on key computing 
concepts and practices, and 
culturally responsive pedagogy 

30 8–10-year-olds (US); 2 
case studies 

ECS curriculum 

McGee et 
al. (2018) 

In-class ECS curriculum over 1 
year, using inquiry-based 
approaches, culturally relevant 
and culturally responsive 
pedagogy 

906 high school students 
(US) 

 
 
Identity development and 
expression 
  
Building on 
community/cultural 
knowledge 
  
Positioning students as 
creative agents/change agents 
  
Highlighting personal/socio-
political relevance of 
technology and challenging 
biases 

Ryoo 
(2019) 

In-class ECS curriculum over 1 
year, using inquiry-based 
approaches, culturally relevant 
and culturally responsive 
pedagogy 

70 high school students 
(US) 

Qazi et 
al. (2020) 

In-class ECS curriculum over 1 
year, using inquiry-based 
approaches, culturally relevant 
and culturally responsive 
pedagogy 

398 high school students  

US = United States 
 
Beginning with the review by Morales-Chicas et al. (2019), the length of the curricula ranged from three days to 
two years, with the majority of courses being delivered outside of school or in elective programs and with 
relatively low numbers of young people. Three studies utilised CSDTs, with results indicating improvements in 
students’ attitudes towards computing/science (Eglash et al., 2011; Eglash et al., 2013), and/or in knowledge 
after lessons (Babbitt et al., 2015; Eglash et al., 2011), in comparison to groups not receiving the cultural 
curricula. Interestingly, Eglash et al. (2013) compared a heritage culture and a vernacular culture approach and 
reported a slight preference for vernacular culture amongst students. The authors point out that preferences and 
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interests are highly likely to change at different points in young people’s development, which suggests that using 
a range of different cultural touch points may therefore provide the best results. It is important to note that these 
quantitative evaluations of relatively short, focused interventions relied on very small sample sizes and further 
research will be required to better understand the impact of using CSDTs on a larger scale and in the longer term. 
Furthermore, more research is required to understand differences between formal and non-formal settings in 
terms of how these tools are integrated into the wider curriculum, how much time is allowed for their exploration 
and use, and their impact on computing-specific knowledge and skills. 
 
Some studies used a more vernacular culture approach, using video games and digital storytelling to engage 
young people from underrepresented groups in computing. The COMPUGIRLS program (Ashcraft et al., 2017; 
Scott & White, 2013) incorporates three courses: digital storytelling, designing educational video games using 
Scratch, and designing projects in virtual worlds. Over the course of the programs, the authors’ qualitative 
analyses reveal changes in the girls’ understanding of their own identities and their roles within the community 
through computing, as well as the development of key computing skills. DiSalvo and colleagues (2014) drew on 
the popularity of video games to engage African American male students in computing through a program in 
which students became games testers and participated in computing workshops. The program was considered 
successful in improving interest and confidence in computing amongst the students, with 65 percent choosing to 
study computer science after high school. The non-formal settings of these programs, along with the engaging 
content, seem to provide a platform for young people who are typically underrepresented in computing to 
explore different aspects of the subject and understand the relevance of it to their lives and future careers. Trying 
to incorporate these types of approaches into the formal education system can be more of a challenge, although 
recent studies (outlined below) are attempting to do so. 
  
For example, in the studies since 2018, Eglash and colleagues have continued to evaluate the use of CSDTs in 
formal settings (Davis et al., 2019). Curricula based around the Scratch programming environment have also 
been developed and tested in and outside of school (Franklin et al., 2020; Yang et al., 2021). Finally, studies 
evaluating the rollout of the Exploring Computer Science (ECS) curriculum in schools have recently been 
published (McGee et al., 2018; Ryoo, 2019; Qazi et al., 2020). We will discuss each of these sets of studies in 
turn. 
 
Davis et al. (2019) aimed to incorporate cultural computing into a standard Python programming course in 
schools and reported significant increases in students’ learning of computing concepts during this time. Content 
that had taken nine months to learn in the standard course was covered in only six months in the adapted course. 
However, there was very little change in attitudes towards computing or evidence of increased understanding of 
the relationships between culture and computing as a result of the adapted curriculum. This perhaps suggests that 
there needs to be a very careful balance between the cultural and computing content in a curriculum, especially 
in formal schooling, to have an effect on both learning and cultural awareness or identity. Teachers who are 
delivering the curriculum have to ensure that there are clear learning gains from an activity which can be 
evidenced through formal testing and may have less time available to promote exploration and discussion than 
researchers or instructors delivering the same content in non-formal settings. However, repeating the study 
across different schools, teachers and students will be important in understanding the interplay between these 
factors outside of the single class of high school students involved in this particular study. 
 
A greater focus on the computing content of the learning experience is clear in the two Scratch-based curricula 
designed for younger students in the studies by Yang et al. (2021) and Franklin et al. (2020). Yang et al. 
incorporated a culturally responsive computing element into a standard ‘Use-Modify-Create’ framework for 
teaching computing (Lee et al., 2011) in a non-formal setting. They highlighted opportunities in both the 
‘Modify’ and ‘Create’ stages to develop a sense of identity and belonging and to produce personally relevant and 
meaningful artifacts through computing. In-depth case studies of two participants in the 11-week program 
revealed indicators of increased belonging to the community of their computing club, as well as clear 
progression in their understanding and implementation of computing concepts. However, further research is 
required with a much larger sample and with a greater focus on cultural identity outside of computing to evaluate 
this program’s success.  
 
The Scratch Encore curriculum (Franklin et al., 2020), on the other hand, has been piloted with 271 5th-8th 
Grade students in a school environment over the course of a year. It consists of sequential modules covering 
intermediate computing concepts, and each module is offered across three different strands: Multicultural, Youth 
Culture, and Gaming (all of which cover the same computing content but with different themes). The strands 
draw on both heritage and vernacular culture, and educators can choose which is the most relevant for their 
learners. Like the previous study, it utilises the Use-Modify-Create framework, providing opportunities for 
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personalisation and expressing an individual’s identity through the projects that are created. The pilot evaluation 
revealed that teachers found the course engaging for their students and the difficulty level appropriate. 
Opportunities for incorporating culture and students’ own identities was demonstrated through the projects 
students created, and teachers’ feedback on the relevance of different lessons. Further research is required to 
assess the learning gains of students, as well as changes in their attitudes and confidence, using this course over 
time. Direct comparisons of the curriculum in formal and non-formal settings will also provide some insight into 
the impact of the purpose of the activities, and the role of the instructor and their instruction approaches, on 
student outcomes. 
 
Based entirely in formal education settings, three recent studies have evaluated the implementation of the ECS 
curriculum over five different states (McGee et al., 2018; Ryoo, 2019; Qazi et al., 2020). Student engagement 
and interest in CS were positively affected across all three studies, with Qazi et al. reporting students’ perceived 
improvement specifically in creativity, problem solving, critical thinking and collaboration. These improvements 
were related to how engaged students felt in the curriculum, including how autonomous they felt in solving real-
life problems. The importance of real-world problem-solving for student engagement was also evident in Ryoo’s 
qualitative analyses, along with being able to demystify CS practices and careers, and demonstrations of how 
students’ voices and perspectives were valued and could make a difference to others. As well as changes in 
attitudes and engagement in response to the ECS curriculum, McGee et al. revealed significant learning gains in 
computational thinking over the course of the year, irrespective of students’ gender and race. However, it is to be 
noted that both students’ end of course attitudes and the teachers’ years of teaching ECS were significant 
predictors of these learning gains.  
 
The impact of teachers’ years of experience may be due to increasing familiarity with the course content and 
their pedagogical and concept knowledge but is also likely to be related to their developing understanding of the 
equity-focused principles underlying the curriculum and their ease in discussing complex and sensitive issues 
around race, bias and systemic barriers (Goode, Ivey, Johnson, Ryoo, & Ong, 2020a; Goode, Johnson, & 
Sundstrom, 2020b). With additional years of experience, teachers also develop a better understanding of their 
own school and district in terms of local needs and relevant issues, as well as educational policies and resources 
available. Providing a strong professional development program for teachers and supporting them as they deliver 
the curriculum and navigate their specific educational contexts is vital for the success of culturally relevant and 
responsive computing in the classroom. Future research focused on teacher voice will also be of great 
importance to ensure that educators receive the full range of support they require to implement the curriculum. 
 
 
4. Discussion 
 
We used a Quick Scoping Review (QSR) method to investigate computing curricula that have been developed to 
be culturally relevant and responsive to a diverse group of learners. Specifically, we aimed to answer the 
following questions: 1) Which design principles have been embedded into the curricula to promote cultural 
relevance, equity and justice in computing? 2) How has the success of the teaching approaches or curricula been 
evaluated? 3) Which factors positively or negatively influence the success of the teaching approaches or 
curricula? We will begin by considering the first question, before turning to the issues of evaluating success. 
 
4.1 Design principles 
 
Across the 12 studies included in the QSR, the most common elements of the design were a) identity 
development and expression, and b) building on community or cultural knowledge. These elements are central to 
all culturally responsive teaching, allowing students to see themselves and their communities within computing 
and recognising and celebrating different types of knowledge and understanding (Madkins et al., 2020). In 
particular, the interventions focused on Culturally Situated Design Tools (CSDTs) emphasise these elements. 
 
From the earlier set of studies reviewed by Morales-Chicas et al. (2019), the out-of-school programs (Ashcraft et 
al., 2017; DiSalvo et al., 2014; Scott & White, 2013) tended to focus on more vernacular culture and provided 
more opportunities for professionally authentic computing experiences, aiming to improve the learners’ 
understanding of different careers and types of roles within computing. They also provided opportunities to 
identify and try to address issues that were meaningful to the learners and their communities, thus highlighting 
the relevance of computing and encouraging learners to become agents of change. From these studies, it could 
perhaps be inferred that non-formal learning spaces are more able to focus on these types of projects, given that 
they are less constrained by the curriculum and other pressures of teaching within the formal schooling system. 
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However, the later studies found through the QSR revealed that opportunities to highlight the personal and 
sociopolitical relevance of computing, to position learners as active agents of change, and to engage in open-
ended and problem-solving activities is indeed possible within a formal computing curriculum (McGee et al., 
2018; Ryoo, 2019; Qazi et al., 2020). The ECS curriculum incorporates these elements of culturally responsive 
teaching throughout its different units. This suggests that balancing the teaching of computing concepts and 
taking a culturally responsive approach can be done in the classroom but requires intentional and sensitive 
design. 
 
4.2 How are curricula evaluated, and which factors affect their success? 
 
Focusing on our second two questions, their interdependence means it is preferable to explore them together. 
The main outcomes measured across all 12 studies included in the QSR were related to student attitudes towards 
computing, with most studies using a survey measure or in-depth qualitative analyses to evaluate attitude change. 
Eglash et al. (2013) identified that a vernacular approach was relatively more popular with young people than the 
heritage approach, highlighting the importance of thinking about learners through an intersectional lens that 
takes into account a range of characteristics, and not focusing solely on heritage or ethnic background. DiSalvo 
et al. (2014) reported improved confidence in computing after their games testing workshops. One of the key 
factors in the changing attitudes of the young people was how they viewed participating as games testers as 
“cool” and that they were “paid to play” (p. 302), allowing them to present their enjoyment and interest in 
computing to their peers or families with pride rather than embarrassment. Thus, the people around the learners 
are also vital to the success of more vernacular approaches to teaching computing. 
 
The qualitative studies additionally explored themes of identity, feelings of belonging to computing as a 
discipline, and changes to learners’ understanding of computing concepts over time (Ashcraft et al., 2017; Ryoo, 
2019; Yang et al., 2021). Yang et al. identified the importance of collaborative work in increasing feelings of 
belonging and promoting shared skills and knowledge. Open discussions concerning sociocultural issues 
surrounding computing were also key to the success of the programs, both through the teachers’ willingness and 
competence to discuss these issues and the students’ feelings of comfort and trust to voice their own opinions 
(Ashcraft et al., 2017; Ryoo et al., 2019). Ashcraft et al. note that it takes time to develop the trusting 
relationships needed for these sorts of discussions, which suggests that opportunities should be embedded 
throughout a curriculum and not be presented as a one-off lesson or only early on in a course. This may seem to 
lend itself more to a non-formal setting which can take place over longer periods of time than students often 
receive for computing in schools. However, the Scratch Encore and ECS curricula demonstrate that careful 
planning and consideration can ensure that both computing content and opportunities for cultural responsiveness 
are incorporated over the course of a school year.  
 
Two studies used objective measures of learning gains, providing evidence that content was covered more 
quickly using the culturally responsive approach (Davis et al., 2019) and that learners improved their computing 
understanding and skills over the year of the ECS course (McGee et al., 2018). Both of these studies identified 
the importance of the teacher in implementing culturally responsive teaching: the quantitative analysis conducted 
by McGee et al. revealed that years of teaching computing was a key predictor in student learning gains, while 
Davis et al. discuss the reluctance of the teacher to engage with certain elements of the sociopolitical content of 
the curriculum and to allow learners to choose their own projects. This reluctance may have been associated with 
the lack of change in student attitudes towards computing, despite their increased speed of learning. Recent 
studies have highlighted how important professional development is within the ECS program in terms of 
fostering a critical approach to educational practices, computing pedagogy, and teachers’ own implicit biases 
(Goode et al., 2020a, 2020b). The teachers’ understanding of culturally responsive teaching, the acceptance of its 
principles, and their proficiency in implementing them in the classroom are therefore key factors in the success 
of a culturally responsive approach to teaching computing. However, it is also important to consider the contexts 
in which teachers are delivering the curriculum, including school and district policies concerning teaching, and 
the time and resources allocated to computing. Research considering these aspects of teacher constraints will be 
an important next step in understanding how best to deliver culturally relevant and responsive computing in 
formal education. 
 
4.3 Conclusion and implications for practice 
 
Our review of studies reveals a number of different approaches to incorporating culturally responsive teaching 
into computing, ranging from short, focused interventions with targeted underrepresented groups, to full 
curricula implemented in the computing classroom. Most studies used a quantitative approach to evaluate the 
success of the programs, either through surveys of changing attitudes or objective measures of learning gains. 
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Positive changes in these measures tended to be more evident for longer interventions in which culturally 
responsive teaching was fully embedded rather than competing with the computing concepts being taught. 
Nevertheless, further research is required with larger samples and longer-term interventions, in many cases, and 
using validated instruments to investigate the effect of culturally responsive computing on students’ attitudes and 
their later subject and career choices.  
 
The studies utilising in-depth qualitative analyses revealed more about how the learner experience affected their 
changing attitudes towards computing: being able to openly discuss difficult subjects, think about the 
sociopolitical context of computing through a complex, intersectional lens, and being able to collaborate and 
share knowledge and opinions were central to learners’ improving attitudes towards computing. Further 
qualitative studies are required in the future to provide more of this rich and detailed data concerning how and 
why attitudes may be changing amongst learners following a culturally responsive computing approach. 
 
Future developments of culturally responsive approaches to teaching computing should incorporate the 
successful elements outlined above into their curricula. Furthermore, developing teacher knowledge and 
confidence in culturally responsive approaches will be key to their successful implementation. Professional 
development opportunities should be created alongside curricula to empower teachers and to allow them to fully 
support their learners in becoming innovators and agents of change within computing. Further research should 
also be undertaken to better understand teacher voice and the constraints on, and implications of, delivering 
culturally responsive computing in the classroom. By taking this approach, it may be possible to improve the 
diversity of representation amongst students choosing to continue with computing as a subject and a career.  
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Abstract 

The purpose of this study is to introduce a developed activity which is named CityMap and to present an example 
of the implementation and evaluation process of a computer science unplugged activity through this activity. The 
aim of this activity is to write algorithms of going from one place to another using step by step instructions. The 
rules are also to reach the destination with the shortest way and the least number of steps using correct instructions. 
Accordingly, a map and a worksheet was designed to implement the CityMap which is related to daily life and 
scenario based. For the evaluation, an answer key was prepared and scoring criteria were determined. Then, the 
case study was used as a research method and the process of writing algorithms using step by step instructions of 
students was examined by implementing the the activity with 15 sixth grade students. Both individual and group 
evaluation were made and for this process game components were used. The findings revealed that, in general, 
students could wrote algorithms step by step instructions for the tasks determined in the activity. In addition, during 
the implementation, it was observed that using of the gamification made the activity more enjoyable. 

 

Keywords: computer science unplugged, writing algorithms using step by step instructions, computational 
thinking, gamification 

 

1. Introduction  
In recent years, the concept of computational thinking has come to the fore as computer science has become a 
multidisciplinary field and the teaching of programming has spread rapidly at the K-12 education. Computational 
thinking, which is described as one of the 21st century skills (Grover 2018; Tabesh 2017), is seen as a basic literacy 
skill for digital age learners (Wing 2006). When the literature is examined, the concept of computational thinking 
was first put forward by Papert (1980) as computational ideas. According to this, in the most general sense, Wing 
(2006) defined computational thinking as problem solving, system design and understanding of human behavior 
by making use of the concepts of computer science. In another study, Aho (2012) described computational thinking 
as a thinking process that involves in formulating problems so their solutions can be represented as computational 
steps and algorithms. On the other hand, the International Society for Technology in Education (ISTE) and 
Computer Science Teacher Association (CSTA) published an operational definition about computational thinking. 
According to this definition, computational thinking is a problem solving process that includes (but is not limited 
to) the following characteristics: -Formulating problems in a way that enables us to use a computer and other tools 
to help solve them, -Logically organising and analysing data, -Representing data through abstractions such as 
models and simulations, -Automating solutions through algorithmic thinking, -Identifying,   analysing,   and 
implementing possible solutions with the goal of achieving the most efficient and effective combination of steps 
and resources, -Generalising and transferring this problem solving process to a wide variety of problems (CSTA 
and ISTE 2011). Although there are different definitions of the concept of computational thinking, it is emphasized 
in the literature that computational thinking is mostly related to problem solving and algorithmic thinking (Şahiner 
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2017; Kalelioğlu et al. 2016; ISTE 2015; Bundy 2007). In this context, for this study, computational thinking is 
considered as writing algorithms using step by step instructions towards the solution of a problem. 

In the globalizing world, it is crucial to gain computational thinking skills (Barr and Stephenson 2011).  In the 
Horizon Report (2017), it is stated that computational thinking skill is one of the six subjects that should be 
integrated into education at K-12 level. Similarly, in the report published by the European Commission, 
justifications for integrating computational thinking into educational programs are presented, such as improving 
21st century skills and strengthening employment opportunities (Bocconi et al. 2016). For this reason, 
computational thinking has become the focus of studies in the field of education. When the literature is examined, 
it is seen that there are different teaching methods for the improvement of computational thinking skill. One of the 
popular tools that play a role in the improvement of computational thinking skill is computer science (Grover 
2018). It can be said that there are two different approaches in the teaching of computer science: plugged and 
unplugged (Brackmann et al. 2017). For plugged; coding and robotics workshops, programming course, various 
digital tools and games, and for unplugged; paper-pencil activities, coloring, puzzles and card games can be given 
as examples. 

Unplugged activities are one of the approaches that provide the teaching of computer science-related knowledge 
and skills that have become popular over the past few years. This approach can be adapted to almost any 
environment, as it enables educators to carry out their educational activities without the need for electricity, 
computers, internet or similar technological tools (Şendurur 2019; Nishida et al. 2009). Researches have shown 
that computer science unplugged activities contribute to the acquisition of basic concepts related to computer 
science (Hermans and Aivaloglou 2017; Wohl et al. 2015; Taub et al. 2009), support improvement of 
computational thinking (Leifheit et al. 2018; Jagušt et al. 2018; Rodriguez 2015), provide an entertainment element 
(like a magic show) for the lesson (Bell and Vahrenhold 2018; Curzon 2014) and help to overcome obstacles such 
as misconception or negative attitude towards programming (Bell and Vahrenhold 2018; Şendurur 2018). 
Additionally, it is possible to come across studies emphasizing that the use of game components for teaching 
computer science is an effective source of motivation (Tsarava et al. 2017; Kotini and Tzelepi 2015; Nishida et al. 
2009), increases class participation performance (Ibanez et al. 2014; Swacha and Baszuro 2013) and strengthens 
collaboration (Li et al. 2013). Also Voigt et al. (2010) state that creating a competition learning environment with 
computer science unplugged activities provides a more enjoyable learning process. From this point of view, 
CityMap, which is related to daily life, scenario based and includes gamification, was developed. Thus, it is aimed 
to present an example of the implementation and evaluation process of a computer science unplugged activity 
through this activity. 

 

2. Literature Review 

The CS Unplugged (2019) organization, founded by Tim Bell, Ian Witten and Michael Fellows, was the first to 
define unplugged activities. They state that the purpose of these activities, which they call computer science 
unplugged, is to provide an understanding of the philosophy behind computer science, considering the difficulties 
experienced in teaching programming. Although programming is perceived as a difficult and complex process, the 
underlying algorithmic structure is actually a phenomenon that exists in daily life. Each of the daily routine tasks 
is an algorithm and these algorithms (tasks) are performed after they are modeled in mental processes. At this 
point, it is stated that computer science unplugged activities act as a bridge that facilitates this mental process 
(Şendurur 2018). Hence, Bell and Vahrenhold (2018) argue that computer science unplugged activities are a fun 
and flexible pedagogical approach that does not require any technological tools and are based on learning by doing 
and experiencing. 

In a computer science uplugged activity conducted with 160 middle school students without programming 
experience, a significant increase was determined between the pre-test and post-test scores of the students in terms 
of programming and computational thinking (Threekunprapa and Yasri 2020). Leifheit et al. (2018) discussed 
computational thinking as algorithmic concepts in their study with 3rd and 4th grade students. As a result of the 
short test they applied at the end of each computer science unplugged activity, they found that students' interest 
and motivation towards programming were high and they concluded that the game-based computer science 
unplugged activity approach was useful in teaching algorithmic computational thinking. Besides that Brackman et 
al. (2017), in their quasi-experimental study with 5th and 6th grade students, found that there was a significant 
difference between the experimental and control groups in the development of students' computational thinking 
skills and reached the conclusion that this difference provided an evidence about the effectiveness of computer 
science unplugged activities. 

In another experimental study, computer science unplugged activities were applied to students before teaching 
block-based programming (Hermans and Aivaloglou 2017). It was found that students used the concepts they 
learned about programming more and their self-efficacy was higher. Similarly, Wohl et al. (2015) compared 
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Scratch, Cubelets, and unplugged activities in teaching computer science to children aged 5-7, and stated that 
computer science unplugged activities made more contribution to the understanding of the concept of algorithm 
than others. Taub et al. (2009), in their study with middle school students, affirmed that unplugged activities are 
more effective in understanding computer science. Besides these, Nishida et al. (2009), in their study with 10 
university students in the programming course, concluded that computer science unplugged activities are a fun 
way to understand and learn concepts and provide high motivation.  In a three year longitudinal study conducted 
with grades 4-6 students, Jiang and Wong (2018) aimed to examine the effects of plugged and unplugged activities 
on the development of problem solving skills associated with students' computational thinking skill and their 
motivation for coding. The researchers suggested that students learned programming concepts well, gained 
problem solving skills, and plugged and unplugged activities both provided intrinsic motivation. 

In summary, the findings of the studies indicate that computer science unplugged activities are effective method 
in teaching computer science and support the improvement of computational thinking skill such as problem solving 
and algorithmic thinking, which are sought in individuals in the 21st century. At this point, it is expected that this 
study, which sets an example for the design and implementation of computer science unplugged activities, will 
help instructors who are the practitioners, in planning lessons. 

 

3. Method 

Case study is one of the qualitative research approaches used to examine one or more situations in depth (Creswell 
2009). The focus of the case study is to define an event as it exists, to examine the situation in its real environment 
and to describe it in detail (Leymun et al. 2017). Although there are different classifications regarding the case 
study in the literature, Yin (2014) divided the single and multiple case studies into holistic and embedded designs 
in line with the analysis units. According to this classification, holistic single case study design is used where a 
single unit of analysis is involved and a single case is analyzed. For this reason, since the purpose of the activity 
is to examine the process of writing algorithms using step by step instructions of the students in the study group 
via the CityMap, the study was designed with a holistic single case study. 

3.1. Participants  

In line with the purpose of the study, convenient sampling method, which is one of the sampling methods for 
qualitative research, was used because of easily accessible and applicable (Patton 2014). The study group consists 
of 15 (9 girls, 6 boys) sixth grade students who attended the "Coding and Robotics Education" course.  

3.2. The Role of The Researcher 

One of the researchers, the first author, is also the instructor of the course. In the first two weeks of the course, 
different activities were carried out for problem solving and writing algorithms step by step. And then in the third 
week, the developed CityMap activity was applied. During the implementation, the researcher only provided 
guidance on how to do the activity and and did not make any intervention. In addition, the researcher made an 
observation about the students' behavior. 

3.3. Development of The CityMap Activity 

CityMap was developed as a result of reviewing various projects and literature on computer science unplugged 
activities and taking as basis. Especially, the activities were written by Bell, Witten and Fellows (1998), on the 
csunplugged.org,  in the Information Technologies and Software Curriculum (MEB 2018) and the model was 
developed by Nishida et al. (2009) were examined. Based on these examinations, an activity table for CityMap 
was created (Table 1).  

 

Table 1. The Computer Science Unplugged Activity CityMap 
Activity name: CityMap 

Aim of activity: Writing algorithms of going from one place to another using step by step 
instructions (go x square, turn right, turn left). 

Rules of activity: The rule is, using the correct instructions, to reach the destination with the 
shortest way (minimum number of squares) and the least number of steps 
(minimum number of code lines). 

Learning outcomes: • Solves a problem using the given instructions. 
• Writes algorithms using step by step instructions. 

Age/Grade: 5th and 6th grade (can be adapted for all age groups according to the 
complexity of the given map and tasks) 

Individual / Group Work: Both individual and group work 
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Required preliminary skills: Basic literacy skill 
Knowing the basic directions 

Required materials: A map and a worksheet 
Evaluation tools: Preparation of answer key 

Determination of scoring criteria 
Designing badges*  
(*Optional: can be used as a performance indicator at the end of the 
evaluation) 

 

The aim of this activity is to write algorithms of going from one place to another using step by step instructions 
(go x square, turn right, turn left). The rule is, by using the correct instructions, to reach the destination with the 
shortest way (minimum number of squares) and the least number of steps (minimum number of code lines). The 
activity was constructed based on a scenario in order to create sense of story (Bell and Vahrenhold 2018; Kelleher 
et al. 2007). In order to establish the relationship between the activity and daily life, daily routines are taken as a 
basis according to the scenario. Five different jobs character, namely teacher, police, doctor, taxi driver and 
fireman, were determined in the scenario. Later, three different tasks to be done in one day routine were created 
for the jobs characters. First task: to go from home to workplace, Second task: to go from workplace to the task 
place, Third task: to return home from the task place. 

For example; as shown in Table 2, according to the scenario, the teacher lives in no 17, and his/her workplace is 
the school. The teacher's task is to go to the museum with the students. He/she will return home after the museum. 
In this case, the students who chose the teacher character were requested to write algorithms using step by step 
instructions, the way from home to school for the first task, from school to museum for the second task, and from 
the museum to home for the third task. 

 

Table 2. The Scenario of CityMap  
Jobs Character Home Workplace Task place Task (in the scenario) 

Teacher (T) No 17 School Museum "Today is the day of sightseeing .. Let's go 
to the museum with the students" 

Doctor (D) No 13 Hospital Beach "There is a case of injury at the beach .. 
Emergency!" 

Police (P) No 23 Polis Station Market-1 "Oops!! There is a thief in the market.. " 
Taxi Driver (TD) No 22 Taxi Station No 11 "You are expected from no 11." 

Fireman (F) No 28 Fire Department No 16 "There was a fire at no16 .. Run and run .." 
 

3.4. Implementation Process of The CityMap Activity 

Before the implementation of the CityMap activity, the researcher wrote the houses and the tasks determined for 
five jobs character and pasted them on the map. During the implementation process, the students were asked to 
form groups of five and the students in each group to choose one of the five jobs characters. Since the study group 
consists of 15 students, three groups was formed. Later, materials were distributed as a map to each group and a 
worksheet to each student, the rules and what to do in the activity was explained. Everyone wrote algorithms using 
step by step instructions for three tasks on the worksheet individually in line with the jobs characters they chose 
(Figure 1). At the end of the lesson, the worksheets were collected to be checked. 

 

 
Figure 1. Implementation process of CityMap 

3.5. Data Collection and Data Analysis 
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In order to collect data, a map and a worksheet designed by the researchers were used for the CityMap activity in 
the study (Figure 2). The ways on the map were designed square by square, like a grid. In accordance with the 
scenario, buildings and houses such as hospitals, schools, parks, markets, which may be in a city, were placed 
around the ways on the map. In order to avoid confusion, door numbers were determined for the houses. On the 
other hand, the worksheet is divided into three separate sections for writing the determined tasks and each section 
is divided into lines. Small square spaces were added to the edge of each line where the steps are written. Thus, it 
was easier for the students to see how many steps (code lines) they did in the task. In order to determine how many 
squares the task was completed, it was asked to write the total number of squares at the end of the worksheet. 

 

 
Figure 2. Map and worksheet designed for CityMap 

 

The data collected via the worksheet was checked with the answer key prepared by the researchers. The answer 
key was created separately for the three tasks determined for each jobs character. According to the map, there are 
many alternative ways to go from one place to another in order to fulfill the determined tasks. But there is only 
one way that satisfies the activity rules. As an example, solutions are given in Table 3 regarding the three tasks of 
a teacher. 

 

Table 3. An Example of Answer Key 
Task1 Task2 Task3 

Home à School School à Museum Museum à Home 
1. Get out of the home (start) 
2. Move forward 1 square 
3. Turn left 
4. Move forward 3 square 
5. Turn left 
6. Move forward 3 square 
7. Turn right 
8. Move forward 1 square 
9. Turn left 
10. Move forward 1 square 
11. Turn right 
12. Move forward 17 square 
13. Turn left 
14. Move forward 11 square 
15. Turn right 
16. Move forward 5 square 
17. Turn left 
18. Get in the school (finish) 

1. Get out of the school (start) 
2. Move forward 1 square 
3. Turn right 
4. Move forward 5 square 
5. Turn left 
6. Move forward 11 square 
7. Turn right 
8. Move forward 11 square 
9. Turn right 
10. Get in the museum (finish) 

1. Get out of the museum (start) 
2. Move forward 1 square 
3. Turn right 
4. Move forward 6 square 
5. Turn left 
6. Move forward 1 square 
7. Turn left 
8. Move forward 1 square 
9. Turn left 
10. Move forward 3 square 
11. Turn rigt 
12. Move forward 3 square 
13. Turn right 
14. Get in the home (finish) 

Number of squares: 42 Number of squares: 28 Number of squares: 15 
Number of code lines: 18 Number of code lines: 10 Number of code lines: 14 

While evaluating, it was first checked that the students wrote algorithms using step by step instructions correctly. 
If the steps for each task were written correctly and completely, 10 points were given. If it is empty or mostly 
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incomplete, no points were given. The errors were grouped under 5 categories: 1- no writing start/finish step, 2- 
mixing direction (turn right/left step), 3- lacking of one or a few steps, 4- counting number of squares incorrectly, 
5- using incorrect instructions. If there are errors in the wiriting algorithms using step by step instructions, 2 points 
were deducted from 10 points for each category according to these five error categories. Then, the shortest way 
(minumum number of squares) and the least number of steps (minimum number of code lines), which is the rule 
of the actitivty, was controlled. In this case, students who write algorithms using step by step instructions in 
accordance with both rules were given 4 points, 2 points for each rule. If it was written in accordance with only 
one rule, 2 points were given. 

In case studies, it is recommended to use more than one data collection tool in order to obtain rich data about the 
situation under study (Patton 2014; Yıldırım and Şimşek 2013). In this study, the observation technique was used 
in addition to the worksheet. The researcher, who was the course instructor, made observations in the study 
environment as a participant observer and kept unstructured field notes about students' behavior. The data obtained 
from the field notes were used to support the findings. 

3.6. Gamification and Assessment Framework 

Gamification can be defined as the use of game philosophy, game components and game design techniques out of 
the context of game theory to increase motivation and encourage problem solving (Werbach and Hunter 2012; 
Deterding et al. 2011; Zichermann and Cunningham 2011). Although teaching via games or gamification basically 
has the same structural factors, while teaching factors are integrated into games in teaching via games, game 
components are integrated into existing teaching factors in gamification (Çağlar and Kocadere 2015). In other 
words, there is no game in the gamification of a teaching environment. Wherein the subject to integrate game 
components such as star, badge, level, leaderboard with the teaching environment. Thus, gamification, which is 
based on games, yields similar to the effects of games (Huotari and Hamari 2012). 

In the researches were emphasized that the game components, which are the source of external motivation, have 
positive effects such as providing fun in the learning environment (De-Marcos et al. 2014; Kocadere and Çağlar 
2015), increasing motivation (Sillaots 2014; Kocadere and Çağlar 2015, Su and Cahang 2015), ensuring 
engagement with the environment and increasing academic success (Ibanez et al. 2014; Su and Cahang 2015; 
Hanus and Fox, 2015). Therefore, points, badges and leaderboard were used in the evaluation of the CityMap 
activity. For individual evaluation; the answers of all students were checked and after the scoring was completed, 
the students who chose each jobs character were compared among themselves. For example; the scores of the 
students coded as T-1, T-2, T-3 for teacher were listed and the student with the highest score was given the teacher 
badge (Figure 3). If the scores were equal, the total number of errors was checked. For group evaluation; the teams 
that got the most badges to their group were determined and written on the board as the leaders of the week. 

 

 
Figure 3. Badges designed for the evaluation of the CityMap 

 

4. Results 

While giving information about the implementation process of the activity at the beginning of the lesson, the 
researcher stated that this activity would be like a competition and that they could win badges individually and be 
enrolled on the leaderboard as a group at the end of the evaluation. The researcher observed that almost all students 
were excited and motivated to do the activity. The worksheets filled in by the students were checked through the 
prepared answer key. When Table 4 is examined, it is seen that 6 students in the first task, 4 students in the second 
task, and 6 students in the third task wrote algorithms using step by step instructions correctly and completely. 
According to this finding, although the number of students who wrote algorithms using step by step instructions 
without any error seemed low, when the number of errors was examined, it was found that some students made 
almost no errors (f = 1) in some tasks. For instance; while the student with code D-1 did not make any error in the 
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first and second tasks, in the third task, he made only one error in the category of counting number of squares 
incorrectly. As a result of the observations, it is thought that this situation is caused by the excitement of the 
students about the activity. 

Written algorithms using step by step instructions by one student in the first task, three students in the second task, 
and two students in the third task were determined that most of them were incomplete or the activity was empty. 
According to Table 4, the student with the code P-3 completed the first and third tasks without error.  When 
his/her worksheet was examined in detail, it was seen that he/she wrote only a few lines of the second task but did 
not complete it. On the other side, the student with the code D-2 did not complete the second and third tasks, while 
the student with the code F-3 student did not complete all three tasks. It was observed that these students were 
uninterested towards the lesson. 

When the errors made regarding the writing algorithms using step by step instructions were examined, it was found 
that the most errors were made in the categories of lacking of one or a few steps (f = 31) and counting the number 
of squares incorrectly (f = 22). It is thought that this situation may be due to the long distance between the two 
places given in the relevant task or many alternative routes. Because it was observed that the students try too many 
times on the map to find the best solution. This situation may have led to confusion when writing algorithms using 
step by step instructions. Another situation is that one map was given for a group. Although the map was large, it 
was observed that sometimes, it was difficult for students to work on a map with five students. 

Other errors related to writing algorithms using step by step instructions are using incorrect instructions (f = 17), 
mixing direction (f = 15) and no writing start/finish step (f = 2). However, when the number of errors is examined, 
it is seen that almost all of the errors in using incorrect instructions belong to the student with the code of T-3 
(Table 4). When the worksheet of this student was examined in detail, it was determined that the student used 
incorrect instructions such as turn 5 square top, go up, not the given instructions. It can be said that the student 
made these errors because of misunderstanding about the use of the instructions. Similarly, it is seen that the 
majority of the number of errors in the mixing direction category belongs to the student with the code D-3. Here, 
it is the situation that the student confuses his/her own direction by the direction of relative to the map. 

When the completion of activity according to the rule of the shortest way is examined, the number of students who 
finds correct solution is 10 in the first task, 8 in the second task, and 12 in the third task. The number of students 
who completes their tasks with the least number of steps is 9 for the first task, 6 for the second task, and 11 for the 
third task. These findings can be interpreted as students took into account the rules and focused on the activity to 
get points. 

In addition to this, both individual and group evaluations were made by using the gamification. For individual 
evaluation; each jobs character group was evaluated within itself. The students who wrote the algorithms using 
step by step instructions correctly by following the rule of the shortest way and the least number of steps were 
ranked according to their total scores. In references to Table 4, the teacher badge is T-1, the doctor badge is D-1, 
the police badge is P-2, the taxi driver badge is TD-3 and the fireman badge was earned by F-2. During the 
announcement of the students who received the badges, it was observed that the students were curious and excited. 
For group evaluation; the group / groups that earned the most badges were enrolled on the leaderboard. In this 
case, the first and second group earned two badges each, and the third group just one. The two groups, who were 
the leaders of the week by getting equal badges, were observed that have shared their pleasure by hugging each 
other.  
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Table 4. Scoring of Writing Algorithms Using Step By Step Instructions for The CityMap 
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+10p -2p -2p -2p -2p -2p +2p +2p  +10p -2p -2p -2p -2p -2p +2p +2p  +10p -2p -2p -2p -2p -2p +2p +2p  
T-1 √      - - 10 √      + + 14 √      + + 14 0 38 
T-2 /    1  + - 10 /   2 3  - - 6 /  1    + + 12 7 28 
T-3 /     7 - - 8 /     5 - - 8 /     4 - - 8 16 24 
D-1 √      + + 14 √      + + 14 /    1  + + 12 1 40 
D-2 /   5 3  - - 6 X      - - 0 X      - - 0 8 6 
D-3 /  5 3 1  + + 8 /  3 3   + + 10 /  3 1   + + 10 19 28 
P-1 /   1   + + 12 /  1 3 1  + - 6 √      + + 14 6 32 
P-2 √      - - 10 √      + - 12 √      + + 14 0 36 
P-3 √      + + 14 X      - - 0 √      + + 14 0 28 

TD-1 √      + + 14 /    1  - - 8 / 1  1 2  + - 6 5 28 
TD-2 √      + + 14 /   3 1  + + 10 /   3   + + 12 7 36 
TD-3 /   1   + + 12 /   1 2  + + 10 √      + + 14 4 36 
F-1 /  1  2  + + 10 /  1 3 2  - - 4 √      + + 14 9 28 
F-2 / 1  1 1 1 + + 6 √      + + 14 /    1  + + 12 5 32 
F-3 X      - - 0 X      - - 0 X      - - 0 X 0 
According to 

categories total 
number of 

errors 
1 6 11 8 8   0 5 15 10 5   1 4 5 4 4  

  

T: Teacher, D: Doctor, P: Police, TD: Taxi Driver, F: Fireman      
-1: Group1, -2: Group2, -3: Group3            
√: Correct and complete,  /: Some little errors,  X: Empty or mostly incomplete 



5. Conclusion and Discussion 

The rapid advancement of science and technology, changing needs and expectations have started to differentiate 
the characteristics and competencies sought in individuals, and recently some skills such as problem solving, 
critical thinking, and creativity have come to the fore. These characteristics, called 21st century skills, are 
considered important for social innovation and economic growth, as well as they reveal individual differences. In 
particular, many smart systems called industry 4.0 enable data exchanges and production technologies to be 
automated and produce higher quality, cheaper and faster. The creation of these automatic systems is possible with 
artificial intelligence, robotic systems and various software. Thus, programming has become the new 
communication language of the digital world. So, unlike other skills, this has brought to the agenda the 
computational thinking skill, the most important feature of which is the opportunity for people to cooperate with 
computers (Demir and Seferoğlu 2017). In this context, computational thinking has taken its place in the 
development plans of many countries in order that learners can have skills that can keep up with the times (Bocconi 
et al. 2016) and started to become the focus of the studies in the field of education. 

Computational thinking is a basic literacy skill for everyone, not only for computer scientists (Wing 2006). The 
most effective way to improve this skill is seen as programming, that is, computer science (Lye and Koh 2014; 
Wing 2011). Because programming is the process of developing an algorithm that will serve to solve a problem 
and its implementation (Akçay and Çoklar 2016), and many findings in the literature supported that programming 
improves students' cognitive skills (Chao 2016; Gülbahar and Kalelioğlu 2014; Fessakis et al. 2013). However, 
when it comes to programming teaching, which is perceived as a complex and difficult process, it is indicated that 
unplugged activities are an alternative teaching method for computer science (Thies and Vahrenhold 2016). From 
this point of view, CityMap was developed and thus, it is aimed to present an example of the implementation and 
evaluation process of a computer science unplugged activity through this activity. In line with this purpose, 
CityMap activity applied to 15 sixth grade students and the process of writing algorithms using step by step 
instructions of students, which is considered as computational thinking skill, was examined. 

When the process of writing algorithms using step by step of students was examined; it was determined that most 
errors were made in the categories of lacking of one or a few steps and counting the number of squares incorrectly. 
It is thought that this situation may be due to the long distance between the two places given in the relevant task 
or many alternative routes or the use of a map by five students. Other common errors are using incorrect 
instructions and mixing direction. Almost all of the errors in using incorrect instructions belonged to one student. 
This situation indicates that the student does not understand the instructions. It can be said that in future studies, it 
may be beneficial to present the instructions to the students in written form, such as supported by visual examples, 
as well as verbally expressing them. 

Similarly, it was determined that the majority of the error of mixing direction belonged to another student. When 
the student's answers were examined in detail, it was understood that the student confused his/her own direction 
by the direction of relative to the map. In a similar implementation, it is thought that giving a map to each student 
will be a solution to this problem. Another result is that most of the students have reached the solution with the 
shortest way and the least number of steps, as required by the rules of the activity. This indicates that the students 
can understand the rules and use the instructions correctly.  

In addition to these, while giving information about the implementation process of the activity at the beginning of 
the lesson, it was observed that almost all students were excited when it was stated that they could win badges 
individually and be enrolled on the leaderboard as a group at the end of the evaluation. This finding indicates that 
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the game components help to make the lesson more fun. Hence in the literature, it is asserted that the inclusion of 
gamification and entertainment elements in unplugged activities is an effective source of motivation (Bell and 
Vahrenhold 2018; Tsarava et al. 2017; Voigt et al. 2010). As a conclusion, in this study, it was presented an 
example of the implementation and evaluation of a computer science unplugged activity and some suggestions 
were made for the implementation of this activity. In future studies, the effects of these and similar activities on 
students' computer science achievements or computational thinking skill can be examined. 
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Abstract 

The Inclusive Assessment of Computational Thinking (CT) designed for accessibility and learner 

variability was studied in over 50 classes in US schools (grades 3-8). The validation studies of IACT 

sampled thousands of students to establish IACT’s construct and concurrent validity as well as test-retest 

reliability. IACT items for each CT practice were correlated to examine construct validity. The CT pre-

measures were correlated with post-measures to examine test-retest reliability. The CT post-measures 

were correlated with external measures to examine concurrent validity. IACT studies showed moderate 

evidence of test-retest reliability and concurrent validity and low to moderate evidence of construct 

validity for an aggregated measure of CT, but weaker validity and reliability evidence for individual CT 

practices. These findings were similar for students with and without IEPs or 504s. IACT is the first CT 

tool for grades 3-8 that has been validated in a large-scale study among students with and without IEPs or 

504s. While improvements are needed for stronger validity, it is a promising start. 

Keywords: computational thinking, assessment, game-based learning, neurodiversity 

 

1. Introduction 

Computational Thinking (CT) has been attracting increased attention over the past decade in K–12 

education, prompting a call for new models of pedagogy, instruction, and assessment (Shute, Sun, & Asbell-
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Clarke, 2017; CSTA, 2017; National Academy of Sciences, 2010). The explosion of CT in education today 

parallels the turn towards scientific inquiry in science education in the 1990s (AAAS, 1993; Duschl, 1990: NRC, 

1996). In 1996, the National Research Council issued new science education standards focusing on inquiry 

practices (NRC, 1996), yet even in 2018 there were few widely accepted tools for assessing students’ scientific 

inquiry in classroom settings (Kruit, Oostdam, van den Berg, & Schuitema, 2018).   

Developing learning assessments for any new focus of education is particularly challenging. In most 

educational research, new assessment methods are validated using existing “standard” measures of learning in 

the same content area. With an emerging field such as CT, no such standard measures exist. The few items that 

are in development and validation in today’s research rely heavily on text and coding, which may preclude the 

measurement of CT for a broad range of learners. It is not only the novelty of the field that challenges the 

development of assessment in CT, it is also the nature of CT itself. Like scientific inquiry, CT is a thinking 

process. Measuring thinking processes is more nuanced than assessing whether or not a learner can solve a math 

problem or define a science term. Measuring learners’ abilities to plan, design, and solve complex problems 

require methods for making thinking visible, which is not done by a typical school test (Ritchhart, Church, & 

Morrison, 2011). Even when CT is applied in a natural setting, such as in a coding environment, the final product 

may not reveal the CT practices as much as the thinking processes involved in designing code (Grover & Basu, 

2017).   

Addressing these issues for assessing CT may be particularly important to broadening participation in 

Computer Science and other Science, Technology, Engineering, and Mathematics (STEM) fields. Learning 

assessments often include irrelevant barriers (e.g., reading or coding prerequisites) that may mask conceptual 

understanding for some learners (Haladyna & Downing, 2004). Many learners who struggle academically 

because of neurodiverse conditions may have particular areas of strength in tasks related to CT, such as pattern 

recognition and systematic thinking (Baron-Cohen, Ashwin, Ashwin, Tavassoli & Chakrabarti, 2009; Dawson, 

Soulières, Gernsbacher, & Mottron, 2007; O'Leary, Rusch, & Guastello, 1991). Recognizing and nurturing these 

talents may be crucial for developing our future workforce (Martinuzzi & Krumay, 2013). In fact, many large IT 

companies, including Microsoft and Google, have programs specifically designed to recruit neurodiverse 

individuals (Wang, 2014). To capture this valuable expertise without the extraneous barriers that limit many 

neurodiverse learners’ participation, a new form of learning assessment for CT is required. 

This paper reports on the exploration of assessment items intended to measure CT within a game-based 

learning research study. Interactive Assessments of CT (IACT), designed for upper elementary- and middle-

school students (grades 3–8), is a set of interactive, online, logic puzzles that were created to measure four 

fundamental CT practices: Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. 

The IACT assessment items were originally designed to be used as pre/post measures of CT practices in a study 

of the logic puzzle game Zoombinis (Asbell-Clarke, Rowe, Almeda, Edwards, Bardar, Gasca, Baker, & Scruggs, 

2020). They were intended to identify evidence of CT Practices that: a) are apparent during the process of 

solving a task, as opposed to a final product; and b) are independent of a specific application and thus 

transferable or generalizable to other tasks. They were also designed to use as little text, specific coding notation, 

or other features that might impede some learners and/or mask their ability to solve CT problems. Because the 
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study specifically included learners who have Individual Education Plans (IEPs) related to academic struggles, 

the assessments needed to avoid extraneous factors that can impede some learners, such as the need to read and 

interpret complex word problems and excessive time pressure. The final constraint placed on the assessments 

was that they needed to be completed by all students within one class period (40-50 minutes, depending on the 

district). Students with IEPs were allowed up to 50 percent more time to complete the IACT assessments if 

necessary. In this paper, we report the findings from validation studies of IACT using two samples of 

elementary- and middle-school students, each with thousands of students, to understand IACT’s construct and 

concurrent validity as well as test-retest reliability. 

2. Background 

The online logic puzzles that make up IACT were designed to serve as external pre/post assessments in 

a national, game-based learning study of over 50 upper elementary- and middle-school classes during a study of 

implicit CT practices demonstrated in Zoombinis gameplay in the 2017-18 school year (Asbell-Clarke, et al., 

2020). Unfortunately, no validated instrument was available to measure CT practices at these grade levels when 

we started the study, so we designed two sets of IACT logic puzzles, one version for upper elementary and one 

version for middle school, each version with two comparable forms. During the Zoombinis study, we collected 

the pre/post IACT data along with teacher ratings of their students’ CT at the end of the study. We used the 

teacher ratings to try to establish the concurrent validity of the IACT items. Because this method was not as 

rigorous as we would have liked, we extended the study to a second district-wide sample of over 3,000 students 

in grades 2–8 in a mid-sized Northeastern public school district. During the 2017-18 and 2018-19 school years, 

we were able to collect IACT data in May/June of each school year as well as corresponding items from another 

external instrument (Bebras) for the students in grades 5–8 in 2018-19. This paper reports on the findings of both 

of these samples for the validation studies of IACT. 

2.1 Background on the Measurement of Computational Thinking 

CT is a way of thinking used to design systematic and replicable ways to solve problems, emphasizing 

Abstraction and Algorithmic Thinking (Shute, Sun, & Asbell-Clarke, 2017; Wing, 2006). Rooted in ideas from 

research for the LOGO environment (Papert, 1980, 1991), CT includes practices and understandings dealing 

with logic, representations, and sequential thinking, as well as broader ways of thinking such as tolerance for 

ambiguity, persistence in problem solving, and abstraction across applications (Allan et al., 2010; Barr & 

Stephenson, 2011; Brennan & Resnick, 2012; Grover & Pea, 2013; Weintrop et al., 2016). Barr and Stephenson 

(2011) suggest that, in K–12, CT involves problem-solving skills and particular dispositions, such as confidence 

and persistence, when confronting particular problems. CT is also seen to be related to creativity and innovation 

(Mishra, Yadav, & the Deep-Play Research Group, 2013; Repenning et al., 2015) as well as integrating into 

many STEM areas (Barr & Stephenson, 2011; Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013; Weintrop et 

al., 2016).  

In designing a middle-school curriculum called Foundations for Advancing Computational Thinking 

(FACT), Grover, Cooper and Pea (2014) used pedagogical strategies to support transfer from block-based to 

text-based programming, along with formative and summative assessments (including quizzes and tests as well 
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as open-ended programming assignments) related to the acquisition of computational thinking skills. Their 

findings show that students ages 11–14 using the FACT curriculum experience improved algorithmic learning, 

understanding of computing, and transfer of skills from the introductory programming environment, Scratch, to a 

text-based programming context. Building on this research, Lundh, Grover, Jackiw, and Basu (2018) suggest a 

framing of Variables, Expressions, Loops, and Algorithms (VELA) to prepare young learners for CT. 

 Many of the CT assessments developed to date are strongly tied to computer-science frameworks and 

rely on the construction or analysis of coding artifacts (Tang, Yin, Lin, Hadad, & Zhai, 2020). These include 

assessments such as the Fairy Assessment (Werner, Denner, Campe, & Kawamoto, 2012), Dr. Scratch (Moreno-

León & Robles, 2015), Ninja Code Village (Ota, Morimoto, & Kato, 2016), REACT (Real Time Evaluation and 

Assessment of Computational Thinking) (Koh, Basawapatna, Nickerson, & Repenning, 2014), CodeMaster (von 

Wangenheim, et al., 2018) and tools developed by Grover, Cooper, and Pea (2014), which are all designed for 

specific programming environments like Alice, Scratch, AgentSheets, App Inventor, Snap!, or Blockly. As such, 

these tools may not be well-suited for use as pre-assessments or for use with interventions that are not primarily 

focused on coding (Wiebe, London, Aksit, Mott, Boyer, & Lester, 2019). 

Recent initiatives to integrate CT with STEM require assessments that are more decontextualized or 

domain-general (Tang, et al., 2020; Karalar, & Alpaslan. 2021). The Computational Thinking test (CTt) 

(González, 2015) and Bebras Tasks (Dagienė & Futschek, 2008; Dagienė, Stupurienė, & Vinikienė, 2016) are 

two such instruments that have shown promise in assessing core CT constructs for middle-grades students 

(Wiebe et al., 2019). The CTt is an online, 28-item, multiple choice instrument shown to be valid and reliable 

with middle-school students in Spain (Román-González, Moreno-León, & Robles, 2017). Although designed for 

students with no programming experience, some items on the CTt have block-based, programming-like elements 

in them. However, research studies have not shown this to be problematic for students who reported having little 

or no prior programming experience (Wiebe et al., 2019). This result is supported by Weintrop, Killen, Munzar, 

and Franke (2019), who found that students perform better on questions presented in block-based form compared 

to text-based questions.  

Bebras Tasks, which originated as a set of short competition tasks through which students in grades 5–

12 apply CT to solve “real life” problems, have recently been looked at as assessment tools because their items 

map well to CT constructs (Barendsen et. al., 2015; Dagienė, Stupurienė, & Vinikien, 2016; Izu, Mirolo, Settle, 

Mannila, & Stupurienė, 2017). Like the CTt, Bebras Tasks do not rely on prior knowledge of an application or 

programming language, which makes them well-suited for use as a pre-assessment tool. The psychometric 

properties of Bebras Tasks have not been fully demonstrated and some tasks may be considered too peripheral to 

core CT skills (Román-González, Moreno-León, & Robles, 2017) for Bebras Tasks to stand alone as a standard 

assessment for CT in K–12 education. However, Wiebe and colleagues (2019) explored a promising hybrid 

assessment that includes items from both the CTt and Bebras as a “lean” assessment of current, generally 

recognized core CT skills. The Bebras items were most closely related to the intended constructs, grade band, 

and the nature of the logic puzzles that are the focus of this study, so we used selected Bebras items as external 

measures for evidence of concurrent validity for the logic puzzles with the second sample. The Bebras items are, 

however, more dependent on text than IACT and may present difficulties for students with certain IEPs. 
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2.2 Description of IACT Items 

To measure foundational CT in grades 3–8, we developed a set of interactive logic puzzles focusing on 

four fundamental CT practices: Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. 

We chose to design a set of online puzzles because we were working with classes already using a web-based game, 

and the delivery and data collection for the assessment items could be integrated with the delivery of the game.  

Knowing that these CT practices are rarely mutually exclusive within a set of activities, we identified a 

set of puzzles that might emphasize one practice over the others even if all practices were part of the activity. We 

designed the puzzles with minimal text and minimal prerequisite experience with coding or other specific 

activities. We drew inspiration from puzzle formats often used in psychological assessments, avoiding text and 

context-dependent scenarios. While these assessments are used in a variety of contexts involving executive 

functioning and reasoning; the overlap with CT practices is intriguing and merits study. 

 

Theoretical Framing of Computational Thinking used in IACT 

IACT was designed to measure the CT practices evident within the learning game Zoombinis. While not 

intended to include all potential facets of CT, IACT is grounded in emergent theoretical literature that is helping 

define the evolving constructs of CT in the educational field. The term CT was introduced by Jeanette Wing 

(2006) to describe the thought processes involved in formulating problems so that the solutions are represented 

in a form that can be effectively carried out by an information-processing agent (Cuny, Snyder, & Wing, 2010). 

The role of CT in K–12 education has been described as laying “the conceptual foundation required to solve 

problems effectively and efficiently (i.e., algorithmically, with or without the assistance of computers) with 

solutions that are reusable in different contexts” (Shute, Sun, & Asbell-Clarke, 2017). While many CT practices 

were discussed in Seymour Papert’s research on procedural thinking in the early programming environment for 

children called LOGO (Papert, 1980; Papert & Harel, 1991), today CT is thought to encompasses much more 

than programming. There is also evidence that these CT practices may support a variety of other cognitive and 

non-cognitive activities, especially for learning in STEM subjects (e.g., Barr & Stephenson, 2011; Sneider, 

Stephenson, Schafer, & Flick, 2014).  

Domain-general CT is often operationalized as a set of practices that include: problem decomposition, 

abstraction, algorithmic thinking, conditional logic, recursive thinking, and debugging (CSTA, Shute et al., 

2017; Tang, et al., 2020). For the development of IACT, we focus on the CT practices that were most closely 

related conceptually to the puzzles in Zoombinis gameplay. We selected four fundamental CT practices outlined 

by CSTA (2017) and Shute, Sun, & Asbell-Clarke (2017): 

o Problem Decomposition is reducing the complexity of a problem by breaking it into smaller, more 

manageable parts. 

o Pattern Recognition is seeing trends and groupings in a collection of objects, tasks, or information. 

o Abstraction is generalizing from observed patterns and making general rules or classifications about 

objects, tasks, or information by discerning relevant from irrelevant information. 

o Algorithm Design is establishing reusable procedures that solve sets of problems. 
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While not an exclusive definition of CT, a focus on these practices lays a strong foundation for CT (CSTA, 

2017). While CT can include many other practices such as modelling, debugging, and data visualization, this 

study focuses on these four CT practices because they are highly related to Zoombinis gameplay and they show 

promise of generalization to problem-solving in a variety of disciplines. When educating young learners in upper 

elementary and middle school, it may be important to ensure these broadly applicable practices have a solid 

foundation and upon which more nuanced facets of CT can be built. 

 

2.3 Design of the IACT Items 

The IACT items were designed for use in a game-based learning study where students may not have 

had any previous exposure to computer science or coding. While not designed as clinical assessments of 

executive functioning, the IACT items drew from models from similar psychological assessments that were 

designed for a broad range of neurodiverse learners to ensure maximum accessibility. 

The authors worked with a game-based learning assessment company to design the IACT logic puzzles. 

Two sets of IACT items containing similar logic puzzle items were designed, one for upper elementary- and one 

for middle-school learners. The item sets were conceptually and structurally the same for both grade bands, but 

differed in terms of difficulty (e.g., based on the number of variables to consider in a pattern and size of the array 

for Abstraction problems). The item sets were distributed across two comparable forms for each grade band, a 

pre-test and a post-test, that were balanced and could serve as external pre/post measures of gains in our game-

based learning studies.  All items went through a minimum of two rounds of iteration and testing with think-

aloud interviews with 8-10 students per round to test that the wording was eliciting the CT practices of interest. 

The four fundamental CT practices that were evident in the Zoombinis gameplay (excerpted from Asbell-

Clarke, et al., 2020), and thus formed the constructs measured with IACT are: 

● Problem Decomposition: When approaching a complex problem, learners may need to simplify the 

problem—decomposing it into manageable parts and then tackling one part at a time. This is 

comparable to the practice of isolating variables in a science experiment or to factoring equations into 

terms in mathematics. Everyday examples of problem decomposition include taking the steps to bake a 

cake (choosing a recipe, gathering ingredients, mixing batter, baking, and frosting), or when planning a 

party (dealing with the guest list, then the menu, and then the music). When confronted with a multi-

faceted puzzle (for example, sorting objects by both shape and colour), players often need to consider 

one part of the puzzle at a time (shape) and then consider the other (colour).    

● Pattern Recognition: Pattern Recognition is required for all kinds of sorting and classification tasks as 

well as seeing trends in data and other forms of information. In science, learners look for patterns in the 

characteristics of animals to classify them into species, and patterns in the motions of planets to 

understand the laws of the universe. In math, learners use patterns to understand numbers and units, to 

collect like terms in an equation, and to generalize problems into classes of problems. Pattern 

Recognition is the precursor for abstraction, which is at the heart of CT. 

● Abstraction: Abstraction is the ability to rise above the details and see the rules that can be applied 

generally to other situations. When learners can look across multiple instantiations of a phenomenon 
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and draw the common characteristics or patterns that can be abstracted, they are able to design 

generalized solutions to problems. For example, scientists are able to generalize the laws of gravity 

from the vast amount of observed evidence, and patterns within the evidence, that enable an abstracted 

claim about how the universe works. Similarly, mathematicians create systems of numbers and 

representations to exploit the inherent patterns of quantity in our world. The goal of abstraction is to 

design replicable systems of solutions that help us effectively and efficiently meet new challenges. 

● Algorithm Design: Once abstracted, a set of rules can be operationalized through an algorithm. An 

algorithm is a sequence of instructions or steps required to accomplish a task. Everyday examples of 

algorithms include recipes in a cookbook, and consistent daily routines used to accomplish everyday 

tasks. Scientists design algorithms for replicable experimentation and for automated procedures 

required in large-scale data collection and analysis. Algorithms are used constantly in math ranging 

from standard processes of multiplication and division, all the way to abstract computer modelling of 

sophisticated phenomenon.  

The example IACT items described in this section are from the elementary school test. A set of items for each 

CT practice was preceded by a warm-up item to familiarize students with the mechanics of the item. 

Descriptions and illustrations of the test items are outlined in Table 1 and described in more detail below. 

 

Table 1: Operationalization of CT Practices in IACT Assessment Items 

CT Practice Puzzle Type Task Measure 

Problem 

Decomposition 

Mastermind Identify combination of colour 

and shape of item through 

testing 

Efficiency: ratio of moves to 

required moves 

Pattern 

Recognition 

Raven's 

Progressive 

Matrix 

Select one piece that best 

completes a pattern 

Number correct 

Abstraction Sudoku Fill grid spaces with coloured 

shapes according to a general 

rule 

Percentage correct 

Algorithm Design Maze solving Design a sequence of moves to 

complete the maze 

Efficiency: ratio of moves to 

required moves 

 

Problem Decomposition 

Items related to problem decomposition involve a series of progressively harder puzzles that are similar 

to the game Mastermind. Students use feedback from the item to figure out which values (combination of colour 

and/or shape and/or pattern) solve the puzzle, The puzzle mechanic requires the student to drag objects to the test 

box to get feedback (i.e., correct or incorrect) with regard to colour and shape in as few moves as possible. 

Figure 1 shows an easy problem. The correct answer for this item is “red diamond.” If the student first placed the 
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red circle in the test box, a green check will appear for “colour” and a red X would appear for shape. This tells 

the student to continue using a red object but not a circle. This leaves only the red diamond option, which is 

correct. The number of moves to solve the problem reflects the efficiency of problem decomposition skill. 

 

Figure 1. Example logic puzzle item targeting Problem Decomposition 

 

 
 

Pattern Recognition 

Raven’s Progressive Matrices (RPM) (Raven, 1981) were used to assess Pattern Recognition. The RPM 

items serve as a baseline of learners’ ability to infer and apply different patterns in increasingly complex 

situations. RPM were designed to measure abstract reasoning involving patterns, and Raven (2000) pointed out 

that the RPM focuses on two components of general cognitive ability—making sense out of apparent chaos and 

generating a high-level schema to handle complexity. In the fairly easy item shown in Figure 2, the student needs 

to recognize that the top two black triangles are mirror images of each other, thus the bottom two should also be 

mirror images. Option 5 (middle item in the bottom row) is the correct response.   

 

Figure 2. Example logic puzzle item targeting Pattern Recognition 
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Abstraction 

To assess Abstraction, pattern-matching puzzles were used. These puzzles require students to identify 

an underlying general rule associated with the patterns of objects and complete the puzzle by applying that rule. 

As shown in Figure 3, students drag objects from an inventory on the right into the grey cells on the left to 

complete the pattern, and thus applying the inferred rule. Each coloured shape can only appear once in the 

solution. In the example shown, the underlying pattern is relatively easy to discern—rows are the same colour, 

and columns are the same shape. Thus, the correct answer would be black square (upper left), blue circle 

(middle), and red triangle (lower right). In later tasks, the patterns are more complex and have more cells, thus 

generating more complex rules. 

 

Figure 3. Example logic puzzle item targeting Abstraction 

 
 

Algorithm Design 

To assess Algorithm Design, the puzzles require a student to set up a sequence of arrows that will guide 

a character along a path in a maze that follows specified criteria. As shown in Figure 4, the sequencing task 

requires the student to insert directional arrows, along with the number of iterations needed to guide a leprechaun 
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to a pot of gold in the fewest steps possible, while avoiding certain obstacles. The fewest steps possible in this 

case is five (one step to the right, one step down, one step to the right, and two steps down). 

 

Figure 4. Example logic puzzle item targeting Algorithm Design 

 
 

These items were designed to measure individual CT practices as well as being aggregated for an overall CT 

measure.   

The remainder of this paper discusses evidence for the validity and reliability of the IACT logic 

puzzles as measures of CT practices. 

 

3. Research Questions & Hypotheses 

The central question guiding this research is the extent to which the interactive logic puzzles provide a 

valid and reliable assessment of upper elementary- and middle-school learners’ CT practices. To study this 

question, the results from students’ performance on the puzzle tasks were examined using four types of analyses 

to test specific types of validity and reliability evidence with the following hypotheses about the results of each 

of these analyses: 

o Study 1: Correlations among each set of IACT items (associated with each CT practice) were examined 

to establish evidence of construct validity—that all measures are distinct facets of the same broader CT 

construct.  

 

Hypothesis 1: The CT practice measures will be moderately correlated with one another. Since the CT 

measures examine practices that are all facets of the same broader CT construct, we hypothesize that 

they will generally be aligned and share variance along the dimension of CT.  

Study 2: The CT pre-measures were correlated with post-measures to establish evidence of IACT test-

retest reliability. 
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Hypothesis 2: The pre-measures will be moderately to highly correlated with the post-measures, 

suggesting the versions of the logic puzzles are measuring the same construct at each time. The two sets 

of items designed were assumed to be equivalent and randomly assigned between the pre- and post-

measures. It is intended that the variation between pre-and post-measures be attributable only to 

changes in the learners’ practices rather than differences in the test questions themselves. 

• Study 3: The CT post-measures were correlated with external measures (i.e., teacher ratings of their 

students’ CT practices for one sample and students’ scores on Bebras items for another sample) to 

examine concurrent validity.  

Hypothesis 3: We hypothesize that the CT measures will be moderately correlated with teacher ratings 

of each CT skills and student scores of Bebras items, at the aggregate level and possibly at the level of 

each individual CT practice. The latter is questionable because of the amount of overlap among the 

individual practices. 

• Study 4:  The validity and reliability analyses in studies 1-3 will be repeated separately for 

students with and without IEPs or 504 plan. 

Hypothesis 4:  There will be no significant differences in the validity and reliability of IACT scores by 

IEP/504 status of the students. 

 

3.1 Methods 

The validation studies for IACT took place within other research studies. The first sample was collected 

during a national study of classes in grades 3-8 using the CT learning game, Zoombinis. This sample is referred 

to as the Zoombinis sample. The second sample was collected during a longitudinal study of the development of 

CT in grades 3–8 as part of our Research-Practice Partnership (RPP) with a mid-size suburban district outside a 

major Northeastern U.S. city. This sample is referred to as the RPP sample. 

Zoombinis Sample 

During the 2017-18 academic year, 146 teachers from 37 states and 6 countries applied to participate in the 

Zoombinis classroom implementation study. To participate, teachers needed to meet the following criteria: 

● They are an elementary- or middle-school educator (grades 3–8) in the U.S. 

● They teach at least one class that supports CT through logic, coding, or preparation for coding (e.g., 

math, science, computer science, tech ed., etc.).  

● Their students have access to Internet-enabled computers to take the pre- and post- assessments 

required for the study. 

● They complete a teacher agreement outlining the study requirements. 

● They obtain administrative approval to participate in the study. 

 Forty-one teachers met all of these criteria and were accepted into the study. These teachers taught a 

total of 146 classes (10 charter, 21 private, 115 public). They were allowed to contribute a maximum of 3 unique 

classes in the study. To qualify as a unique class, the class must have either covered different subject areas or 

different grade levels of the same subject area. If teachers used Zoombinis in duplicate sections of these classes, 

their students took the pre- and post-assessments, but the teachers did not complete the other study data 
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collection requirements. These classes are considered “non-study” classes to avoid oversampling in the research 

studies, but they were retained for the validity and reliability analyses reported here. Fifty-seven of these classes 

were labelled as study classes (6 charter, 4 private, 47 public) and 91 were non-study classes (4 charter, 17 

private, 70 public).  

The initial Zoombinis student sample consisted of 3,234 elementary- and middle-school students across 

146 classes from charter, private, and public schools (see Table 2). Of these, 2,456 students completed the pre-

assessment and 1,828 completed the post-assessment. A total of 1,498 students completed both measures, 

belonging to 101 classes across 37 teachers. From the subset of 1,828 who completed the post-assessments, 851 

students did not have a complete set of teacher ratings of their CT practices. These students were also excluded 

from the concurrent validity analyses, resulting in a sample size of 977 students with post-assessment and 

teacher ratings data.  

 

RPP Sample. 

Our second sample was collected from a small, suburban public-school district in the Northeastern U.S. 

as part of an RPP that has the mission to promote the infusion of CT into existing STEM curricula. As part of the 

longitudinal study on the impact of the RPP on students’ CT practices in 2017 - 2020, logic puzzles are 

administered to all students in grades 2–8 at the end of each school year. In grades 6–8, science teachers 

administered the logic puzzles during class time. In grades 2–5, technology teachers administered the logic 

puzzles during technology class time. All logic puzzles were completed in May-June of 2018 and 2019, because 

they are rising 6th graders 5th grade students took the middle-school forms of the test. For the RPP middle-school 

sample (grades 5–8), we also added five Bebras items to the pre- and post- assessments to provide evidence of 

concurrent validity. 

The initial RPP student sample was comprised of 3,402 elementary- and middle-school students across 

the district in grades 2–8 (see Table 2) for 2017-18 and 3,697 students for 2018-19. Students who “never joined,” 

“withdrew” from the study, or did not have a complete set of pre-test and post-test scores were excluded from 

further analyses. The reduced samples across 6 elementary and 2 middle schools consisted of 3,066 students for 

2017-18 and 2,909 students for 2018-19.  A set of 1,414 students had complete pre-test and post-test scores 

during the first and second years of data collection---23% of these students had IEPs/504s (N=337), slightly 

above the national percentage of students with learning disabilities (Digest for Education Statistics, 2016; 

Horowitz, Rawe, Whittaker, 2017). 

 

Table 2. Description of student samples 

 Zoombinis RPP 

 Pre-Assessment Post Assessment Both 2017-18 2018-19 Both 
Total sample of 

students 
3,234 3,126  3,402 3,697  
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Never joined or 

withdrew from 

the study 

262 154 146 300 

Incomplete 

Assessment 

Data 

533 1155 178 476 

Final sample of 

students 
2,439 1,817 1,435  3,078      2,921 2,301 

Analyses 
Construct 

Validity 

Construct 

Validity 

Test-

Retest 

Construct 

Validity 

Construct 

Validity 

Test-

Retest 

 

Data Cleaning  

There were 2,788 Zoombinis students who either had pre-test or post-assessments. Two outliers from 

the performance on Algorithm Design (mean number of moves) were dropped. 18 students were excluded 

because they had completed an incorrect assessment for their grade level. This resulted in a total of 2,768 

Zoombinis students.  There were 3,666 RPP students who either had pre- or post-tests. Most of the students who 

had data from one year only were aging in (2nd grade in year 2) or aging out (8th grade in Year 1) of the sample.  

The final sample of RPP students with data from both years was 1,414. Details of data cleaning to arrive at the 

final sample of students who completed pre- and post-assessments can be found in Appendix A. 

 

3.2 Data Collection  

In each study, a variety of data was collected: student pre-post assessments, teacher logs of their CT 

instructional practices, and teacher interviews. In addition, as external measures of CT, teacher ratings of their 

students’ CT practices were collected in the Zoombinis sample, and student scores on Bebras items were used for 

middle-school students (grades 5–8) in the RPP sample. The pre-post assessments and, when available, teacher 

CT ratings or student scores on Bebras items were used for the validation study of IACT assessments reported on 

in this paper. 

 

Assessment Data Collection 

In the IACT pre and post-tests, there were 3-6 items of increasing difficulty levels for each of the 4 

practices of CT. All items had time limits for completion—2 minutes for the easier items and 5 minutes for the 

more difficult items. Teachers agreed to allot 30–45 minutes of class time for the administration of the pre-

assessment and again for the post-assessment.  Assessments were designed to take 30 minutes to allow students 

150 percent of that to complete the assessment. 

For the Zoombinis sample, teachers decided when to administer the pre-post assessments based on when 

Zoombinis best fit into their CT instruction. Teachers asked their students to complete the pre-assessments before 

they started playing Zoombinis. When teachers completed their CT instruction, they administered the post-

assessment.  



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 41 

For the RPP sample, the IACT items were administered near the end of each school year through the 

district in grades 2–8. The data from Spring 2017 is used as the Time 1 measure for this study and data from 

Spring 2018 is used as the Time 2 measure.  

All IACT data were collected through our team’s game data architecture, Data Arcade. Data Arcade 

facilitated the collection of all pre-assessment data and unlocked the game once the pre-assessment had been 

completed. Teachers created non-identifying usernames for their students in Data Arcade. Only teachers knew 

the real identities of students in their classes. Data Arcade then assigned a unique password and UserID number 

to each student. Teachers, in turn, shared the usernames and passwords with the students. This UserID was used 

to link assessment, game, CT rating, and Bebras data. 

 

IACT Scoring 

Pre-post assessment scale scores were calculated for the IACT logic puzzle items as the means of items 

per category: Problem Decomposition, Pattern Recognition, Abstraction, and Algorithm Design. This was 

calculated slightly differently for each set of tasks. The Problem Decomposition tasks provided feedback after 

each move, and the number of moves was unlimited, so the scores relied on the mean efficiency a student used to 

solve the puzzles.  Efficiency is defined as the number of moves the student took divided by the minimum 

number of moves needed to solve the puzzle.  In cases where the player lucked into getting a solution in less 

than the minimum number of moves, their efficiency was given a value of 1. The Pattern Recognition tasks 

simply had the student choose a response, so the scoring used the mean number of correct responses. Because 

the Abstraction puzzles allowed for individual array spaces to be counted as incorrect or correct, the mean 

percentage of spaces with correct responses was used. The Algorithm Design puzzles allowed for testing so the 

mean efficiency (# moves / minimum # moves needed) was also used in scoring. Because the first items for each 

category were used for practice, these items were dropped from mean calculations. Table 3 describes the 

calculations of the scale scores for each CT practice.  

The middle school form was designed to be more difficult than the elementary form.  To account for 

this, scores were standardized by form (elementary vs. middle school). The standardized scores for the CT 

practices were examined individually and in aggregate (Table 3). An aggregate measure of CT was calculated by 

first standardizing the means of each item type to produce a Z-score for each CT practice. The final Z-scores 

were averaged to create the aggregate CT measure used in this study. The units are the number of standard 

deviations from the mean Z-score of the four CT practices.  

 

Table 3. Scoring of assessment items for each CT practice 

CT Practice Number of items Measure used for scoring 

Problem Decomposition 4 Mean efficiency (# moves/min # moves)  

Pattern Recognition 5 Mean number of correct responses  
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Abstraction 6 
Mean percentage of array spaces completed 
correctly 

Algorithm Design 3 Mean efficiency (# moves/min # moves) 
 

Aggregated CT 
18 

Average of Z-scores of 4 CT practice 
measures above 

 

If a student had 0 number of moves on one of the Problem Decomposition or Algorithm Design items, 

this indicated that the student timed out of solving the puzzle. These timed-out instances were excluded from the 

computation of the mean efficiency in Problem Decomposition and Algorithm Design. Appendix B summarize 

the number of students who had complete, timed out, and missing pre-post assessments (mean efficiency) for 

Problem Decomposition and Algorithm Design, respectively.  

 

Teacher CT Ratings Sheets  

A CT rating sheet was designed and reviewed by 3-4 teachers before its use in the full study. Teachers 

in the study were given a brief description of the instrument by a research team member, along with its purpose 

and how to use it. After they administered the post-assessments, Zoombinis teachers were asked to rate each of 

their students based on the 4 CT practices in their students’ work. This was an attempt to have an external 

measure of CT that still did not rely on text responses or coding. Sample behaviours were provided with a rubric 

so that teachers had a shared definition of each CT practice (See Table 4).  

 

Table 4. Teacher ratings of their students’ CT practices: Definitions and sample behaviours 

CT Practice Definition Sample Behaviours 

Problem Decomposition: Breaking a problem into 
smaller, more manageable parts 

1. When faced with a complex task, breaks it into 
smaller, simpler tasks. 
2. Considers one variable at a time when thinking 
about cause and effect. 

Pattern Recognition: Identifying patterns, trends, 
or similarities between things 

1. Identifies similarities and differences in sets of 
objects. 
2. Applies a pattern to predict an outcome. 

Abstraction: Removing specific differences/details 
to make a generalized solution that will work for 
multiple problems 

1. Identifies general rules to explain trends and 
patterns. 
2. Identifies common strategies that can apply to 
many problems 

Algorithm Design: Creating an ordered series of 
instructions for solving a problem or performing a 
task 

1. Writes or describes exact set of instructions for 
a complex task 
2. Recognizes the importance of the order of 
events in solving a problem. 

 

Teachers received a Google Sheet with the Data Arcade usernames of students in each of their classes. 

Next to each student’s username was a dropdown 5-point rating scale: Great Extent (5), Large Extent (4), 
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Moderate Extent (3), Slight Extent (2), Not at All (1). For each student, teachers were asked to select one rating 

for each CT practice based on the extent to which they had seen those behaviours in their students’ work and 

overall classroom practices.  

 

Bebras Items 

Because the CT Rating sheet depended on teacher’s ratings without substantive preparation or 

guidance, we also wanted to use a set of relatively established external items to compare results with the IACT 

items. We selected the Bebras tasks because they were closest to our needs, but we still had reservations that 

they would adequately measure CT practices among neurodiverse learners. We selected five items from Bebras 

that aligned with the four CT practices of our study. The first item was a maze task where students were to 

sequence a series of arrows to send a robot through a maze. This is analogous to the IACT items for Algorithm 

Design. The second item was a pattern matching game where shapes were combined to make another shape, 

analogous to the Raven’s Progressive Matrices we used in IACT to measure Pattern Recognition. The third and 

fourth items were Problem Decomposition items analogous to the IACT Problem Decomposition item that 

mimicked the game Mastermind, but with considerably more text. The fifth Bebras item required students to 

generalize a rule to break a code, similar to the IACT Abstraction items. The five Bebras items used in this study 

are provided in Appendix C.  

IEP/504 Plan Status 

The RPP school district provided IEP/504 plan status for all students in their district each year of the 

study.  Only students with IEP or 504 status of ‘Active’ in a specific school year were categorized as having an 

IEP/504 plan. 

 

4. Results 

To study the construct validity and reliability of the IACT items, addressing the first and second 

hypotheses, a series of correlational analyses were conducted using Pearson correlations with the following 

items: 1) pre-test measures, 2) post-test measures, and 3) test-retest of the same CT practice. To address the third 

hypothesis, namely concurrent validity, Pearson correlations were computed between post-test measures and 

teacher ratings of their students’ CT for the Zoombinis sample, and between post-test measures and Bebras items 

for the RPP sample. All of these analyses were completed separately for students with and without IEP/504 plans 

to address the fourth hypothesis.  Across all findings, mean moves was expected to be negatively correlated 

with mean number of correct responses and mean percentage of correct responses, as higher mean moves 

suggested less efficient solutions in the pre-test and post-test measures.  

 

Construct Validity 

Tables 5 and 6 display the correlations among the standardized IACT measures for the Zoombinis and 

RPP samples. In both samples, there are low to moderate correlations among the measures for both the pre- and 

the post-assessments (see Appendix D for the complete list of correlations). This supports the first hypothesis 

that the measures of the CT practices are similar yet distinct. The intercorrelation is highest between Pattern 
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Recognition and Abstraction, which points to the strong dependence of these practices. Abstraction can be 

thought of as the generalization of observed patterns into a rule or category, so it is reasonable that students who 

are strong in Abstraction would also be strong in Pattern Recognition.  

 

Table 5. Pearson intercorrelations of pre-assessment measures for the Zoombinis and RPP samples  

Correlations 

between CT 

Practice 

CT Practice Zoombinis sample 

(N= 2206-2314) 

RPP sample 

(N= 2732-2937) 

Average across 

samples 

Problem 

Decomposition  

Avg Efficiency) 

Pattern Recognition 
(Correct) 

0.18 0.12 0.15 

Abstraction (Percent 
Correct Spaces) 

0.23 0.16 0.20 

Algorithm Design 
(Avg Efficiency) 

0.27 0.14 0.21 

Pattern 

Recognition 

(Correct) 

Abstraction (Percent 
Correct) 

0.32 0.30 0.31 

Algorithm Design 
(Avg Efficiency) 

0.24 0.21 0.23 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design 
(Avg Efficiency) 

0.26 0.26 0.26 

Note: Significant at an alpha level of 0.0001.  

 

 

 

 

 

 

 

 

Table 6. Pearson intercorrelations of post-assessment measures for Zoombinis and RPP samples 

Correlations 

between CT 

Practices 

CT Practice Zoombinis sample 

(N= 1600-1773) 

RPP sample 

(N= 2315-2623) 

Average across 

samples 
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Problem 

Decomposition  

Avg Efficiency) 

Pattern Recognition 
(Correct) 

0.19 0.12 0.16 

Abstraction (Percent 
Correct) 

0.24 0.20 0.22 

Algorithm Design 
(Avg Efficiency) 

0.22 0.14 0.18 

Pattern 

Recognition (% 

Correct) 

Abstraction (Percent 
Correct) 

0.35 0.31 0.33 

Algorithm Design 
(Avg Efficiency) 

0.23 0.23 0.23 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design 
(Avg Efficiency) 

0.24 0.23 0.24 

Note: Significant at an alpha level of 0.0001. 

 

Test-Retest Reliability 

Table 7 displays the correlations for test-retest reliability among the standardized CT measures. 

Correlation coefficients may be higher for the Zoombinis sample than the RPP sample because all students in 

Zoombinis classrooms experienced some degree of CT intervention whereas this was true for less than a third of 

the RPP sample. There were varied results for the measures of individual CT practices, with acceptable test-

reliability for the aggregated CT measure but below what was expected for the individual practices across both 

samples. The Pattern Recognition items were Raven’s Progressive Matrices drawn from a public sample on the 

Internet. While there are no published test-retest results for these particular sets of items, this research typically 

has test-retest reliability of between 0.70 and 0.85 (e.g., Abdel-Khalek, 2005; Raven, Raven, & Court, 2000).  

 

Table 7. Results for test-retest reliability 

 
Zoombinis sample 

(N= 1330-1434) 

RPP sample 

(N=1955-2299) 

Average across 

samples 

Correlation coefficients for test-retest 

reliability  
Pearson r 

Problem Decomposition (Avg 

Efficiency) 
0.26 0.23 0.25 

Pattern Recognition (% Correct) 0.21 0.14 0.18 
Abstraction (% Correct Spaces) 0.38 0.41 0.40 

Algorithm Design (Avg Efficiency) 0.27 0.18 0.23 
Aggregated CT 0.55 0.43 0.49 
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Note: Significant at an alpha level of 0.0001.   

 

While results for the measures of individual CT practices are considerably lower than what is 

indicated in prior literature, the finding for the aggregated CT measure in the Zoombinis sample indicate strong 

test-retest reliability. The aggregated CT measure is more stable across time as compared to measures of 

individual CT practices.  

 

Concurrent Validity 

Standardized measures of individual CT practices from IACT did not strongly correlate with the 

individual practices measured by the teacher ratings and scores on Bebras items (see Appendix E for results from 

the Zoombinis sample and the RPP samples, respectively). The correlations between the IACT measures and the 

external measures were no higher for corresponding practices than they were for non-corresponding practices. 

Neither teacher ratings nor student performance on comparable Bebras items were able to distinguish well 

between the individual practices of CT. This may likely be due to the highly overlapping nature of the CT 

practices discussed earlier. In the Zoombinis sample, the correlations between teacher CT ratings were 

moderately high, ranging from 0.70 to 0.78 for Zoombinis (see Appendix F), suggesting that these teachers were 

not distinguishing between CT practices when rating their students. There was some distinction between 

practices when using the Bebras items, however, suggesting that it may have been a limitation of the teacher 

rating sheet in supporting teachers’ distinction of the individual CT practices.   

 As seen in Table 8 while the individual practices were not correlated with the external measures, the 

aggregated measure of CT was moderately correlated with the teacher CT ratings for the Zoombinis sample , r 

(941) = 0.29, p < 0.0001 and with students’ Bebras scores for the RPP sample, r (1408) = 0.40, p < 0.0001. In 

particular, the IACT aggregated measure of CT was positively associated with an aggregated CT measure using 

five Bebras items, providing some evidence that these measures assess the same construct. In other words, 

students who performed better in all four CT practices as measured by IACT were also more likely to answer a 

higher percentage of the Bebras items correctly. While the correlations were moderate between aggregated 

measures of CT, the hypothesized moderate relationship between IACT and Bebras items at the individual CT 

practice level was not found. Those results can be found in Appendix E.   

 

Table 8. Results for concurrent validity 

Correlations between 

External CT measures 
Zoombinis Teacher 

Ratings 

(N=941) 

RPP sample 

(N=1408) 
Average across samples 

Aggregated CT 0.29 0.40 0.35 

 

Comparison of Reliability and Validity by students with and without IEP/504s 
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All three analyses above included students with and without IEP/504s.  In this section those analyses 

are repeated separately for students with and without IEP/504s and compared using a Fisher’s Z-transformation 

in order to test the significance of differences between correlations from both groups. 

 

Construct Validity 

Tables 9 and 10 display the correlations among the standardized pre and post IACT measures for 

students with and without IEP/504s in the RPP sample. In both samples, there are low to moderate correlations 

among the measures for both the pre- and the post-assessments.  After transforming these correlations to 

Fisher’s Z scores, there were no significant differences in the construct validity by IEP/504 status of the students. 

This supports the fourth hypothesis that the measures of the CT practices are similar yet distinct regardless of 

student IEP/504 status.  

 

 

Table 9. Pearson intercorrelations of pre-assessment measures for students with and without IEP’/504s 

in the RPP samples  

Correlations 

between CT 

Practice 

CT Practice Students with 

IEP/504s 

(N= 584-658) 

Students without 

IEP/504s 

(N= 2230-2279) 

Problem 

Decomposition  

Avg Efficiency) 

Pattern 
Recognition 
(Correct) 

0.15 0.08 

Abstraction 
(Percent Correct 
Spaces) 

0.16 0.12 

Algorithm Design 
(Avg Efficiency) 

0.17 0.10 

Pattern 

Recognition 

(Correct) 

Abstraction 
(Percent Correct) 

0.29 0.28 

Algorithm Design 
(Avg Efficiency) 

0.16 0.21 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design 
(Avg Efficiency) 

0.27 0.23 

Note: No differences between correlations were significant at an alpha level of 0.05. 
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Table 10. Pearson intercorrelations of post-assessment measures for students with and without IEP’/504s in the 

RPP samples  

Correlations 

between CT 

Practice 

CT Practice Students with 

IEP/504s 

(N= 462-573) 

Students without 

IEP/504s 

(N= 1853-2049) 

Problem 

Decomposition  

Avg Efficiency) 

Pattern 
Recognition 
(Correct) 

0.10 0.09 

Abstraction 
(Percent Correct 
Spaces) 

0.21 0.16 

Algorithm Design 
(Avg Efficiency) 

0.19 0.10 

Pattern 

Recognition 

(Correct) 

Abstraction 
(Percent Correct) 

0.32 0.28 

Algorithm Design 
(Avg Efficiency) 

0.29 0.20 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design 
(Avg Efficiency) 

0.30 0.19 

Note: No differences between correlations were significant at an alpha level of 0.05 

 

Test-Retest Reliability 

Table 11 displays the correlations for test-retest reliability of the standardized CT measures among 

students with and without IEP/504 plans.  There was no significant difference in test-retest reliability across 

these groups. 

 

Table 11. Results for test-retest reliability by student IEP/504 status 

Pearson r for test-retest reliability 
Students with IEP/504s 

(N= 337) 

Students without 

IEP/504s 

(N=1077) 

Aggregated CT 0.41 0.37 
Note: No differences between correlations were significant at an 
alpha level of 0.05. 

 

 

Concurrent Validity 
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The aggregated measure of CT was moderately correlated with students’ Bebras scores for the students 

with IEP/504 plans, r (275) = 0.34, p < 0.0001, and students without IEP/504 plans, r (1004) = 0.41, p <0 .0001.  

These correlations were not statistically different providing some evidence that the concurrent validity of the 

IACT does not differ by student IEP/504 status. 

 

Table 12. Results for concurrent validity by student IEP/504 status 

Correlations with IACT and Bebras 

measures 
Students with 

IEP/504s 

(N=275) 

Students without 

IEP/504s 

(N=1004)  

Aggregated CT 0.34 0.41 

Note: No differences between correlations were significant at an 
alpha level of 0.05. 

 

 

5. Discussion 

Validated measures of CT practices were needed to conduct research on game-based learning with the 

CT learning game, Zoombinis. The target audience included learners with IEPs who may have difficulty with 

textual assessment items and/or have no pre-existing knowledge of any type of coding language (including block-

style introductory coding). Because of this we designed the IACT items based on upon similar models from 

psychological assessments that are typically used with a neurodiverse audience.  In one case, for Pattern 

Recognition, we used an instrument drawn directly from clinical usage, the Raven’s Progressive Matrices (Raven, 

2000). For the other CT practices, we modified common interactive logic puzzles that used little to no text and 

required no previous coding experience. These items were designed for use in the Zoombinis study, and while they 

are not exactly aligned with the CT practices themselves, may provide a model for how more generalizable puzzles 

can be used to assess CT practices with young and neurodiverse learners and outside coding and computer science 

examples. The IACT items are intended to measure the four fundamental CT practices—Problem Decomposition, 

Pattern Recognition, Abstraction, and Algorithm Design—that were most evident in students’ Zoombinis 

gameplay.  

To explore the validity of these items, data were collected from two samples, along with external 

measures. The first sample included over 2500 elementary- and middle-school students who took part in a game-

based learning study for the game Zoombinis. For this sample, we collected IACT data as well as teachers’ CT 

ratings of their students on the same CT practices as IACT. We found with this sample that IACT items showed 

promise to measure CT, but we lacked a solid external measure for validation. Thus, we extended the study to 

include a second sample from a district-wide study where assessments were administered at the end of two 

different school years. For this sample, we collected IACT data as well as teachers’ CT ratings of their students 

on the same CT practices as IACT, and we added Bebras items that aligned with the CT practices that were also 

collected from middle-school students. 
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The first hypothesis we studied was that the IACT demonstrated construct validity and thus could 

independently measure the four practices of CT. This hypothesis was confirmed. The items for each of the CT 

practices showed distinct results. 

The second hypothesis we studied was that the IACT demonstrated a reliable measure over time. The 

test-retest reliability results between the pre- and post-tests for the individual CT practices were not strong 

enough to make a clear argument that learners perform consistently on these items for individual practices over 

time. Findings related to the aggregated measure of CT, however, indicated moderate test-retest reliability 

suggesting that this is a more consistent measure to use than items related to individual CT practices. This 

finding suggests that using an aggregated measure of CT can be appropriate for examining change in students’ 

overall CT practices between two different points in time.  

In confirmation of the third hypothesis, the aggregated CT assessment showed moderate evidence of 

concurrent validity. Our research correlated the IACT items to other external measures of these CT practices—a 

teacher CT rating sheet and Bebras items for the middle-school students in the RPP sample. Learners’ overall 

performance aggregated across the four CT practices correlated with the teacher CT ratings of their students and 

the students’ Bebras scores enough to make an argument for concurrent validity of the IACT items as an overall 

measure of CT. More refinement is needed for the IACT measures before they could serve as distinct 

assessments of individual CT practices, and it may be that these practices have too much overlap for distinction.  

The final hypothesis, that the reliability and validity of IACT would not different by student IEP/504 

status, was confirmed across all three analyses.  This supports our decision to design IACT items that were 

interactive (instead of multiple choice) and relied on limited text. 

 

6. Conclusions 

These findings suggest that IACT shows promise to contribute to the field of CT assessment but needs 

refinement to reach strong validity. In this current research, we have demonstrated moderate test-retest reliability 

and concurrent validity, and low to moderate construct validity for an aggregated measure of CT. IACT may be 

able to be further refined to distinguish and assess individual CT practices with future research. 

As the field of CT education rapidly moves forward, it is important to establish a body of learning 

assessments that adequately measure students’ practices associated with CT. In particular, it is important that 

these assessments are designed to capture the strengths and weaknesses demonstrated by a broad range of 

learners, including learners who may struggle with textual assessments and who have no pre-existing coding 

experience. This suggests the need for CT assessments that can measure practices without relying on text or 

coding. The IACT logic puzzles represent an important first step in this endeavor.  

Not only are these items among the first with validation studies using a large number of learners, but 

they also have the unique strength of being designed with accessibility and learner variability in mind. The 

assessments extract information about students’ CT practices in Problem Decomposition, Pattern Recognition, 

Abstraction, and Algorithm Design through students’ activity in a set of logic puzzles as opposed to coding tasks 

or written questions. This work contributes not only to the field of measurement of CT, but also to the important 

task of finding inclusive ways to assess learning.  
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Limitations  

There are several limitations to this study. Foremost is the lack of established external measures to 

which the validity of the IACT assessments can be compared. CT is an emergent field in K-12 education, and 

there are few assessment instruments for this age group and/or for learners with neurodiversity. IACT was 

designed for research in a game-based learning study that included neurodiverse students who may have not had 

previous experience with CT or coding as a target audience. The specific context of the research study also 

meant that the IACT items focus on four fundamental concepts of CT and do not attempt to define CT nor 

encompass all practices that could be included in CT. This assessment was designed to be administered in one 

class period, limiting the number of items for each CT construct. This likely played a role in the lower than 

typical correlations.  Third, item type is confounded with CT construct (i.e., all items for a specific CT construct 

have the same unique item format), making a factor analysis of all CT items not meaningful (i.e., if items 

clustered by construct it could also be due to having a similar item type). Finally, multilevel analyses were not 

used in the reported study of the IACT items. While the data we used for these analyses has a nested structure, 

we did not have sufficient sample size at each level to adjust these correlations for this nestedness (e.g., students 

nested in courses nested in teachers). Future validation of IACT would need to account for variation among 

classes and teachers.  

 

 

References 

Abdel-Khalek, A. M. (2005). Reliability and factorial validity of the standard progressive matrices among 

Kuwaiti children ages 8 to 15 years. Perceptual and Motor Skills, 101(2), 409–412. 

Allan, W., Coulter, B., Denner, J., Erickson, J., Lee, I., Malyn-Smith, J., & Martin, F. (2010). Computational 

Thinking for Youth. ITEST Small Working Group on Computational Thinking. 

American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: 

Oxford University Press. 

Asbell-Clarke, J., Rowe, E., Almeda, V., Edwards, T., Bardar, E., Gasca, S., Baker, R.S., & Scruggs, R. 

(2020). The Development of Students’ Computational Thinking Practices in Elementary- and Middle-

School Classes using the Learning Game, Zoombinis.  Computers in Human Behavior,  

https://doi.org/10.1016/j.chb.2020.106587 

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., ... & Stupurienė, G. (2015, July). 

Concepts in K-9 computer science education. In Proceedings of the 2015 ITiCSE on Working Group 

Reports (pp. 85–116). ACM. 

Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: hyper-

systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the 

Royal Society B: Biological Sciences, 364(1522), 1377–1383. 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the 

role of the computer science education community? ACM Inroads, 2(1), 48–54.  



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 52 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of 

computational thinking. Paper presented at the Proceedings of the 2012 annual meeting of the American 

Educational Research Association, Vancouver, Canada.  

Computer Science Teachers Association. (2017). CSTA K-12 Computer Science Standards. Retrieved from 

https://www.csteachers.org/page/standards. 

Dagienė, V., & Futschek, G. (2008, July). Bebras international contest on informatics and computer literacy: 

Criteria for good tasks. In International conference on informatics in secondary schools-evolution and 

perspectives (pp. 19–30). Springer, Berlin, Heidelberg. 

Dagienė, V., Stupurienė, G., & Vinikienė, L. (2016, June). Promoting inclusive informatics education through 

the Bebras challenge to all K-12 students. In Proceedings of the 17th International Conference on 

Computer Systems and Technologies 2016 (pp. 407–414). ACM. 

Dawson, M., Soulières, I., Ann Gernsbacher, M., & Mottron, L. (2007). The level and nature of autistic 

intelligence. Psychological Science, 18(8), 657–662. 

Dewey, J. (1938). Logic, the theory of inquiry. New York: Holt Pub.  

Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. 

Teachers College Press. 

González, M. R. (2015). Computational thinking test: Design guidelines and content validation. In Proceedings 

of EDULEARN15 conference (pp. 2436–2444).  

Grover, S., & Basu, S. (2017, March). Measuring student learning in introductory block-based programming: 

Examining misconceptions of loops, variables, and Boolean logic. In Proceedings of the 2017 ACM 

SIGCSE technical symposium on computer science education (pp. 267–272). ACM. 

Grover, S., Cooper, S., & Pea, R. (2014, June). Assessing computational learning in K-12. In Proceedings of the 

2014 conference on Innovation & technology in computer science education (pp. 57–62). ACM.  

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State of the Field. Educational 

Researcher, 42(1), 38–43.   

Haladyna, T. M., & Downing, S. M. (2004). Construct‐irrelevant variance in high‐stakes testing. Educational 

Measurement: Issues and Practice, 23(1), 17–27. 

Horowitz, S. H., Rawe, J., & Whittaker, M. C. (2017). The State of Learning Disabilities: Understanding the 1 in 

5. New York: National Center for Learning Disabilities. 

Izu, C., Mirolo, C., Settle, A., Mannila, L., & Stupurienė, G. (2017). Exploring Bebras Tasks Content and 

Performance: A Multinational Study. Informatics in Education, 16(1), 39–59. 

https://files.eric.ed.gov/fulltext/EJ1140704.pdf.   

Karalar, H., & Alpaslan, M. M. (2021). Assessment of Eighth Grade Students’ Domain-General Computational 

Thinking Skills. International Journal of Computer Science Education in Schools, 5(1), 35 - 47. 

https://doi.org/10.21585/ijcses.v5i1.126 

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014, July). Real time assessment of 

computational thinking. In IEEE Symposium on Visual Languages and Human-Centric Computing (pp. 

49–52). IEEE.  



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 53 

Kruit, P. M., Oostdam, R. J., van den Berg, E., & Schuitema, J. A. (2018). Assessing students’ ability in 

performing scientific inquiry: instruments for measuring science skills in primary education. Research 

in Science & Technological Education, 1–27. 

Lundh, P., Grover, S., Jackiw, N., & Basu, S. (2018). Concepts Before Coding: Instructional Support for 

Introductory Programming Concepts in Middle School Computer Science. Annual Meeting of the 

American Education Research Association. 

Martinuzzi, A., & Krumay, B. (2013). The good, the bad, and the successful–how corporate social responsibility 

leads to competitive advantage and organizational transformation. Journal of Change 

Management, 13(4), 424–443. 

Mishra, P., Yadav, A., & Deep-Play Research Group. (2013). Rethinking technology & creativity in the 21st 

century. TechTrends, 57(3), 10–14. 

Moreno-León, J., & Robles, G. (2015, November). Dr. Scratch: a Web Tool to Automatically Evaluate Scratch 

Projects. In WiPSCE (pp. 132-133). https://www.researchgate.net/profile/Jesus_Moreno-

Leon/publication/284181364_Dr_Scratch_a_Web_Tool_to_Automatically_Evaluate_Scratch_Projects/l

inks/564eccb508aefe619b0ff212.pdf. 

National Academy of Sciences on Computational Thinking (2010). Report of a Workshop on The Scope and 

Nature of Computational Thinking. National Academies Press.  

National Research Council (1996). National Science Education Standards. Washington, DC: The National 

Academies Press. p. 23. doi:10.17226/4962. 

O’Leary, U. M., Rusch, K. M., & Guastello, S. J. (1991). Estimating age‐stratified WAIS‐R IQS from scores on 

the Raven’s standard progressive matrices. Journal of Clinical Psychology, 47(2), 277–284. 

Ota, G., Morimoto, Y., & Kato, H. (2016, September). Ninja code village for scratch: Function samples/function 

analyser and automatic assessment of computational thinking concepts. In 2016 IEEE Symposium on 

Visual Languages and Human-Centric Computing (VL/HCC) (pp. 238–239). IEEE. 

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc. 

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1-11). 

Norwood, NJ: Ablex.  

Raven, J. C. (1981). Manual for Raven’s progressive matrices and vocabulary scales. Research supplement 

No.1: The 1979 British standardisation of the standard progressive matrices and mill hill vocabulary 

scales, together with comparative data from earlier studies in the UK, US, Canada, Germany and 

Ireland. San Antonio, TX: Harcourt Assessment.  

Raven, J.C., 2000. The Raven’s progressive matrices: Change and stability over culture and time. Cognitive 

Psychology, 41(1), 1–48.  

Raven, J., Raven, J. C., & Court, J. H. (2000). Manual for Raven’s progressive matrices and vocabulary scales. 

Section 3: The standard progressive matrices. Oxford, UK: Oxford Psychologists Press; San Antonio, 

TX: The Psychological Corporation. 

Ritchhart, R., Church, M., & Morrison, K. (2011). Making thinking routines visible: How to promote 

engagement, understanding, and independence for all learners. San Francisco, CA: Jossey-Bass. 



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 54 

Román-González, M., Moreno-León, J., & Robles, G. (2017, July). Complementary tools for computational 

thinking assessment. In Proceedings of International Conference on Computational Thinking Education 

(CTE 2017), S. C Kong, J Sheldon, and K. Y Li (Eds.). The Education University of Hong Kong (pp. 

154–159).  

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking 

with K-12 science education using agent-based computation: A theoretical framework. Education and 

Information Technologies, 18(2), 351–380. 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research 

Review, 22, 142–158. 

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic 

review of empirical studies. Computers and Education, 148, [103798]. 

https://doi.org/10.1016/j.compedu.2019.103798 

U.S. Department of Education, Office of Special Education Programs, Individuals with Disabilities Education 

Act (IDEA) database, retrieved July 26, 2016, from https://www2.ed.gov/programs/osepidea/618-

data/state-level-data-files/index.html#bcc. See Digest of Education Statistics 2016, table 204.30. 

von Wangenheim, C. G., Hauck, J. C., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa, H., & Azevedo, 

L. F. (2018). CodeMaster--Automatic Assessment and Grading of App Inventor and Snap! Programs. 

Informatics in Education, 17(1), 117–150. https://files.eric.ed.gov/fulltext/EJ1177148.pdf.  

Wang, S. How Autism Can Help You Land a Job. The Wall Street Journal, March 27, 2014. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and science classrooms. Journal of Science Education and 

Technology, 25(1), 127–147.   

Weintrop, D., Killen, H., Munzar, T., & Franke, B. (2019, February). Block-based Comprehension: Exploring 

and Explaining Student Outcomes from a Read-only Block-based Exam. In Proceedings of the 50th 

ACM Technical Symposium on Computer Science Education (pp. 1218–1224). ACM.  

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy performance assessment: 

measuring computational thinking in middle school. In Proceedings of the 43rd ACM technical 

symposium on Computer Science Education (pp. 215–220). ACM. 

https://www.cs.auckland.ac.nz/courses/compsci747s2c/lectures/wernerFairyComputationalThinkingAss

essment.pdf.  

Wiebe, E., London, J., Aksit, O., Mott, B. W., Boyer, K. E., & Lester, J. C. (2019, February). Development of a 

Lean Computational Thinking Abilities Assessment for Middle Grades Students. In Proceedings of the 

50th ACM Technical Symposium on Computer Science Education (pp. 456–461). ACM. 

https://dl.acm.org/citation.cfm?id=3287390  

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.   

 

Appendices 

 



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 55 

Appendix A. Details of Data Cleaning  

In the Zoombinis study, there were instances when teachers administered the pre-test later than expected. 

Specifically, students took the pre-test at a time when the post-test was supposed to be administered. In these cases, 

students’ pre-test scores were treated as responses to the post-test measures. Students in these cases had missing 

pre-test scores. This rule was applied to 12 percent of our student sample (n = 329). The pattern of results did not 

vary when these students were removed, so they were retained for the analyses presented in this paper. It was 

possible for participants to complete some but not all of the items, so the total number of responses varied. Between 

23 and 169 students had missing pre-test measures, depending on the CT practice. As many as 2,416 students 

(Study class students = 999, non-study class students = 1,417) had completed all pre-test measures belonging to at 

least one CT practice (Table 2) and were included in the reliability analyses. Of these 2,416 students, 1,523 students 

were from grades 3–5 (733 females, 790 males) and 893 students were from grades 6–8 (422 females, 468 males, 

3 other).   

For the RPP sample, between 22 and 255 students had missing pre-test measures. From a maximum 

number of 3,056 students with pre-test measures, 857 students were from grades 2–4 (429 females, 428 males) 

and 2,199 were from grades 5–8 (1,119 females, 1079 males, 1 other).  

 

 

Table 1. Number of students who took the pre-assessment 

 Zoombinis RPP  

Final Sample of Students 2,439 3,078 
Students with Missing Pre-Assessment Scores* 23–169 22–255 

Number of Students with Pre-Assessment Scores* 2,270–2,416 2,823–3,056 

*Varies by CT Practice   

 

In the Zoombinis sample, between 44 and 188 students had missing post-test measures, depending on the 

CT practice item set. A maximum of 1,773 students (study class students = 1016, non-study class students = 757) 

completed all post-assessment measures belonging to at least one CT practice (Table 2). Of these 1,773 students 

with complete post-assessment data in one CT practice, 1,174 students were from grades 3–5 (566 females, 608 

males) and 599 students were from grades 6–8 (273 females, 323 males, 3 other). There were 1281 students who 

completed all pre-test and post-test measures across all CT practices (Study class students = 702, non-study class 

students = 579). 

 For the RPP sample, between 32 and 367 students had missing post-test measures. As many as 2,889 students 

completed all post-assessments belong to at least one CT practice (Table 3). From the 2,889 students with complete 

post-assessment data in one CT Practice, 1,147 students were from grades 2–4 (575 females, 572 males) and 1,742 

students were from grades 5–8 (891 females, 850 males, 1 other).  

 

 



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 56 

 

 

Table 2. Number of students who took the post-assessment 

 Zoombinis  RPP 

Final Sample of Students 1,817 2,921 

Students with Missing Post-Assessment Scores* 44–188 32–367 

Number of Students with Post-Assessment Scores* 1,629–1,773 2,554–2,889 

*Varies by CT Practice   
 

Appendix B: Timed-out items for Problem Decomposition and Algorithm Design   

Table 1: Number of students with pre-assessment and post-assessment items for Problem Decomposition (average 

efficiency)  

 
Zoombinis  

(pre-assessment)  

Zoombinis  

(post-assessment)  

RPP 2017-

18 

RPP 2018-

19 

Students with Complete Items for 

Problem Decomposition (average 

efficiency) 

2,416 1,773 3,056 2,889 

Students Who Timed Out of 

Assessment Items for Problem 

Decomposition (average efficiency) 

                 106 51 180 142 

Students Who Timed Out of All 

Assessment Items for Problem 

Decomposition (average efficiency) 

                  23 44         22  32 

 

Appendix 2. Number of students with pre-assessment items and post-assessments items for Algorithm Design 

(mean number of optimal moves)  

 
Zoombinis 

 (pre-assessment)  

Zoombinis  

(post-assessment)  
RPP 2017-18 

RPP  2018-

19 

Students with Complete 

Assessment Items for Algorithm 

(average efficiency) 

2,270 1,691 2,823 2,607 

Students Who Timed Out of Pre-

Assessment Items for Algorithm 

Design (average efficiency) 

793 458 1,228 1,070 

Students Who Timed Out of Post-

Assessment Items for Algorithm 

Design (average efficiency) 

169 41 255 314 
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Appendix C. Bebras Items  

We selected 5 Bebras items that corresponded to our 4 types of logic puzzles. Items 3 and 4 are most similar to 

our Problem Decomposition items. Items 1, 2, and 5, and 1 were most similar to our Algorithm Design, Pattern 

Recognition, and Abstraction items, respectively. 

Bebras Item 1  
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Bebras Item 2  
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Bebras Item 3  

 



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bebras Item 4:  
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Bebras Item 5  

 
 

 

Appendix D. Construct Validity 

For the Problem Decomposition and Algorithm Design items, we tried several means of scoring those items. 

These included the total number of moves the player used to solve the problem, percentage of items solved 

correctly, the efficiency of the number of moves players used relative to the maximum number of moves needed 
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to find a solution, and the percentage of items solved optimally. Because students could make more than one 

attempt to solve each Algorithm Design item, the total number of runs they made was also examined.  

 

Percent Correct: Whether or not each item was answered correctly, regardless of the number of moves, was 

recorded. It was possible for students to time out of each item without answering correctly. The percentage of 

items answered correctly was calculated.  

Efficiency: For Problem Decomposition items, a maximum of 3 moves was needed to solve elementary 

problems while 4 moves were needed to solve the middle-school problems. The efficiency with which each item 

was solved was calculated by dividing this maximum number by the actual number of moves taken. In cases 

where players were able to solve the problem with fewer than the maximum number of moves, their efficiency 

was capped at 100 percent. With Algorithm Design items, the minimum number of moves needed to find a 

solution depended on the number of submissions players made. This minimum number of moves was recorded 

for each item. 

Optimal Solutions: Optimal solutions for Problem Decomposition items were those solved with 100 percent 

efficiency. For Algorithm Design items, a solution was considered optimal if it was solved with 100 percent 

efficiency with one submission. 

 

Tables 1 and 2 report the correlations between all of the scoring approaches taken for the Problem 

Decomposition and Algorithm Design items with each other and with the Pattern Recognition and Abstraction 

item percent correct scores. 

 

Table 1. Pearson intercorrelations of pre-assessment measures for the Zoombinis and RPP samples  

Correlations 

between CT 

Practices 

CT Practice  Zoombinis sample 

(N=2206-2416)  

RPP sample 

(N=2772-3056)  

Average across 

samples 

 

Problem 

Decomposition  

(# Moves) 

Problem 
Decomposition 
(Percent Optimal)  

-0.80 -0.77 -0.79 

Problem 
Decomposition 
(Percent Correct)  

-0.18 -0.25 -0.22 

Problem 
Decomposition 
(Avg. Efficiency)  

-0.84 -0.79 -0.81 

Pattern Recognition 
(Correct) 

-0.15 -0.12 -0.13 
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Abstraction (Percent 
Correct Spaces) 

-0.21 -0.11 -0.16 

Algorithm Design (# 
Moves) 

-0.06 -0.04 -0.05 

Algorithm Design 
(Percent Correct)   

-0.23 -0.07 -0.15 

Algorithm Design (# 
Runs)  

0.21 0.07 0.14 

Algorithm Design 
(Avg. Efficiency)  

-0.23 -0.08 -0.15 

Algorithm Design 
(Percent Optimal)  

-0.19 -0.04 -0.12 

Problem 

Decomposition  

(Percent Optimal) 

Problem 
Decomposition 
(Percent Correct)  

0.24 0.33 0.29 

Problem 
Decomposition 
(Avg. Efficiency)  

0.89 0.87 0.88 

Pattern Recognition 
(Correct) 

0.18 0.13 0.15 

Abstraction (Percent 
Correct Spaces) 

0.22 0.16 0.19 

Algorithm Design (# 
Moves) 

0.08 0.06 0.07 

Algorithm Design 
(Percent Correct)   

0.22 0.10 0.16 

Algorithm Design (# 
Runs)  

-0.21 -0.08 -0.14 

Algorithm Design 
(Avg. Efficiency)  

0.23 0.11 0.17 

Algorithm Design 
(Percent Optimal)  

0.20 0.07 0.14 
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Problem 

Decomposition  

(Percent Correct) 

Problem 
Decomposition 
(Avg. Efficiency)  

0.54 0.65 0.60 

Pattern Recognition 
(Correct) 

0.07 0.04 0.06 

Abstraction (Percent 
Correct Spaces) 

0.10 0.09 0.09 

Algorithm Design (# 
Moves) 

0.11 0.09 0.10 

Algorithm Design 
(Percent Correct)   

0.14 0.13 0.13 

Algorithm Design (# 
Runs)  

-0.07 0.01 -0.03 

Algorithm Design 
(Avg. Efficiency)  

0.14 0.13 0.13 

Algorithm Design 
(Percent Optimal)  

0.06 -0.01 0.03 

Problem 

Decomposition  

(Avg. Efficiency) 

Pattern Recognition 
(Correct) 

0.18 0.12 0.15 

Abstraction (Percent 
Correct Spaces) 

0.23 0.16 0.20 

Algorithm Design (# 
Moves) 

0.10 0.08 0.09 

Algorithm Design 
(Percent Correct)   

0.26 0.13 0.20 

Algorithm Design (# 
Runs)  

-0.22 -0.07 -0.15 

Algorithm Design 
(Avg. Efficiency)  

0.27 0.14 0.21 

Algorithm Design 
(Percent Optimal)  

0.21 0.05 0.13 
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Pattern 

Recognition 

(Correct) 

Abstraction (Percent 
Correct Spaces) 

0.32 0.30 0.31 

Algorithm Design (# 
Moves) 

0.11 0.15 0.13 

Algorithm Design 
(Percent Correct)   

0.28 0.24 0.26 

Algorithm Design (# 
Runs)  

-0.26 -0.21 -0.23 

Algorithm Design 
(Avg. Efficiency)  

0.24 0.21 0.23 

Algorithm Design 
(Percent Optimal)  

0.25 0.10 0.18 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design (# 
Moves) 

0.09 0.12 0.11 

Algorithm Design 
(Percent Correct)   

0.28 0.25 0.27 

Algorithm Design (# 
Runs)  

-0.26 -0.24 -0.25 

Algorithm Design 
(Avg. Efficiency)  

0.26 0.26 0.26 

Algorithm Design 
(Percent Optimal)  

0.24 0.16 0.20 

Algorithm Design 

(# Moves) 

Algorithm Design 
(Percent Correct)   

0.34 0.45 0.40 

Algorithm Design (# 
Runs)  

-0.12 -0.11 -0.11 

Algorithm Design 
(Avg. Efficiency)  

0.11 0.35 0.23 

Algorithm Design 
(Percent Optimal)  

-0.08 0.07 -0.01 

Algorithm Design 

(Percent Correct)  

Algorithm Design (# 
Runs)  

-0.41 -0.29 -0.35 
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Algorithm Design 
(Avg. Efficiency)  

0.96 0.98 0.97 

Algorithm Design 
(Percent Optimal)  

0.43 0.32 0.37 

Algorithm Design 

(Runs)  

Algorithm Design 
(Avg. Efficiency)  

-0.40 -0.30 -0.35 

Algorithm Design 
(Percent Optimal)  

-0.64 -0.51 -0.57 

Algorithm Design 

(Avg. Efficiency)  

Algorithm Design 
(Percent Optimal)  

0.50 0.36 0.43 

Note: Significant at an alpha level of 0.05 except if in italics. 

 

 

Table 2. Pearson intercorrelations of post-assessment measures for Zoombinis and RPP samples 

Correlations 

between CT 

Practices 

CT Practice  Zoombinis sample 

(N=1600-1774)  

RPP sample 

(N=2315-2889)  

Average across 

samples 

 

Problem 

Decomposition  

(# Moves) 

Problem 
Decomposition 
(Percent Optimal)  

-0.76 -0.65 -0.71 

Problem 
Decomposition 
(Percent Correct)  

-0.11 -0.12 -0.12 

Problem 
Decomposition 
(Avg. Efficiency)  

-0.83 -0.67 -0.75 

Pattern Recognition 
(Correct) 

-0.14 -0.11 -0.13 

Abstraction (Percent 
Correct Spaces) 

-0.19 -0.13 -0.16 

Algorithm Design (# 
Moves) 

-0.02 -0.05 -0.04 
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Algorithm Design 
(Percent Correct)   

-0.22 -0.09 -0.16 

Algorithm Design (# 
Runs)  

0.23 0.13 0.18 

Algorithm Design 
(Avg. Efficiency)  

-0.20 -0.09 -0.15 

Algorithm Design 
(Percent Optimal)  

-0.17 -0.06 -0.12 

Problem 

Decomposition  

(Percent Optimal) 

Problem 
Decomposition 
(Percent Correct)  

0.23 0.25 0.24 

Problem 
Decomposition 
(Avg. Efficiency)  

0.90 0.72 0.81 

Pattern Recognition 
(Correct) 

0.20 0.13 0.17 

Abstraction (Percent 
Correct Spaces) 

0.24 0.12 0.18 

Algorithm Design (# 
Moves) 

-0.02 0.08 0.03 

Algorithm Design 
(Percent Correct)   

0.21 0.11 0.16 

Algorithm Design (# 
Runs)  

-0.25 -0.08 -0.17 

Algorithm Design 
(Avg. Efficiency)  

0.21 0.11 0.16 

Algorithm Design 
(Percent Optimal)  

0.21 0.09 0.15 

Problem 

Decomposition  

(Percent Correct) 

Problem 
Decomposition 
(Avg. Efficiency)  

0.48 0.70 0.59 
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Pattern Recognition 
(Correct) 

0.08 0.05 0.07 

Abstraction (Percent 
Correct Spaces) 

0.09 0.12 0.11 

Algorithm Design (# 
Moves) 

0.00 0.05 0.03 

Algorithm Design 
(Percent Correct)   

0.09 0.07 0.08 

Algorithm Design (# 
Runs)  

-0.06 0.03 -0.02 

Algorithm Design 
(Avg. Efficiency)  

0.09 0.06 0.08 

Algorithm Design 
(Percent Optimal)  

0.06 0.03 0.05 

Problem 

Decomposition  

(Avg. Efficiency) 

Pattern Recognition 
(Correct) 

0.19 0.12 0.16 
 

Abstraction (Percent 
Correct Spaces) 

0.24 0.20 0.22 

Algorithm Design (# 
Moves) 

-0.01 0.10 0.05 

Algorithm Design 
(Percent Correct)   

0.23 0.14 0.19 

Algorithm Design (# 
Runs)  

-0.25 -0.14 -0.20 

Algorithm Design 
(Avg. Efficiency)  

0.22 0.14 0.18 

Algorithm Design 
(Percent Optimal)  

0.21 0.09 0.15 

Pattern 

Recognition 

(Correct) 

Abstraction (Percent 
Correct Spaces) 

0.35 0.31 0.33 

Algorithm Design (# 
Moves) 

0.08 0.15 0.12 
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Algorithm Design 
(Percent Correct)   

0.36 0.30 0.33 

Algorithm Design (# 
Runs)  

0.27 0.26 0.27 

Algorithm Design 
(Avg. Efficiency)  

0.24 0.24 0.24 

Algorithm Design 
(Percent Optimal)  

0.20 0.17 0.19 

Abstraction 

(Percent Correct 

Spaces) 

Algorithm Design (# 
Moves) 

0.08 0.13 0.11 

Algorithm Design 
(Percent Correct)   

0.28 0.23 0.26 

Algorithm Design (# 
Runs)  

-0.23 -0.20 -0.22 

Algorithm Design 
(Avg. Efficiency)  

0.24 0.23 0.24 

Algorithm Design 
(Percent Optimal)  

0.22 0.21 0.22 

Algorithm Design 

(# Moves) 

Algorithm Design 
(Percent Correct)   

0.33 0.47 0.40 

Algorithm Design (# 
Runs)  

-0.09 -0.09 -0.09 

Algorithm Design 
(Avg. Efficiency)  

0.09 0.37 0.23 

Algorithm Design 
(Percent Optimal)  

-0.12 -0.08 -0.10 

Algorithm Design 

(Percent Correct)  

Algorithm Design (# 
Runs)  

-0.35 -0.32 -0.34 

Algorithm Design 
(Avg. Efficiency)  

0.95 0.98 0.97 

Algorithm Design 
(Percent Optimal)  

0.38 0.42 0.40 
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Algorithm Design 

(Runs)  

Algorithm Design 
(Avg. Efficiency)  

-0.35 -0.33 -0.34 

Algorithm Design 
(Percent Optimal)  

-0.66 -0.57 -0.62 

Algorithm Design 

(Avg. Efficiency)  

Algorithm Design 
(Percent Optimal)  

0.47 0.47 0.47 

Note: Significant at an alpha level of 0.05 except if in italics. 

 

 

 

Appendix E. Concurrent Validity 

Table 1. Correlations between post-test measures and teacher ratings of their students’ CT skills  

 CT Practice  
Problem 

Decomposition  

Pattern 

Recognition  
Abstraction 

Algorithm 

Design 

Problem Decomposition 

(Moves) 
-0.13 -0.11 -0.07                  -0.10 

Problem Decomposition  

(Percent Optimal) 
0.16 0.15 0.10 0.15 

Problem Decomposition 

(Percent Correct)  
0.07 0.08 0.04 0.04 

Problem Decomposition 

(Avg. Efficiency)  
0.17 0.15 0.10 0.14 

Pattern Recognition (Percent 

Correct)  
0.28 0.23 0.19 0.23 

Abstraction (Percent Correct 

Spaces)  
0.23 0.15 0.13 0.16 

Algorithm Design (#Moves) -0.03 -0.08 -0.05 -0.04 

Algorithm Design (Percent 

Correct)  
0.15 0.09 0.08 0.12 

Algorithm Design (# Runs)  -0.16 -0.14 -0.09 -0.13 

Algorithm Design (Avg. 

Efficiency)  
0.18 0.14 0.13 0.17 

Algorithm Design (% 

Optimal) 
0.23 0.21 0.18 0.22 

Note: Significant at an alpha level of 0.05 except if in italics. N=892–944 depending on the measures. 
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As shown in Table 2, IACT logic puzzle items for Algorithm Design (Moves) were weakly correlated with Bebras 

items in an unexpected positive direction. As Algorithm Design (Moves) is more indicative of persistence than 

correctness, it is possible that students who persisted and had a great number of moves in IACT also had lower 

scores in each of the five Bebras items.  

 

Table 2. Correlations between post-test measures and students’ scores on Bebras items  

 CT Practice  
Problem 

Decomposition 

(Item 3) 

Problem 

Decomposition 

(Item 4) 

Pattern 

Recognition 

(Item 2) 

Abstraction  

(Item 5) 

Algorithm 

Design 

(Item 1) 

Problem Decomposition 

(Moves) 
-0.08 -0.09 -0.04                 -0.11 -0.10 

Problem Decomposition  

(Percent Optimal) 
0.07 0.13 0.04 0.10 0.07 

Problem Decomposition 

(Percent Correct)  
0.00 0.05 -0.01 0.01 0.07 

Problem Decomposition 

(Avg. Efficiency)  
0.05 0.13 0.04 0.10 0.12 

Pattern Recognition (Percent 

Correct)  
0.18 0.15 0.10 0.13 0.17 

Abstraction (Percent Correct 

Spaces)  
0.23 0.22 0.12 0.22 0.28 

Algorithm Design (#Moves) 0.05 0.08 0.06 0.09 0.07 

Algorithm Design (Percent 

Correct)  
0.11 0.13 0.09 0.09 0.24 

Algorithm Design (# Runs)  -0.10 -0.09 -0.07 -0.13 -0.14 

Algorithm Design (Avg. 

Efficiency)  
0.11 0.12 0.08 0.09 0.24 

Algorithm Design (% 

Optimal) 
0.11 0.08 0.07 0.11 0.13 

Note: Significant at an alpha level of 0.05 except if in italics. N=1,243–1,399.  

 

 

Appendix F. Concurrent validity of external CT measures  

Table 1. Correlations between teacher ratings of their students’ CT skills 

  Pattern Recognition  Abstraction Algorithm Design 

0.78 0.75                  0.75 
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Problem 

Decomposition  

Pattern 

Recognition    
  0.77 0.70               

Abstraction               0.70 

Note: Significant at an alpha level of 0.0001; N=1,091. 

 

Table 2. Correlations between Bebras items  

 CT Practice  
Problem 

Decomposition 

(Item 4) 

Pattern 

Recognition 

(Item 2) 

Abstraction  

(Item 5) 

Algorithm 

Design 

(Item 1) 

Problem Decomposition 

(Item 3) 
0.15 0.11       0.12 0.13 

Problem Decomposition 

(Item 4) 
 0.12 0.13 0.09 

 Pattern Recognition      

(Item 2)  
  0.06 0.07 

Abstraction (Item 5)    0.09 

Note: Significant at an alpha level of 0.05; N=1,355-1,387.  
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Abstract  

Software security is inevitably dependent on developers’ ability to to design and implement software without 
security bugs. Perhaps unsurprisingly, developers often fail to do this. Our goal is to understand this from a 
usability perspective, identifying how we might best train developers and equip them with the right software tools. 
To this end, we conducted two comparatively large-scale usability studies with undergraduate CS students to assess 
factors that affect success rates in securing web applications against cross-site request forgery (CSRF) attacks. 
First, we examined the impact of providing students with example code and/or a testing tool. Next, we examined 
the impact of working in pairs. We found that access to relevant secure code samples gave significant benefit to 
security outcomes. However, access to the tool alone had no significant effect on security outcomes, and 
surprisingly, the same held true for the tool and example code combined. These results confirm the importance of 
quality example code and demonstrate the potential danger of using security tools in the classroom that have not 
been validated for usability. No individual differences predicted one’s ability to complete the task. We also found 
that working in pairs had a significant positive effect on security outcomes. These results provide useful directions 
for teaching computer security programming skills to undergraduate students. 
 
Keywords: Security, coding, teaching, usability, tools 
 

1. Introduction  

Despite a growing emphasis among security experts on secure coding practices, software developers continue to 
regularly misuse or misunderstand secure coding tools. Understanding how to best train students in good security 
coding practices is critical to designing safer software. Recent efforts within the area of usable security research 
have attempted to enumerate causes for developer error leading to security vulnerabilities in software. For 
example, access to good documentation and reliable example code have significant impacts on solving security 
tasks (Acar et al., 2017; Fischer et al., 2017; Mindermann and Wagner, 2018; Mindermann and Wager, 2020), as 
does priming (Naiakshina et al., 2018). Usability issues can also impact the appropriate use of other security-
related systems, including Android development (Acar et al., 2016), cryptographic APIs (Acar et al., 2017; Acar 
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et al., 2017; Gorski et al., 2018; Naiakshina et al., 2019; Oliveira et al., 2018; Zeier et al., 2019), type systems 
(Weber et al., 2017), HTTPS deployment (Krombholz et al., 2017; Bernhard et al., 2019), OpenSSL (Ukrop and 
Matyas, 2018), and string and I/O APIs (Oliveira et al., 2018). 
 

Our work builds on previous studies by trying to understand how to better instruct undergraduate computer science 
students in the art of security programming, examining the impact of using code samples, software tools, and 
group programming in the classroom. We wanted to determine if there were benefits in providing students with 
software code examples and software tools that would aid them in testing for code security. We also wanted to 
determine if working in teams as students was beneficial in their learning efforts.  We chose cross-site request 
forgery (CSRF) as a security problem for our study because it’s still relevant to current practice and because of its 
relative simplicity for use as a teaching tool. We performed two between-subjects usability studies, one year apart, 
with undergraduate computer science students. In study 1 we examined the impacts of example code and a CSRF 
detection tool on a student’s ability to repair CSRF vulnerabilities in a test server. In study 2, we examined the 
effects of the students working alone vs. working in pairs. 

 
2. Study 1: Impact of example code and software tools  

 
2.1 Methodology  

We drew our students from the sophomore-level COMP 215 class at Rice University, a highly-selective four-
year residential college. Rice University had a total sophomore population of approximately 1,000 students, 
and Computer Science is the most popular major on campus, with approximately 19% of 2018 sophomores 
enrolling in COMP 215. COMP 215 students present a relatively uniform pool of students. Most COMP 215 
students have never taken a college-level course in Java before, having come to Rice University immediately 
after high school. (Only eight students among the students in this study were transfer students.) All COMP 215 
students take the same freshman class sequence, including an introductory course in Python, and a theory 
course. To help prepare students for the security task, the COMP 215 lectures during the week of the experiment 
considered “Web 2.0” designs (e.g., Java microservices with JavaScript clients). Students were strongly 
encouraged to attend a security-specific lecture as well. 

2.1.1 Design  
This study used a between-subjects design with two variables: (1) availability of a CSRF testing tool and (2) 
availability of an example web application (code) with CSRF mitigation, resulting in four experimental conditions. 
The “no tool, no example” group, which served as the control group, had access to neither CSRF Testing Tools 
nor to the example code. The “example-only” group had access to the example code but not to the tool. The “tool-
only” group had access to the tool but not to the example code. Finally, the “tool and example” group had access 
to both the tool and the example code. Students were randomly assigned into one of the four conditions. Students 
in all groups, including those not provided with example code, were allowed to search the Internet for examples 
and instructions but not to ask anyone for help. 
 
We selected CSRF prevention as the task for this study because it is a realistic security problem but also relatively 
simple, allowing us to teach the relevant concepts to our students over a few lectures and construct a short, self-
contained study based on the problem. In contrast, many other security vulnerabilities, such as buffer overflows, 
can be very subtle to understand or even recognize when looking at the code. 
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Condition Assignment. Consistent with the other programming assignments in COMP 215, students attempted 
this task individually. (We examine pair programming in Study 2, below.) We controlled for gender and midterm 
grades when assigning students to conditions, to reduce possible confounding factors and to allow us to check for 
any effects these variables had on learning outcomes. We partitioned the remaining students by gender and sorted 
both lists by midterm grade. We then pulled students in blocks of four and distributed them at random among the 
four groups. Students who did not identify as male or female were assigned to groups at random. Despite a small 
number of drop-outs after experimental group assignment, this strategy yielded a consistent demographic 
distribution, with 44 participants assigned to the control group, 46 to the “example-only” group, 45 to the “tool-
only” group, and 45 to the “tool and example” group. Students were instructed not to discuss or share any aspect 
of the assignment with each other, including their condition assignment, and since the project was graded only on 
participation, they had no academic incentive to disclose their condition assignment to other students. Average age 
of the students was 19.2 years (SD 0.8). Each of the groups was composed of approximately 28% females. Java 
experience was consistent across groups, with an average of 2.1 on a 5-point scale, where 5 is expert (SD 1.0).  
 
The dependent variables in this study were effectiveness (how well the students completed the task) and efficiency 
(how long it took them to complete the task) in implementing CSRF prevention in a test server. For groups with 
access to the CSRF Testing Tool, we also measured satisfaction with the provided tool, i.e. how well the tool met 
the student’s expectations. Effectiveness, efficiency, and satisfaction are three standard measures used to assess 
system usability per ISO 9241-11. 
 

2.1.2 Measures  

Effectiveness. Effectiveness is the degree of success in achieving a goal (ISO 9241-11). Consistent with 
previous assignments in the course, we assigned each student’s work a security score from 0 to 10 using a 
subtractive grading rubric (Table 1). Deductions were capped at 10 points; i.e., a solution with 10 or more 
deductions received a security score of 0. Most mistakes resulted in a one-point deduction, with the exception 
of failing to employ any kind of server-provided key, which resulted in a four-point deduction. 

One of the most common anti-CSRF techniques consists of sending a randomized token from the server to the 
client, returning that token from the client to the server with each request, and verifying on the server that the 
tokens match. Critically, the client must not return the token via a cookie since cookies associated with a domain 
are sent automatically with each request to that domain. While students were permitted to use whatever method 
they wanted to complete the task, this is the technique students were taught during lecture and the approach 
they generally took. 
 
Table 1. Security score rubric 

Error Deduction 

Server vulnerable to GET-based CSRF 1 

No server-generated key 4 

Key entropy < 32 bits 1 

Key entropy < 64 bits 1 
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No handshake mechanism to prevent back 
doors 

1 

Vulnerable to timing attacks 1 

Server does not attempt to send key 1 

Client does not attempt to retrieve key 1 

Server-to-client methods do not match 1 

Key not delivered server-to-client 1 

Client does not send key for validation 1 

Server does not request key for validation 1 

Client-to-server methods do not match 1 

Key not sent client-to-server 1 

Client sends key insecurely (e.g. via a cookie) 1 

Server does not validate received key 1 

 
We initially considered a scoring system based only on the presence of actual vulnerabilities; however, we decided 
that such a system did not capture how well each student understood the problem or how secure their solution was. 
For example, many students submitted solutions that were correct except that they did not use a one-time key to 
prevent a fraudulent web form from retrieving the CSRF-prevention key, leaving the server vulnerable. These 
students might receive a zero score from a classical security analysis, despite demonstrating significant progress 
towards a secure solution. Therefore, we instead chose a scoring system based on the accumulation of individual 
errors. While students were free to implement any CSRF mitigation mechanism they chose, the vast majority used 
techniques similar to those described in both the lecture materials and the example code.  

Additionally, we assigned each student a passing or failing functionality score based on whether they broke the 
original functionality of the system. For example, some students made it impossible to perform any transactions 
at all. For the sake of simplicity, we graded solutions with minor changes in functionality (such as reduced 
responsiveness) as functionally correct.  

Timing. We set the maximum duration for the study to 180 minutes (measured to the nearest minute), opting for 
this duration both to respect the students’ time and to enable most students to complete the study in a single sitting. 
The time on task does not include reading the project specification prior to beginning the task or the post-study 
survey. We obtained timing data in two ways, in an attempt to improve the reliability of the timing data: self-
reported time on task and git push/commit times. Even so, it was difficult to obtain high-quality timing data under 
our experimental setup. In cases where the two measurements did not align or where the available timing data was 
clearly wrong (for instance, a full day spent on the task, based on push times), we had to discard the data for the 
purpose of timing analysis.  

Surveys. We used SurveyMonkey for both the demographic and post-study surveys. For those in the experimental 
groups that had access to CSRF Testing Tools, the post-study survey includes a System Usability Scale (SUS) 
(Brooke, 1996) evaluation in the final survey to measure satisfaction with the tool. The SUS is one of the most 
commonly used, psychometrically validated (Bangor et al., 2008) tools that measure the usability of products, 
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services, and systems. SUS scores range from zero (unusable) to 100 (highly usable).  
 
2.1.3 Materials  

Spark Java Server. Spark Java1 is a simple Java web framework. We wrote a Spark Java server and client for 
a toy application called “Fruit Market”, which simulates buying and selling of fruit with fluctuating prices. 
Students run both the server and client locally, changing the server state by clicking the buy and sell buttons. 
We intentionally left the server open to CSRF attacks by implementing the buying and selling functionality 
using simple GET requests. For instance, a purchase of a certain type of fruit can be made by issuing a GET 
request to /buy/?index=0, and a sale of the same fruit can be made through /sell/?index=0. Since there 
is no CSRF mitigation mechanism, the application is vulnerable to all the standard CSRF attacks, such as 
embedding these URLs in an HTML image element. Note that Spark Java does not include any CSRF 
prevention mechanism.  

Handouts / GitHub Classroom. GitHub Classroom allows instructors to create assignments from template git 
repositories, which students clone when they click on a given link. We created four project PDFs and four 
Classroom clone links, corresponding to our four experimental conditions, written in the same style as our 
regular weekly project assignments.  

Lectures. We presented a three-lecture sequence considering how web browsers and servers operate, along 
with the security issues they face. We provide PDFs of all lecture slides on our course web page.  

Example Code. Half of the students had access to an example web application, already secure against CSRF 
attacks. The example server, also written in Spark Java, implemented the back-end for a JavaScript read-eval-
print-loop (REPL). The JS REPL server avoids CSRF by launching the user’s browser with a one-time key in 
the URL, which the client then returns to the server in order to retrieve a CSRF-prevention key, generated 
randomly at server launch. This key then serves to validate subsequent calls to the server.  

CSRF Testing Tools. Half of the students had access to CSRF Testing Tools2, a free, semi-automated CSRF 
exploit generation tool, along with the instructions provided by the tool’s author. The tool consists of two parts: 
a “FormGrabber” bookmarklet that can be used to copy HTML form content from a webpage into the user’s 
clipboard and a “FormBuilder” page that creates a spoofed form from the copied form content. While the 
README describes how to use the tool to “create [HTML] forms that mimic the forms on the site that you're 
testing”, it does not explain how to interpret the results and whether they indicate a CSRF vulnerability. Indeed 
the README states “I am assuming that you have a good understanding of what a CSRF attack is and can 
figure out how this tool mimics one. Explaining the anatomy of a CSRF attack is not something I'm going to 
do in this documentation.” In short, the ability to change server-side application state via interaction with the 
spoofed form indicates a CSRF vulnerability. 

Students had no prior experience with this tool in the course but were instructed to read the included README 
describing the steps required to set up and utilize the tool to check for CSRF vulnerabilities. As part of its setup 
process, CSRF Testing Tools requires (1) hosting a JavaScript file on a server separate from the server under 
test and (2) modifying a bookmarklet file to point to the hosted file. We gave the students a copy of the latest 
version of the tool as found on GitHub, with one modification: we hosted the file for them and gave them a 

 
1 https://sparkjava.com/ 
2 https://github.com/akrikos/CSRF-Testing-Tools 
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pre-modified version of the bookmarklet. While performing this modification ahead of time changes the 
experience of using the tool, we determined that requiring the students to complete this step themselves would 
be unreasonably difficult and time-consuming within the limits of the study. As our results show, the tool’s 
measured effectiveness and satisfaction were low, even with this simplification to the process.  

We considered several other free CSRF prevention tools—including Burp Suite3, CSRFTester4, Pinata5, CSRF 
PoC Generator6, and OWASP Zed Attack Proxy (ZAP)7—but in our judgment, CSRF Testing Tools was the 
most useful among these options. 

An anonymized repository with experiment materials can be found at https://github.com/bad-tools-hurt/csrf. 
This repository contains the code, handouts, and lectures used in both studies, with all references to the authors 
and their institution(s) removed. We have removed code that is both irrelevant to the task and unique to the 
course. In particular, for this repository, we replaced a course-specific JSON library with a third-party library. 

 
2.1.4 Procedures  

As with any human subjects experiment, we obtained IRB approval before beginning the study. We recruited a 
total of 194 students from the fall 2018 COMP 215 class. Students received partial course credit for participating 
(regardless of their success) and had the ability to opt out of the study at any point prior to or during the study. 
None of the students opted out; however, a total of 14 students either dropped the course prior to the completion 
of the study or otherwise did not complete the study, leaving a total of 180 students in the data set. 
 
Once the assignment was given, the students could choose to attempt the three-hour task any time within a five-
day period. We encouraged the students to attempt the task in one sitting, but they were allowed to take breaks as 
long as they noted the stop and start times via git commit messages. The students had to complete the following 
steps: (1) read the project specification PDF; (2) click the GitHub Classroom assignment link (embedded in the 
PDF), to set up their repository; (3) add their name and student ID to a README file prior to beginning the task 
and then commit and push to GitHub (the timestamp of this initial push allowed us to measure the start of the time 
on task); (4) secure the test server against CSRF attacks, by whatever method they choose, within 180 minutes of 
their initial push time; (5) after completing the task, running into the time limit, or giving up on the task, commit 
and push their final code; and (6) fill out the post-study survey. 
 
We chose to have the students work on their own time in a setting of their choosing, rather than in a lab, for better 
scalability and to allow the students to complete the task under their usual work conditions, making comparisons 
with past course performance more meaningful. The first author manually graded each submission according to 
our security and functionality rubrics. We used the CSRF Testing Tools to speed up the grading process; however, 
it was only useful as a first step towards measuring security. For instance, many students came very close to a 
correct solution but did not use a handshake mechanism, such as a one-time key, to prevent a fraudulent web form 

 
3 https://portswigger.net/burp 
4 https://github.com/tomasperezv/web-security-tools/tree/master/CSRFTester 
5 https://github.com/ahsansmir/pinata-csrf-tool 
6 https://security.love/CSRF-PoC-Genorator/ 
7 https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project 
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from reading the anti-CSRF key from the HTML. Under our rubric, such a solution is graded as 9/10, but its 
security-relevant behavior is identical to a solution with no CSRF mitigation at all. Conversely, some solutions 
were invulnerable to the particular attack generated by CSRF Testing Tools but used insufficient key entropy and 
thus still lost points. Therefore, we still had to manually inspect each submission in order to understand whether 
a solution was fully secure and, if not, how many points should be deducted. 
 

2.2 Results and Discussion 

We performed an ANOVA for security score, functionality score, and time on task, with experimental condition 
assignment (group) and gender as factors, using Tukey’s HSD to correct for multiple comparisons. 

Security Scores. The mean security score was 1.43 for the control group, 4.15 for “example-only”, 1.53 for 
“tool-only”, and 2.71 for “tool and example” (see Figure 1). There was a reliable effect of group assignment 
on security scores (!(3,173) = 6.05, "#$	= 69.42, & < .01,  '2 = .09), but there was insufficient evidence of a 
reliable effect of gender on security scores (!(1,173) = .55, "#$	= 6.35,   & = .46, '2<.01). Tukey’s HSD 
(Table 2) indicates significant differences only for “example-only” to the control (diff. of means = 2.68, & < 
.01) and “example-only” to “tool-only” (diff. of means = 2.58, & < .01). Cohen’s ( for mean “example-only” 
security score vs. control group security score is .77, which indicates a medium effect size. Cohen’s ( for 
“example-only” vs. “tool-only” is .73, also a medium effect size. 

 

Figure 1. Mean security scores by study 1 group, with error bars depicting the standard error of the mean. 
 
 
Table 2. Comparison of mean security scores by group, study 1 (Tukey HSD). 

Comparison Difference of Means p 
Example-only - Control 2.68 <.01 
Tool-only - Control   .10 >.99 

Tool and Example - Control 1.28   .29 

Example-only - Tool-only 2.58 <.01 

Example-only - Tool and Example 1.40   .21 
Tool and Example - Tool-only 1.18   .35 

 
Security scores were highly variable across all experimental conditions. A large number of students failed to make 
any significant progress towards a secure solution (103 out of the 180 students received zero security points). 
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Overall, security scores were quite low, and very few students completely secured the application against CSRF 
(0% in the control group, 24% in “example-only”, 0% in “tool-only”, and 13% in “tool and example”). 
 
Despite common perceptions, prior work suggests that CS grades are typically unimodal (Patitsas et al., 2016). 
Consistent with past research, Hartigan’s dip test fails to reject the hypothesis that COMP 215 grades are unimodal 
()	= .02, &	= .93). However, there is significant evidence of non-unimodality in the “example-only” security scores 
()	= .12, &	< .01). 
 
Functionality Scores. The mean functionality scores were .59 for the control group, .63 for “example-only”, .67 
for “tool-only”, and .49 for “tool and example” (see Table 3). There was a reliable effect of gender on functionality 
(!(1,173) = 6.89, "#$	= .55, &	= .01, '2 = .04), but there was insufficient evidence of a reliable effect of group on 
functionality (!(3,173) = 1.31, "#$	= .30, &	= .27, '2 = .02). Table 4 shows the differences of mean functionality 
scores between the groups, none of which showed evidence of a reliable effect. For male vs. female functionality 
scores, difference of means = .21, & = .01, and Cohen’s ( is .43, indicating a small effect. 
 
Table 3. Functionality scores (0 or 1), study 1. 

Group n Mean SD 

Control 44 .59 .50 

Example-only 46 .63 .49 

Tool-only 45 .67 .48 

Tool and Example 45 .49 .51 

 
Table 4. Comparison of mean functionality scores by group, study 1 (Tukey HSD). 

Comparison Difference of Means p 

Example-only - Control .07   .91 

Tool-only - Control .08   .88 

Tool and Example - Control .10   .75 

Example-only - Tool-only .01 >.99 

Example-only - Tool and Example .17   .34 

Tool and Example - Tool-only .18   .30 

 
Time on Task. Timing data is unavailable for a total of eleven students (two from the control group and three each 
from the other groups). There were three types of student error that led to missing or excluded timing data: failure 
to commit and push code before starting the task, large unexplained discrepancies between reported time and time 
measured via git pushes, and breaks taken without reporting the duration. The mean time on task in minutes (Table 
5) was 155.7 for the control group (* = 42, #) = 32.83), 149.1 for “example-only” (* = 43, #) = 34.05), 151.3 for 
“tool-only” (* = 42, #) = 41.21), and 148.1 for “tool and example” (* = 42, #) = 38.59). We did not observe 
evidence of a reliable effect. 
 
Table 5. Time on task, study 1. 
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Group n Mean SD 
Control 42 155.7 32.83 
Example-only 43 149.1 34.05 

Tool-only 42 151.3 41.21 
Tool and Example 42 148.1 38.59 

 
Multiple Linear Regression. To gain a better understanding of factors that may contribute to success in repairing 
CSRF vulnerabilities, we performed multiple linear regression on the security scores of each experimental 
condition, with time on task, final grade in COMP 215, GPA, number of the three security lectures attended, and 
self-reported Java experience (rated from 1-5) as possible factors (Table 4). In the control group, adjusted +2 = .24, 
!(5,30) = 3.24, DF = 30, and & = .02. Final grade was the only significant factor. In “example-only”, adjusted +2 
= .32, !(5,33) = 4.55, DF = 33, and & < .01, and the only significant factor was time on task. In “tool-only”, 
adjusted +2 = .28, !(5,32) = 3.80, DF = 32, and & < .01, and the significant factors were lectures attended and Java 
experience. Finally, in “tool and example”, adjusted +2 = .22, !(5,32) = 3.03, DF = 32, and & = .02, and there were 
no significant factors. 
 
Table 6. Multiple linear regression, security scores (“Tool” = tool-only, “Ex.” = example code only, “Both” = tool 
and example code). 
 
FACTOR η² t p 

 Control Ex. Tool Both Control Ex. Tool Both Control Ex. Tool Both 
Time on Task .05 .14 <.01 .05 1.41 .56 .09 1.4

9 
.17 .02 .93 .15 

Final Grade .15 .07 .03 .07 2.48 1.8
0 

1.0
7 

1.6
8 

.02 .08 .29 .10 

GPA <.01 <.01 .01 .02 .07 .03 .75 .88 .95 .98 .46 .39 
Lectures 
Attended 

.05 .02 .11 .03 1.43 .88 2.2
8 

1.0
3 

.16 .38 .03 .31 

JAVA 
Experience 

.05 .04 .15 .05 1.47 1.3
7 

2.5
9 

1.4
5 

.15 .17 .01 .16 

 

 

2.2.1 Post-task Survey Results 
 
CSRF Testing Tools. SUS Scores In the “tool-only” group, the mean SUS score for CSRF Testing Tools was 
42.94 (* = 40, SD = 19.78). In the “tool and example” group, it was 39.10 (* = 39, SD = 19.97). We did not observe 
a reliable effect of example code availability on SUS scores, based on Welch’s ,-test (DF = 77, , = .86, & = .39). 
According to the adjective rating scale developed by Bangor et al. (Bangor et al., 2009), these scores fall between 
“poor” (mean score of 35.7) and “OK” (mean score of 50.9), indicating a very low degree of usability compared 
to other systems in general (though not necessarily to other CSRF mitigation tools). Moreover, it is rare in practice 
to find SUS scores below 40 for complex multi-step tasks, such as CSRF mitigation (Kortum and Acemyan, 2013). 
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Security and Functionality Confidence. We asked participants to rate their confidence in their solution in terms 
of security and functionality, each on a scale from 1 (low) to 5 (high). Note that self-reported task completion and 
confidence did not affect participants’ participation credit in the course. The mean security confidence was 2.00 
in the control group (* = 37, SD = 1.11), 2.82 in “example-only” (* = 38, SD = 1.27), 1.93 in “tool-only” (* = 40, 
SD = 1.27), and 2.03 in “tool and example” (* = 39, #) = 1.20). The mean functionality confidence was 2.65 in 
the control group (* = 37, SD = 1.57), 2.92 in “example-only” (* = 38, #) = 1.65), 2.38 in “tool-only” (* = 40, 
#) = 1.53), and 2.23 in “tool and example” (* = 39, #) = 1.49). 
 
To measure how well students were able to gauge their own performance, we examined the correlations between 
confidence and actual scores, for both security and functionality. For security, the correlation was .59 in the control 
group (, = 4.31, DF = 35, & < .01), .60 in “example-only” (, = 4.48, DF = 36, & < .01), .50 in “tool-only” (, = 
3.57, DF = 38, & < .01), and .68 in “tool and example” (, = 5.66, DF = 37, & < .01). For functionality, the 
correlation was .38 in the control group (, = 2.45, DF = 35, & = .02), .50 in “example-only” (, = 3.45, DF = 36, & 
= .01), .21 in “tool-only” (, = 1.31, DF = 38, & = .20), and .65 in “tool and example” (, = 5.15, DF = 37, & < .01). 
In summary, there was a significant and moderately large correlation between confidence and actual scores in all 
cases except for functionality in the “tool-only” group.  
With regard to perceived security, arguably the most dangerous situation is one in which a developer believes 
strongly that they have protected the system against CSRF when they have not. In this situation, not only does the 
system remain vulnerable, but the developer is unlikely to seek help to repair the vulnerability. To quantify this 
condition, we define the “false confidence” rate as the proportion of students whose submission had a security 
score of zero for which (1) the student reported that they had completed the task and (2) the student rated their 
confidence in the security of the system as either a four or five on a 1-5 scale. The false confidence rates were .035 
for the control group (* = 28), 0 for “example-only” (* = 16), .107 for “tool-only” (* = 28), and .053 for “tool and 
example” (* = 19). The false confidence rates are fairly low across the board, which is a reassuring result. We did 
not observe a reliable effect of experimental condition on the rate of false confidence. 
 
3. Study 2: Impact of team programming  

Study 2 examined the impact of working in pairs on the learning process. We recognized that the most 
successful condition (“example-only”) from study 1 gave the students example code, but no CSRF tooling, so 
we used that as the starting point in study 2.  
 

3.1 Methodology  

We drew our students from the 2019 COMP 215 class at Rice University. The 2019 curriculum for this course 
was similar to that of 2018, with the notable exception of the introduction of partners for weekly projects, while 
the 2018 class projects were all performed solo. In 2019, beginning in week 7, students partnered with a 
different classmate of their choosing for each weekly project. The CSRF project occurred during week 11, after 
three such partnered projects, the same point in the semester as in study 1.  
 
3.1.1 Design  

Our goal for study 2 was to understand the impact of single versus two-person teams, so we used a between-
subjects design with one variable: “Solo” vs. “Duo”. We provided both groups access to example code and 
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neither group access to CSRF Testing Tools (i.e., the “example-only” condition). The dependent variables 
remain the same as in study 1, with the exception of SUS results for CSRF Testing Tools since it was unused.  

Condition Assignment. Students were randomly assigned into one of the two conditions, subject to two 
constraints. First, consistent with COMP 215 team policy, no two students were assigned to work on a team 
who had previously worked together. Several COMP 215 students had special exemptions from this rule and 
were allowed to work with the same partner each week; these students completed the assignment but are 
excluded from the study results. Second, we asked any students who may have difficulty collaborating during 
the study (e.g., due to travel) to inform us so that they could be assigned to work alone. Twelve students out of 
a total of 163 informed us of such difficulties and were assigned to the Solo group. The remaining 151 students 
were split into the two groups uniformly at random. In total, the Solo group had 53 students, and the Duo group 
had 110. Note that there are approximately twice as many individuals in the Duo condition as in the Solo 
condition, in order to maintain an approximately equal numbers of teams.  
 
For logistical reasons, it was not practical to keep it a secret from the students that some of them were working 
alone and some with a partner. Therefore, unlike in study 1, participants in study 2 were aware of their condition 
assignment. In the Solo group, student ages ranged from 18 to 21 years (Mdn = 19, X.  = 19.3, #) = .696). Sixteen 
students identified as female and 36 as male, and one gave no response. Self-reported Java experience prior to 
taking COMP 215 ranged from 1 to 4 (Mdn = 2, X.  = 2.132, #) = .981). In the Duo group, ages ranged from 18 to 
26 years, (X̄ = 19.4, Mdn = 19, #) = 1.160). There were 28 female students, 81 male, and one identifying as 
neither male nor female. Self-reported Java experience ranged from 1 to 5 (Mdn = 2, X.  = 1.926, #) = .924). 

Timing. Unlike study 1, we did not examine git push times. This would have been infeasible for the Duo condition, 
where each student has a separate time-on-task and either student may push to the repository at any time. Instead, 
we simply asked each student to report their personal time on-task in minutes, working with or without their 
partner, excluding any breaks. We used the same timing reporting scheme for the Solo condition, for consistency. 

 
 

3.2 Results and Discussion 

Security Scores. The mean security score was 2.57 for Solo and 4.95 for Duo (Figure 2), and there was evidence 
of a reliable effect (,	= 2.94, )!	= 105, &	< .01). Cohen’s (	= .56, indicating a medium effect size. As in study 1, 
security scores were variable but generally low, with 52 of 108 students receiving zero security points. Only 25% 
of Duo teams and 17% of solo teams fully secured the application against CSRF. Hartigan’s dip test indicates 
non-unimodality in both Solo () = .087,  & < .01) and Duo () = .161, & < .01) security scores. As in 2018, the 
2019 COMP 215 final grades exhibit no reliable non-unimodality () = .025, & = .70). There was a reliable effect 
of group assignment (!(1,101) = 9.47, "#$=161.07, & < .01) but not of team gender composition (!(3,101) = 
1.91, "#$=32.56, & = .13) on security scores. We also note that despite the “example-only” group from study 1 
and the Solo group from study 2 having similar experimental conditions, “example-only” had a mean security 
score of 4.15 vs. 2.56 for the Solo group. However, despite the apparently worse performance of the Solo group, 
there was insufficient evidence of a reliable effect (, = 1.90, DF = 94, & = .06), and the effect size is small (Cohen’s 
( = .38). 
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Figure 2. Mean security scores by study 2 group, with error bars depicting the standard error of the mean. 

Functionality Scores. The mean functionality scores (Table 7) were .62 for Solo and .67 for Duo. There was 
insufficient evidence of a reliable effect on functionality scores of either team gender composition (!(3,101) = 
1.80, "#$	= .41, &	= .15) or group (!(1,101) = .57, "#$	= .13, &	= .45). 

 
Table 7. Functionality scores (0 or 1), study 2. 

Group n Mean SD 
Solo 53 .62 .49 
Duo 55 .67 .47 

Time on Task. Timing data is unavailable for a total of six teams (four from Solo and two from Duo), due to 
students neglecting to complete the post-task survey. When only one student in a Duo team reported the time on 
task, we take that figure as the team average. The mean time on task in minutes (Table 8) was 181 for Solo (* 
= 49, #) = 37.6) and 169 for Duo (* = 53, #) = 39.8). 

 
Table 8. Time on task, study 2. 

Group n Mean SD 
Solo 49 181 37.6 
Duo 53 169 39.8 

 
Multiple Linear Regression. We performed multiple linear regression once again to try to determine which 
factors we examined contribute most to success in repairing CSRF vulnerabilities. As before, we used time on 
task, final grade in COMP 215, GPA, number of the three security lectures attended, and self-reported Java 
experience (rated from 1-5) as factors (Table 9). For the Duo condition, since there are two students per submission, 
we used the team average for each factor. In Solo, adjusted +2 = .32, !(5,40) = 5.24, DF = 40, and & < .01. The 
significant factors were time on task, final grade, and lectures attended. In Duo, adjusted +2 = .061, !(5,47) = 1.67, 
DF = 47, and & = .16, and no factors showed evidence of a reliable effect. 
 
Table 9. Multiple linear regression, Solo and Duo security scores. 
 

FACTOR η² t p 
 Solo Duo Solo Duo Solo Duo 



International Journal of Computer Science Education in Schools, December 2021, Vol. 5, No. 2 
ISSN 2513-8359 

 86 

Time on Task .09 .04 2.40 1.47 .02 .15 
Final Grade .17 .04 3.30 1.53 <.01 .13 
GPA .02 <.01 1.22 .44 .23 .67 
Lectures Attended .09 .01 2.34 .69 .02 .49 
JAVA Experience .01 .02 .63 1.13 .53 .26 

 
 
3.2.1 Post-task Survey Results 

Security and Functionality Confidence. We again asked students to rate their security and functionality 
confidence from 1-5. The mean security confidence was 2.25 (SD 1.15) in Solo and 2.91 (SD1.18) in Duo. The 
mean functionality confidence was 2.71 (SD 1.53) in Solo versus 3.19 (SD 1.41) in Duo. 
 
Tables 10 and 11 show the security and functionality confidence correlations for study 2. For security, the 
correlation was .60 in Solo and .33 in Duo. For functionality, the correlation was .29 in Solo and .57 in Duo. 
There was a significant and moderately large positive correlation between confidence and actual scores in all 
cases in study 2. Using the same definition of “false confidence” as in study 1, the rates in study 2 were 0 for 
Solo (* = 35) and .147 for Duo (* = 34). Five individuals from three different Duo groups exhibited false 
confidence, whereas no Solo students did. This time, experimental condition did have a reliable effect on the 
false confidence rate (!(1,61) = 5.86, "#$	= .41, &	= .02, '2 =.09). Cohen’s ( is .58, a medium effect size. 
Interestingly, in exactly one team with a security score of zero, there was a mismatch of confidence levels, with 
one partner highly confident (4) and one not (zero). 
 
 
Table 10. Confidence-security correlation, study 2. 

Group Pearson’s r t DF p 

Solo .60 5.20 47 <.01 

Duo .33 3.46 97 <.01 

 
 
Table 11. Confidence-functionality correlation, study 2. 

Group Pearson’s r t DF p 

Solo .29 2.10 47   .04 

Duo .57 6.82 97 <.01 

 
We were surprised to see that the Duo group had a higher false confidence rate. One potential explanation is 
that participants working in teams tended to rely on and trust their partners, assuming the teammate knew more 
than they actually did. This result may be cause for some concern and caution when working collaboratively, 
but in terms of security results, the Duo teams still performed much better overall. 
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4. General Discussion  

Our results identify important factors for improving student success rates in learning how to repair CSRF 
vulnerabilities, as well as some factors that surprisingly had little or no effect. These results also include a 
baseline SUS score for any future usability studies on CSRF prevention tools, which is valuable for drawing 
standard and objective comparisons between the satisfaction such tools provide users. 

Consistent with our expectations and with previous research (see, e.g., Acar et al., 2017), access to reliable 
example code had a significant impact on the security of students’ solutions, at least when not coupled with 
CSRF Testing Tools. Students in the “example-only” group had moderately higher security scores than both 
the control group and the group with access to the tool alone. These results confirm the efficacy of quality 
example code in training students to improve code security. Also in line with expectations, student teams of 
two produced significantly more secure solutions than students working alone. To the best of our knowledge, 
this study is the first to empirically demonstrate that working in pairs can result in better outcomes when training 
for computer security tasks. 

Contrary to our expectations, access to CSRF Testing Tools did not reliably improve security scores. Even more 
surprisingly, the tool actually appears to have hurt the security scores for students with example code. We can 
only postulate what went wrong. One possibility is that the students were constrained by the time limit, and the 
tool distracted students from spending time understanding and adapting the example code. We know that in at 
least some cases, the tool actively misled students into thinking an insecure solution was secure. One student 
commented in a git commit message that they were done because “[the page] runs on FormBuilder”; i.e., the 
spoofed form generated by the tool worked, and the student interpreted that as an indication that the server was 
secure even though it actually implies the exact opposite. This is an easy mistake to make for a developer lacking 
computer security expertise when using a tool with little documentation. Furthermore, among the 79 students 
with access to CSRF Testing Tools who completed the post-task survey, nine (11.4%) specifically mentioned 
understanding the tool as one of the most difficult parts of the assignment. 

In absolute terms, the scores we obtained in study 1 indicate that CSRF Testing Tools is not perceived to be usable 
by the students. However, we cannot conclude that CSRF Testing Tools is necessarily worse in this regard than 
other CSRF prevention tools, since this is the first study to apply the SUS to this class of tools. However, 
researchers and tool authors can compare the satisfaction of existing and future products against this baseline 
freeware tool, providing empirical evidence for their comparative usability. Anecdotally, while a few students 
commented that the tool was helpful in solving the task, many other students indicated that they did not understand 
how to begin using the tool or how to interpret its behavior. We conjecture that more detailed documentation, 
including a description of what to expect when the CSRF vulnerability has or has not been patched, could improve 
perceived usability.  

Students sometimes erroneously think their code is secure when it is not. In the field, this false sense of security 
can result in security defects making their way into deployed software, putting end users at risk. Previous studies 
have found differing results regarding the correlation between how secure developers think their code is and how 
secure it actually is (Acar et al., 2017; Gorski et al., 2018). In this study, we found that students’ perceptions of 
their code’s functional correctness and security generally matched their actual performance. It is possible that these 
correlations were driven by the appreciable number of students who failed to make any significant progress 
towards a solution and in that case knew for certain that they had failed. We were surprised to see that the Duo 
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group had a higher false confidence rate. One potential explanation is that participants working in teams tended to 
rely on and trust their partners, assuming the teammate knew more than they actually did. This result may be cause 
for some concern and caution when working collaboratively, but in terms of security results, the Duo teams still 
performed much better overall. 

We expected that students with higher GPAs and/or final grades in the course would produce more correct and 
more secure solutions. However, GPA did not have a significant effect, and final grades in COMP 215 were 
only predictive in the study 1 control and study 2 Solo groups. We also expected prior experience with Java to 
have a positive impact on security outcomes, but we only observed a significant effect of self-reported Java 
experience on security secures in the “tool-only” group. 
 
4.2 Limitations  

We limited our students’ time on task to 180 minutes. The primary motivation for restricting the time on task was 
to prevent students from wasting too much time on the assignment if they became stuck. A secondary motivation 
was to allow us to encourage the students to complete the task in a single contiguous block of time, reducing errors 
in recorded times (e.g., if students failed to report breaks). Unfortunately, since many students used the entire 
allotted time, the time restriction makes it difficult to distinguish between students who truly became stuck and 
students who could have made additional significant progress if given more time. One possible mitigation would 
be to have a prior week’s assignment using the exact same codebase, only without security considerations, and 
thus give the students additional familiarity with the experimental setup. We could also try to further simplify the 
security task, although this particular task is already quite simple, at least for students who understand the problem. 

Lecture attendance had a negative correlation with security outcomes in every group except “example-only”, 
and the effect was significant in the “tool-only” and Solo groups. This effect is inconsistent, and one possible 
explanation is that stronger students might not bother attending lectures, in general. However, it is also entirely 
possible that our security lectures did not do a good job of explaining CSRF, and that many students solved the 
problem simply by transferring the coding pattern from the example without understanding how it works or 
why it is important. Prior research has shown that copying and pasting code can lead to security bugs (Fischer 
et al., 2017), underscoring the importance of reliable code samples but also of security awareness and critical 
thinking on the part of developers. A future study might provide more insight into students’ security 
comprehension, in addition to security performance, by including a series of security questions before and after 
the assignment, to gauge students’ security skills “on paper”. 
 

5. Conclusions and Future Work 

In this work, we conducted two large studies with undergraduate computer science students to investigate which 
factors affect students’ ability to successfully complete a computer security assignment, viz. securing a web app 
against cross-site request forgery. In study 1, we examined the impact of providing students with particular 
resources during the assignment: a fuzz-testing tool and/or example code. In study 2, we looked at the effects of 
working alone vs. in a pair. 

We found that providing students with both example code and a software tool does not appear to confer the additive 
benefit to learning outcomes we expected. Our results establish the benefit of access to example code when 
attempting to teach CSRF prevention but also demonstrate that an unusable tool can not only fail to significantly 
improve learning how to implement good security outcomes but actually be detrimental to success in some cases. 
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The results of our follow-up study further demonstrate that working with a partner has substantial benefits to 
learning outcomes when compared with working alone. Prior work both in education and industry has 
demonstrated that collaborative programming increases confidence and satisfaction, reduces frustration, improves 
course and major retention, and otherwise improves outcomes (Williams and Upchurch, 2001; Williams et al., 
2002; Mcdowell et al., 2002; Mcdowell et al., 2003; Werner et al., 2004; McDowell et al., 2006; Eierman and 
Iversen, 2018; Williams et al., 2000; Williams et al., 2002; Hanks et al., 2004; Smith et al., 2018; Werner et al., 
2004; McDowell et al., 2006; Arisholm et al., 2007; Begel and Nagappan, 2008; Hannay et al., 2009). As such, 
it’s unsurprising but important to note that working in pairs also improves educational outcomes in training 
students in security measures.   

Based on these results, we suggest three key recommendations for instructors with regard to teaching students how 
to implement secure code: (1) seek out trustworthy example code to give to students for applying security coding 
techniques, (2) be wary of tools in the classroom whose efficacy is unverified, and (3) when possible, allow 
students to collaborate in solving these kinds of security challenges, rather than working alone. Although we used 
CSRF prevention as our example, it’s quite likely that these findings apply to teaching many other classes of 
security challenges being taught in the classroom. In sum, example code helps. Partners help. Bad tools hurt. 
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