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Abstract 

To help novice learners overcome the obstacles of learning computational thinking (CT) through programming, 
it is vital to identify difficult CT components. This study aimed to determine the computational concepts and 
practices that learners may have difficulties acquiring and discuss how programming instructions should be 
designed to facilitate learning CT in online learning environments. Participants included 92 undergraduate 
students enrolled in an online course. Data were collected from a CT knowledge test and coding journals. Results 
revealed that four computational concepts (i.e., parallelism, conditionals, data, and operators) and two 
computational practices (i.e., testing and debugging and abstracting and modularizing) were identified as CT 
components that were difficult to learn. The findings of this study imply that CT instructions should offer 
additional instructional supports to enhance the mastery of difficult computational concepts and practices. 
Further research is necessary to investigate instructional approaches to successful CT learning. 

Keywords: computational thinking, block-based programming, Scratch, CT difficulties, CT challenges 

1. Introduction 
Digital transformation is everywhere. Although innovation in digital technology advances our well-being, the 
fast rate of world change generates unprecedented social, economic, and environmental challenges. A United 
Nations report (2019) examining how digital technology would transform our lives and communities emphasized 
that many people become more vulnerable to uncertain adversity and risks when they do not have the 
fundamental skills required for finding solutions to real-life problems in the digital age. In this increasingly 
evolving world, computational thinking (CT) has emerged as a problem-solving skill that new generations of 
students must acquire to prepare them for tomorrow’s challenges and expand their potential. As a response to 
these issues, educators, researchers, and policymakers are rapidly recognizing that CT is a new core skill needed 
by all people, not just computer programmers (Wing, 2011). Emphasis is being increasingly placed on 
developing effective curricula for computer science (CS) and CT education. Also, many efforts have been made 
in various educational settings to integrate CT components into existing classroom activities.  

As part of these ongoing efforts, in 2016 in the United States, the Computer Science for All initiative laid the 
foundation for providing students in pre-K through 12th grade with opportunities to participate in CS education 
(National Science Foundation, 2016). Later on, the Common Core State Standards and Next Generation Science 
Standards were reformed to encompass CT as an interdisciplinary approach. With these recent educational 
reforms, which incorporated CS/CT into both K-12 and higher education curricula, educators need to adapt their 
existing pedagogical strategies to properly teach CS/CT to learners. They also need to learn appropriate 
pedagogies for delivering a new subject, particularly in those aspects of CS/CT competencies. Although recent 
literature pertaining to CS education in school emphasizes many ways to make CS/CT education more accessible 
to K-20 students, educators, researchers, and administrators still must manage the ambiguity of CT definitions 
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and methods of instruction and assessment. Particularly, attempts have been made to propose instructional tools 
to facilitate CT learning, but these studies did not present the most difficult CT components for learners to 
engage in block-based programming learning. This may be due to the lack of empirical research findings to 
identify difficult CT concepts and practices in block-based programming environments. Thus, it is crucial to 
identify difficult-to-learn CT components via learning block-based programming. To situate our study, we first 
outline CT in general, highlight CT assessments, and then consider what it means in block-based programming 
and the challenges in CT instruction. 

2. Literature Review 

2.1 Definitions of Computational Thinking  

Alongside the growing recognition of CT as essential for students’ future success, several researchers have 
attempted to define CT and identify its components (e.g., Atmatzidou & Demetriadis, 2016; Barr, Harrison, & 
Conery, 2011; Berland & Wilensky, 2015; Google, 2016; Israel et al., 2015; Parpert, 1980; Pearson et al., 2015). 
The term CT was first coined by Seymour Papert (1980), who developed LOGO programming, and was later 
popularized in the CS community by Jeannette Wing (2006). She described CT as “the thought processes 
involved in formulating problems and their solutions so that the solutions are represented in a form that can be 
effectively carried out by an information-processing agent” (Wing, 2011, p. 1). The National Research Council 
(2010) expanded the nature and scope of CT with diverse applications for the definition. Barr and Stephenson 
(2011) provided an operational definition of CT for K-12 education, which they described as a problem-solving 
process and a series of dispositions and attitudes. Aho (2012) refined the term, saying that the solution should be 
represented as computational steps and algorithms. Román-González (2015) argued that the basic CT concepts—
computing and programming—were central to formulating and solving problems. Grover and Pea (2018) 
redefined CT as a “widely applicable thinking competency” (p. 22) of which problem formulation processes 
should be considered key in solving problems. Denning and Tedre (2021) advanced CT’s definition with a 
historically grounded view of professional disciplines and highlighted the aspects of “designing computations 
that get computers to do jobs for us, and for explaining and interpreting the world in terms of information 
processes” (p. 365). As CT encompasses broad domains across disciplines, there is no standard definition of this 
term; hence, various components of CT have been differently proposed in line with study contexts, which has 
influenced the development of a variety of CT assessment tools.  

2.2 Assessments of Computational Thinking  

Given that an educational assessment contributes significantly to teaching and learning (Black & Wiliam, 1998; 
Shepard, 2000), a CT assessment is an integral piece that provides valuable information about student learning 
progress, as well as the effects of instruction. Although it is difficult to unify in a single assessment, it has been 
agreed that comprehensiveness of assessment is central to enable educators and researchers to evaluate the 
effectiveness of CT-incorporated instruction in discipline-specific or multi-disciplinary lessons. Without a 
comprehensive assessment framework, teachers and students cannot understand how they are teaching and 
learning in a classroom. Grover et al. (2014) suggested considering multiple complementary measures that can 
reflect deeper learning and contribute to a comprehensive picture of students’ learning in CT education. As the 
clarity of and discussion on the definitions of CT in education have advanced, several comprehensive 
frameworks for improving CT assessment have been proposed (e.g., Adams et al., 2018; Brennan & Resnick, 
2012; Grover & Pea, 2013, 2018; Roman-Gonzalez, 2015; Shute et al., 2017; Zhong et al., 2016). Today, most 
frameworks of CT rely primarily on works from both the Computer Science Teachers Association (CSTA) and 
the International Society for Technology in Education Committee (ISTE; Barr & Stephenson, 2011) and the 
three-dimensional CT model (Brennan & Resnick, 2012). The CSTA and ISTE model includes CT concepts, 
capabilities, dispositions and predispositions, and classroom culture. Brennan and Resnick’s model consists of 
computational concepts, practices, and perspectives.  

2.3 Roles of Block-Based Programming 

Several studies have examined the effectiveness of CT intervention to facilitate CT teaching and learning. Some 
studies explored instructional approaches with diverse target populations in a variety of educational settings 
(e.g., Atmatzidou & Demetriadis, 2016; Czerkawski & Lyman, 2015; de Paula et al., 2018; Grover et al., 2015; 
Jenkins, 2015; Román-González et al., 2015; Romero et al., 2017; Yadav et al., 2014). Shute et al. (2017) 
classified introductory CS/CT practices into four strategies: (a) programming, (b) robotics, (c) game design/play, 
and (d) unplugged activities. The National Research Council (2010) highlighted the role of programming in 
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constructing a series of steps for solving a computational problem. As an effort to help programming attract and 
engage students in computational problem-solving, various block-based programming languages where codes 
are represented as blocks (e.g., Scratch, Alice, Snap, App Inventor, LEGO Mindstorms, and Blockly) were 
introduced as an aid to better understanding CT. Brennan and Resnick (2012) suggested suitable settings in the 
context of Scratch block-based programming for developing CT capacities aligned with three CT dimensions. 

Also, although prior research has been conducted mainly on K-12 CS education, CS/CT should be expanded to 
college students and lifelong students in terms of providing unique and equal opportunities to develop 
computational problem-solving skills. This type of CS/CT course is designed for students who typically have no 
prior experience in programming and only have a general knowledge of computing. Hence, it is significant to 
identify CT components that are difficult for beginners in learning block-based programming. 

2.4 Instruction of Computational Thinking  

Although block-based programming provides an engaging introduction to programming, researchers have found 
that novice learners still have difficulties mastering specific programming concepts. The study conducted by 
Sentence and Csizmadia (2015) found that programming was effective in enhancing CT but recognized as one of 
the most challenging learning activities. Duncan and Bell (2015) argued that CT cannot be learned automatically 
simply by using tools that improve CT competencies in previous studies. In a smiliar study, learners found it 
difficult to learn programming, and the biggest limitation of CT education is that CT components are difficult to 
teach due to their abstract nature (Czerkawski & Lyman, 2015). This may be because teachers are rarely 
cognizant of how to approach computational problem-solving using the abstract concepts. Such lack of readiness 
for teaching computational concepts hinders teachers’ abilities to keep students engaged and on track with more 
in-depth learning. A few studies suggested instructional approaches for promoting the CT process 
(Czerkawski & Lyman, 2015; Sentence & Csizmadia, 2015); however, these studies did not present which CT 
components are likely to be most challenging for learners to engage in learning programming. It is fundamental 
to identify which areas are most challenging to learn CT via programming. Moreover, CT instruction should be 
designed for students to attain deeper learning outcomes; thus, it gives rise to a need for studies that provide 
empirical data for CT leaning and explore practical instructional approaches. One way to advance this area of 
research is to identify which CT components are difficult for novices to learn. 

3. Purpose of the Study  
The purpose of this study was to examine computational concepts and practices that novice learners may 
experience challenges with learning in an online course intended to promote CT competencies as they apply to 
basic computer skills and programming. Two research questions guided this study:  

• RQ1: Which computational thinking concepts are difficult for undergraduate students in an online learning 
environment?  

• RQ2: Which computational thinking practices are difficult for undergraduate students in an online learning 
environment? 

The findings would provide empirical evidence associated with the difficulties in learning CT components for 
novice learners but also expand discussions about how instructions should be formed to support difficult 
computational concepts and practices.  

3.1 Dimensions of Computational Thinking  

When programming with Scratch to facilitate the development of CT, multiple dimensions have been 
considered. In the framework proposed by Brennan and Resnick (2012) along with the Scratch programming 
language and environment, three key dimensions involve (a) computational concepts commonly found in 
programming languages, (b) computational practices referred to as the process of building a solution with the 
concepts, and (c) computational perspectives as the understandings of relationships with oneself, others, and the 
world. Each dimension includes different subcomponents, such as seven concepts (i.e., sequences, loops, events, 
parallelism, conditionals, operators, and data); four practices (i.e., being incremental and iterating testing and 
debugging, reusing and remixing, abstracting and modularizing); and three perspectives (i.e., expressing, 
connecting, and questioning). 
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3.2 Computational Concepts and Practices 

Among the three dimensions, this study focused on computational concepts and practices and excluded 
perspectives due to the constraints on capturing changes in participants’ perspectives over a short time period. 
Table 1 provides a summary of the definitions of CT components targeted in the study. 

 
Table 1. Definitions of CT target components  

Dimensions Definitions 

Computational 
Concepts 

Sequences: Executing a series of individual steps or instructions for an activity or task 
Loops: Repeating the same sequence multiple times 
Events: Triggering specific actions to happen 
Parallelism: Performing a sequence of actions in parallel 
Conditionals: Making a decision based on certain conditions 
Operators: Expressing mathematical, logical, and string operations 
Data: Storing, retrieving, and updating values in variables and lists 

Computational 
Practices 

Being incremental and iterative: Developing solutions step by step 
Testing and debugging: Finding strategies for solving problems 
Reuse and remix: Building new solutions on existing works or ideas 
Abstraction and modularity: Modeling complex systems with simple elements 

Note. Adapted from Brennan and Resnick’s framework (2012). 
4. Methods 

4.1 Participant Characteristics 

A total of 92 undergraduate students who were enrolled in an online course, Computing and Information 
Technology, at a large public university in the southwestern United States participated in this study. Participants 
were studying with varied majors, were of various ages and included both males and females (male: 59, female: 
33; age range: 19-49; average age = 25.21; SD = 11.32). The students learned a set of core knowledge and skills 
that shape the landscape of computer science, represent information digitally, and create block-based programs 
to solve problems. This study was approved by the University Institutional Review Board. 

4.2 Research Setting 

The course was delivered completely online via a web-based learning management system. The course aimed to 
deliver a set of core competencies that shape the background of computer science and essential career readiness 
skills such as critical thinking, problem-solving, and communication. The learning modules were designed to 
provide students with programming experiences using the Scratch block-based programming language. Scratch 
programming is intended to be adopted in an introductory CS/CT course for people of all ages and across 
disciplines (Resnick et al., 2009), and it offers editors both online and offline to make it easy for learners to 
create and share programming projects. Out of 15 online learning modules, a total of eight modules were related 
to Scratch programming projects aligned with learning objectives. In each module, programming activities 
related to computational concepts were provided along with clear instructions and requirements to to clarify the 
learning process and expectations. Student performance was assessed regularly to ensure students achieved the 
intended learning outcomes. The programming quizzes and assignments were graded with evaluation criteria, 
and constructive feedback was provided to foster active participation in the learning process. The research 
data was collected in the last programming project where learners demonstrated their problem-solving skills 
through block-based programming. The programming tasks were to complete predesigned and semifinished 
Scratch programming projects with a set of requirements, but the final project was to program a game with 
Scratch by applying the CT concepts and skills learned in the previous module. 
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4.3 Instruments 

The computational concepts and practices were assessed by (a) a computational thinking test (CTt; Roman-
Gonzalez, 2015) and (b) coding journals. All 92 participants completed the CTt and coding journals. The CTt 
scale (α = 0.79) had significant correlations with other standardized tests on problem-solving skills, and its 
validity was confirmed for block-based programming learners. The CTt scale includes 28 multiple-choice 
questions to measure the understanding level of computational concepts (i.e., basic direction and sequences, 
loops-repeat time, loops-repeat until, if-simple conditional, if/else-complex conditional, while conditional, and 
simple function). The CTt was initially designed and has been used for research targeting secondary school 
students (e.g., Bati, 2018; Chan et al., 2021; Guggemos, 2021; Román -González et al., 2017, 2018, 2019; Wiebe 
et al., 2019) and a few studies have been conducted for undergraduate students (e.g., Cachero et al., 2020; 
Guggemos et al., 2019; Kousis, 2019). Also, the CTt aims to measure the developmental level of computational 
problem-solving (Román-González et al., 2017). As the target population was novices on the subject of 
computer science, we adapted this scale for the study to measure the core computational concepts according to 
the developmental level of beginner rather than the age level, which may allow further insights. Six of the 11 CT 
components were covered by the CTt (see Table 2). Since five of the 11 CT components were covered by the 
CTt, the remaining components were measured through the coding journal.  

The coding journal questionnaire for Scratch programming project assignments was developed by the 
researchers. Open-ended questions are used in CT-related studies to provide insight into the participants’ 
understanding of computational practices (Cetin, 2016; Ozoran et al., 2012). Participants were asked to share 
their programming experiences with reflective writing in response to four open-ended questions as they 
performed programming tasks using Scratch: (a) overall programming process or steps to create your program, 
(b) what worked well during programming, (c) what issues you faced during programming, and (d) what needs 
to be improved in the next programming project. The coding journal questionnaires were designed to lead the 
students to validate and embellish on the findings from the CTt responses, which were also helpful in finding 
what interventions could help improve their learning experiences on computational concepts. Table 2 presents a 
summary of the measurements deployed to measure computational thinking components. 

Table 2. A summary of CT components and corresponding instruments 

Dimensions Components CTt Coding Journal 
Computational Concept  Sequences 

Loops 
Events 
Parallelism 
Conditional 
Operators 
Data 

O 
O 
O 
X 
O 
O 
X 

O 
O 
O 
O 
O 
O 
O 

Computational Practice Being incremental and iterative 
Testing and debugging 
Reuse and remixing 
Abstraction and modularity 

X 
X 
X 
X 

O 
O 
O 
O 

Note. Symbol “O” indicates measured; “X” indicates unmeasured. 

4.4 Data Collection and Analysis  

After completing all computational concept-related activities, an online form of CTt was linked in a module. 
Participants received an extra point for voluntary participation in the test. Their answers to the CTt items were 
stored in the database and statistically analyzed. Afterward, we conducted descriptive and repeated measures 
analysis of variance (ANOVA) analyses for the CTt scores to determine the changes in scores. 

In each module, participants used Scratch to perform programming tasks. Their experiences were gathered from 
the coding journals for the assignment where all computational concepts and practices needed to be applied. A 
total of 92 coding journals were analyzed by thematic analysis. The authors organized the data and then coded 
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the Scratch coding journals following the three-step guidelines from Miles and Huberman (1994) for deductive 
thematic analysis: (a) data reduction, (b) data display, and (c) data drawing and conclusion. The qualitative data 
was coded for the frequencies of different types of CT components and then recoded using iteratively refined 
codes by two of the researchers with high levels of interrater secured. Their responses were reexamined and 
categorized into seven computational concepts and four computational practices based on Brennan and Resnick’s 
framework. Finally, tables were created based on the four categories aligned with the journal questions: (a) 
process, (b) success, (c) challenge, and (d) improvement (see Tables 4–6). 

5. Results 

5.1 CTt Analysis Results (RQ1: Which computational thinking concepts are difficult for 
undergraduate students?) 

For the first research question, CTt scores showed that the participants’ understanding of each CT concept 
differed considerably. Table 3 shows a summary of the CTt mean scores, of which each subscale ranges from 1 
to 4. As shown in Table 3, while “basic direction and sequences” among the seven computational concepts had 
the highest mean score of 3.29 out of 4 (M = 3.29, SD =1.0); “while conditional” had the lowest mean score of 
1.49 (M = 1.49, SD =1.02); followed by “if-simple conditional” (M = 1.75, SD = 1.10); “if/else complex 
conditional” (M = 2.03, SD = 1.31); “simple function” (M = 2.18, SD = 1.29); “loops-repeat until” (M = 2.68, 
SD = 1.05); and “loops-repeat time” (M = 3.17, SD = .98). As demonstrated in Table 3, the values of the two 
computational concepts, “while conditional” and “if conditional,” was relatively lower than those of the other 
concepts. Also, a one-way repeated measures ANOVA was computed to evaluate if there was any change in 
participants’ CT sub-concept scores when measured in the seven computational concepts. The results of the 
ANOVA indicated a significant effect for the CT concept (Wilks’ Lambda = .23, F (6,86) = 47.07, p < .01, η² = 
.77). Also, there was significant evidence that the mean score of each concept was different. Pairwise 
comparisons indicated that each pairwise difference in scores was significant, p < .05, suggesting that 
participation in the subscale decreased participants’ mean scores of CTt subscales. That is, the average score 
tended to decrease gradually as the difficulty of the CT concept increased. However, there was no statistically 
significant difference in mean test scores between “simple function” and “if/else complex conditional” (p = 
0.87). 

Table 3. A summary of descriptive analysis results (RQ1)  

CTt Concepts  Mean SD 
Basic direction & sequences  3.29 1.15 
Loops-repeat time 3.17 .98 
Loops-repeat until 2.68 1.05 
Simple function 2.18 1.29 
If/else complex conditional  2.03 1.31 
If-simple conditional 1.75 1.10 
While conditional  1.49 1.20 

5.2 Coding Journal Analysis Results (RQ1 & RQ2: Which computational thinking concepts and 
practices are difficult for undergraduate students?) 

The results of the content analyses from the student coding journals showed the computational concepts and 
practices areas where participants had difficulties as they programmed with Scratch. The responses to the open-
ended questions of the coding journals (i.e., overall process, success, challenge, and improvement) produced a 
more diverse set of answers. After thoroughly validating the data analysis, a list of difficult computational 
concept and practice areas for beginners to learn block-based programming online was identified. As shown in 
Table 4, the most common responses to the open-ended question regarding issues faced during programming 
were the use of “conditionals” (e.g., if/else and nested conditionals) and “data” (e.g., variables and lists). When 
asked what needed to be improved in the next programming project, students described the uses of “if/else 
conditional,” “data,” and “operators” (e.g., numeric, logical, and string manipulation) when it comes to 
computational concepts. In contrast, the concepts considered successfully learned were “sequences,” “loops,” 
and “events.” In terms of “parallelism,” in the early simple programming, the codes were parallelized as 
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intended, but as the number of sprites and the complexity of the programs increased, the parallelism tended to 
become more challenging. Table 4 summarizes the content analysis results for computational concepts. The 
responses to the first question in the coding journal, overall programming process, were categorized as codes for 
computational practices. 

Table 4. A summary of the content analysis results related to computational concepts (RQ1) 
 

Concepts  Frequencies Quotes 

Success 
(N=150) 

Sequences 46%  “Programming the correct sequences was easy.” 

Events 32% “What worked well was getting the character to move, 
look, sound, and event.” 

 Loops 22%  “Repeat background sound and pauses worked very well.” 

Challenge 
(N=182) 

Data 37%  “Creating a new variable and list caused me to re-write the 
code several times.” 

 Conditionals 33%  “I am facing a lot of simple mistakes when I initially use 
control blocks such as if/else and repeat until.” 

 Parallelism 30%  “I struggled to know how to run simultaneously with the 
multiple movements.” 

Improvement 
(N=110) 

Conditionals 41% “I would like for my next programming project to flow 
better with no issues.” 

 Data 36%  “The only difficulty that I faced during the process was that 
it was hard for me to place the correct variable in order to 
keep the correct commands consistent.” 

 Operators 23%  “I want to be more comfortable with the operators and I 
think continuing to explore more operators and use more in 
depth.”  

Note. Values in percent indicate relative frequencies.  

In addition, concerning the computational practice in programming, a summary of the content analysis results is 
presented in Table 5. First, as a result of analyzing the responses to the overall process for the programming 
project, participants described the process as incremental and iterative by approaching and developing a solution 
in small steps. Second, although participants perceived that they were doing best in “reusing and remixing” (i.e., 
building on their own or others’ work), “testing and debugging” (i.e., trial and error, fixing an error) was 
reflected as the most difficult computational practice element even after they had attempted a number of trials 
and errors. For instance, participants most often expressed, “I cannot see where I’m making a mistake to fix it,” 
or “I know the problem, but I don’t know how to solve it,” or “I spent a lot of time and effort trying to solve the 
problem, but I can’t solve it.” Last, “abstracting and modularity” was the most frequent response as 
computational practice when participants were asked what they wanted to improve for the next Scratch project. 
Participants wanted to find more ways to efficiently abstract solutions by analyzing problem patterns to solve 
problems. They also wanted to improve in converting their solutions efficiently. Table 5 presents example quotes 
from the coding journal regarding computational practices.  
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Table 5. A summary of the content analysis results related to computational practices (RQ2) 

 Practices  Frequencies Quotes 

Process 
(N=131) 

Being incremental & iterating 

Remixing & reusing 

Testing & debugging 

Abstracting & modularizing 

61% 

25% 

9% 

5%  

“The process I used to create my program 
was to first read through the blackboard 
instructions and understand the steps to 
create. After this, I began to create the 
project by developing a project in small 
steps.” 

Success 
(N=103) 

Remixing & reusing  

Being incremental & iterating 

Testing & debugging 

 

65%  

26% 

9% 

“What worked well during programming was 
remixing. I looked at our starter and example 
projects several times as well as looked at 
other students that have created Scratch 
projects similar.” 

Challenge 
(N=74) 

Testing & debugging  

Abstracting & modularizing 

72% 

28% 

“I attempted multiple different methods to 
complete this task but for some reason I was 
not able to successfully execute.” 

Improvement 
(N=114) 

Abstracting & modularizing  

Testing & debugging  

 

65% 

35% 

  

“The most used block was the if blocks. A 
new block that became very helpful for me 
were the created blocks. It saved a lot of 
room and time when building collections of 
codes.” 

Note. Values in percent indicate relative frequencies.  

6. Discussion and Implications 
This study aimed to identify the computational concept and practice components that learners may have 
difficulties learning with online programming, to lay the groundwork for an effective teaching approach. Along 
with Brenan and Resnick’s dimensional framework (2012), the CTt scale provided meaningful results for the 
understanding of computational concepts. Through the coding journal analysis, information on achievements in 
computational concepts and practices were obtained. In particular, the differences in learning were revealed in 
some concepts and practices of computational thinking. The results from the two data analyses showed that the 
relatively easy CT concepts were “sequences,” “loops,” and “events,” and relatively easy CT practices were 
“being incremental and iterating” and “reusing and remixing.” Conversely, four concepts (i.e., parallelism, 
conditionals, data, and operators) and two practices (i.e., testing and debugging and abstracting and 
modularizing) were identified as difficult CT components to achieve in block-based programming. In particular, 
the problems of using “conditionals” were consistent with the results of the coding journal analysis in that all of 
the CTt scores on the “conditionals” (i.e., if-simple conditional, if/else complex conditional, and while 
conditional) were low.  

Findings suggest that educators should pay more attention to the levels of learning difficulty of the 
computational concepts—“parallelism” (e.g., complex sets of activities in parallel); “conditionals” (e.g., if-
simple conditional, and if/else complex conditional, and while conditional); “data” (e.g., variables and lists); and 
“operators” (e.g., numeric and string manipulation). Also, to facilitate the process of CT development in practice, 
instructions should incorporate the elements of computational practices (e.g., testing and debugging and 
abstracting and modularizing). Instructional approaches can be suitable for the difficulty level of the 
computational concepts and practices. The following instructional approaches can be considered. 

Table 6. A summary of the key findings  

 CT Concepts from CTt and Coding Journals CT Practice from Coding Journals 
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Process N/A #1 Being incremental and iterative 

#2 Remixing & reusing 

Success #1 Sequences  

#2 Events 

#3 Loops 

#1 Remixing & reusing 

#2 Being incremental and iterative 

Challenge #1 Data 

#2 Conditional  

#3 Parallelism 

#1 Testing and debugging 

#2 Abstracting & modularizing 

Improvement #1 Conditional 

#2 Data 

#3 Operators 

#1 Abstraction and modularity 

#2 Testing and debugging 

 

First, participants had difficulty as the complexity of concepts increased. Since the biggest limitation of CT 
instruction is that CT is difficult to teach due to its abstract concepts (e.g., parallelism, conditionals, data, 
and operators), unplugged activities can help novice learners gain a deeper conceptual understanding of 
abstract computation concepts and develop an algorithmic solution on paper. For example, storyboard, 
decomposition sheet, flowchart, pseudo code, and/or journal entry can aid in understanding challenging 
computational concepts (e.g., Looi et al., 2018). These unplugged activities are suitable for novice programming 
learners to build difficult computational concepts and develop difficult computational practices gradually. 
Unplugged activities build student insight into the meaning of blocks, rather than copying a set of blocks and 
running it (e.g., Brackmann et al., 2017; Caeli & Yadav, 2020).  

Second, explicit instruction can address challenges learners face when learning difficult computational concepts 
and practices. For example, direct instruction is a way to teach concepts and skills to novice students using direct 
and structured instruction that explains, demonstrates, and models what learners do. In particular, direct 
instruction is effective when background knowledge is low and the task is complex (Kroesbergen et al., 2004, 
Rupley et al., 2009). When complex computational concepts and practices are broken down into adaptable 
chunks, instructors can evaluate students’ understanding more precisely by teaching codes one line at a time. 
Students can practice the skills to increase their understanding of concepts by observing and experimenting with 
the assistance of the teacher. After guided practice, students need to apply it independently in their use of the 
concept and skills.  

Third, CT instructions should be differentiated for high- and low-achieving students when teaching complex 
concepts and practices. High-achieving learners are likely to have more prior knowledge and existing schemas 
for constructing new information. Low-achieving learners need support, repetition, and motivating activities, 
such as constructive feedback and gamification including choice, rewards, experience points, and level up (e.g., 
Standford et al., 2010). Besides, the scope and sequence of CT instruction should be presented depending on the 
difficulty level of domains and tasks (e.g., Tomlinson, 2012). Learners’ knowledge background and proficiency 
should be considered in designing CT instructions with technology. Even non-CS college students need help to 
understand complex concepts in order to solve computational problems. 

Fourth, novice learners should have opportunities to learn how to build computational practices. A complete 
understanding of computational concepts does not mean that computational practice can be acquired naturally. 
Since computational problem-solving requires an incremental and iterative process, novices need to learn 
relevant strategies (e.g., planning multiple phases of development, dividing functions or processes in a program). 
Debugging usually starts by looking into what should happen, but beginners may have a hard time locating the 
problem (McCauley et al., 2008). Debugging strategies (e.g., checking invalid values/operations, order of codes, 
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time between blocks) help beginners troubleshoot the problems. Also, they should be encouraged to accept 
failures as part of their learning process and understand that such experiences help them find the right solution. 
As shown in Table 5, for students who have tried several different attempts to solve a problem but cannot 
successfully execute, debugging strategies and tips as a scaffolding should be in place in case, they give up 
without solving the problem. Moreover, as novices advance their computational practices, the CT instructions 
should include exercises on abstraction and modularization strategies (e.g., simplifying a program, dividing code 
blocks).  

Last, learners should be encouraged to reflect on and share their CT learning experiences with other classmates. 
Collaboration was incredibly beneficial, particularly to students with minimal programming experience (Denner 
et al., 2014). In activities related to reuse and remixing (see Table 5), students responded that they benefited 
from seeing other students’ coding blocks or ideas when developing a solution. Collaborative experiences 
include brainstorming solutions, planning the uses of code blocks, developing algorithms, and fixing errors in 
pairs. The collaborative learning experience is advantageous not just for developing programming knowledge, 
but for building other skills critical to solving problems, especially considering that first programming 
experiences are not offered equally to all.  

7. Conclusion 
As CS/CT education has gained growing recognition in many disciplines, it is necessary to carefully prepare for 
its integration to make the leap from block-based programming to problem-solving. However, educators were 
neither confident in the subject matter nor differentiated it sufficiently for a mixed-ability group (Sentence & 
Csizmadia, 2015). The evidence from this study confirmed what computational concepts and practices novice 
learners might struggle with. We discussed how instructions need to be shaped to assist novices in improving CT 
learning in an online environment. The findings of this study underlined that CT-related learning activities 
should offer additional instructional support to enhance the understanding of challenging computational concepts 
and practices. It is hoped that educators will close instructional gaps in what their students struggle with to 
construct difficult computational concepts and fully practice new solutions with what they already know. Further 
studies are needed to investigate the effects of instructional approaches to these identified CT components. 

Limitations 

The empirical results reported herein should be treated with caution. First, the study is limited in that the 
programming task did not require a design-based activity and did not ask for differences in perceptions of CT 
perspectives. Future studies, therefore, should focus on deepening our understanding of how CT learning 
processes occur in creative programming tasks and how the computational perspective helps teachers and 
learners understand themselves and their communities. Second, the CTt scale used in this study was found to 
partially measure the components of Brennan and Resnick’s CT concept and practices. That is, the CTt did not 
contain or fit some computational concepts (e.g., parallelism, data, and operator) and computational practices 
(e.g, being incremental and iterating, reusing and remixing, abstracting and modularizing). Further research is 
needed to include these sub-components on the scale. Third, to be more valid with a different population and 
other settings, the study may need to be repeated to support the results. 
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Abstract 

The main goal of the current study is to develop a reliable instrument to measure programming anxiety in 
university students. A pool of 33 items based on extensive literature review and experts' opinions were created 
by researchers. The draft scale comprised three factors applied to 392 university students from two different 
universities in Turkey for exploratory factor analysis. The number and character of the underlying components in 
the scale were determined using exploratory factor analysis. After exploratory factor analysis, confirmatory 
factor analysis was conducted on the draft scale using a sample of 295 university students. Confirmatory factor 
analysis was carried out to ensure that the data fit the retrieved factor structure. The internal consistency 
coefficient (Cronbach's alpha) was calculated for the full scale and each dimension for reliability analysis. For 
convergent validity, the factor loading of the indicator, the average variance extracted, composite reliability, and 
maximum share variance values were calculated. Additionally, convergent validity was tested through (1) 
comparison of mean values of factors and total programming anxiety depending on gender and (2) correlation 
analysis of factors, total programming anxiety, and course grade of students. The Fornell & Larcker criterion and 
the Heterotrait-Monotrait correlation ratio were utilized to assess discriminant validity. According to analysis 
results, the Programing Anxiety Scale (PAS) comprised 11 items in two factors: classmates and self-confidence. 
Similarly, results revealed that The PAS has good psychometric properties and can be used to assess the 
programming anxiety of university students. 

Keywords: computer programming, programming anxiety, scale development, scale validation 

1. Introduction 

With the development of the internet and mobile technologies in the last two decades, breakthroughs have been 
experienced in many fields of computer science such as big data, artificial intelligence, blockchain, 
bioinformatics, wearable technologies, cloud computing, 3D printers, robotics, and virtual reality. 
Responsibilities of computer science such as automating the processes, facilitating communication, providing 
better products and services, assisting the world to be more productive have caused human beings to be more 
dependent on software (Santos, Tedesco, Borba, & Brito, 2020). As a result, all developed and developing 
countries are required to raise qualified individuals who can maintain the software used and produce practical 
solutions to new problems encountered in the future (Demirer & Sak, 2016). One of the conditions for the 
success of this task is to provide students with programming skills, which is considered one of the requirements 
of being a well-educated and knowledgeable citizen (Al-Makhzoomy, 2018; Kert & Uğraş, 2009). However, 
according to several studies, most computer science students regard programming courses as complicated and 
intimidating (Bennedsen & Caspersen, 2007; Connolly, Murphy, & Moore, 2009; Jenkins, 2002; Owolabi, 
Olanipekun, & Iwerima, 2014; Robins, Rountree, & Rountree, 2003; Wiedenbeck, Labelle, & Kain, 2004). 
Moreover, studies show that programming courses have high dropout and failure rates (Bennedsen & Caspersen, 
2007; Luxton-Reilly et al., 2019). 
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Over the last decade, numerous research has been undertaken on the factors affecting learner success in 
programming courses. Previous studies indicate that programming background (Bunderson & Christensen, 1995; 
Byrne & Lyons, 2001), mathematical knowledge (Butcher & Muth, 1985; Wilson & Shrock, 2001), problem-
solving skills (Gibbs, 2000; Hostetler, 1983), learning styles (Byrne & Lyons, 2001; Tan, Ting, & Ling, 2009), 
expectations of students for course outcome (Rountree, Rountree, & Robins 2002), comfort level (Bergin & 
Reilly, 2005) and self-efficacy (Ramalingam & Wiedenbeck, 1998) impact achievement of students in 
programming courses. Similarly, programming anxiety is also a significant predictor of achievement in 
programming (Connolly et al., 2009; Maguire, Maguire, & Kelly, 2017).  

1.1 Related Work 

Connolly, Murphy, and Moore (2007) define programming anxiety as a situation-specific psychological state 
caused by negative experiences or expectations in a computer programming situation. Connolly et al. (2007) also 
claim that programming anxiety is caused by the incorrect self-assessment of students' abilities when learning to 
program. According to Scott (2015), students often encounter programming anxiety at the initial stages of 
programming courses because programming courses involve concepts and materials that are "radically novel" 
(Dijkstra, 1989). Moreover, as beginning programming courses have become more abstract over the last few 
decades, programming anxiety has increased (Connolly et al., 2009). This particular content can evoke intense 
negative feelings (Huggard, 2004) such as confusion, frustration, and boredom (Bosch, D'Mello, and Mills, 
2013) which is described as a phenomenon called "programming trauma" (Huggard, 2004).  

Since learners' self-belief plays a fundamental role in intellectual development (Berland & Lee, 2011; Pajares, 
1992), Jiang, Zhao, Wang, and Hu (2020) believe that this trauma happens when students lose their self-efficacy 
in programming, which negatively affects learning outcomes. Connolly et al. (2007) propose a cognitive model 
to explain how programming anxiety influences students' emotional, behavioral and physiological reactions (see 
Figure 1). The mental model asserts that students' automatic thoughts are activated in programming situations, 
directly influenced by their core and intermediate beliefs. Eventually, automatic thoughts affect their emotional, 
behavioral, and physiological reactions. According to Connolly et al. (2007), a fear of programming may 
commence caused by core beliefs for a student sensitive to programming anxiety. Then, intermediate thoughts of 
students could emerge as a fear of what other students might think about their performance and ability. Finally, 
automatic thoughts arise in programming situations and trigger negative thoughts and reactions.  

In addition to the cognitive model for programming anxiety, Rogerson and Scott (2010) also depict an iceberg 
model to explain factors affecting fear of programming. According to the iceberg model, the fear of 
programming is induced due to the nature of programming. Rogerson and Scott (2010) cite that internal factors 
such as motivation, attitude, self-efficacy, and attribution often have a part in building negative perceptions of 
programming. At the same time, peers, teaching methodology, timing, lectures, and tutors constitute external 
factors. 

 

Figure 1. Proposed Cognitive Model for Programming Anxiety (Connolly et al., 2007) 
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The number of studies on programming anxiety has risen dramatically in the last decade. Some of these studies 
examined factors associated with programming anxiety, while others investigated the impact of programming 
anxiety on student performance and motivation. According to S Sinožić and Orehovaki (2018), the absence of 
programming experience, fear of programming, and a misperception of programming languages as very complex 
are all powerful determinants of programming anxiety among novices. Similarly, unfamiliar subjects in 
programming courses make students avoid programming, and programming makes them feel uncomfortable 
(Olipas, Leona, Villegas, Cunanan & Javate, 2021). According to studies, learners' programming anxiety levels 
aggregated as they were presented to programming concepts and principles. (Campbell, 2018; Dasuki & Quaye, 
2016).  

Several studies have also connected programming anxiety to academic performance, perceived self-efficacy, 
encountering errors when developing programs, gender, peers, test anxiety, mathematics, and computer anxiety. 
For example, Olipas et al. (2021) found a negative association between participants' academic performance and 
programming anxiety in a study of 348 students. Hsu and Gainsburg (2021) and Wilfong (2006) explain that 
self-efficacy plays a vital role in performance in programming courses, and self-efficacy has a mediating effect 
on the relationship between anxiety and performance. Results of a systematic review of the literature conducted 
by Nolan and Bergin (2016) illustrate correlates of programming anxiety as programming as a subject, test 
anxiety, computer anxiety (volume of computer usage), and using mathematics frequently in coding. 
Additionally, the students' incapacity to debug their programs increase their programming anxiety (Dasuki & 
Quaye, 2016; Nolan & Bergin, 2016).  

Some researchers mention the effects of peers on programming anxiety. According to Nolan and Bergin (2016), 
when programming students learn to program in a laboratory with many peers, this circumstance can be 
stressful. Falkner, Falkner, and Vivian (2013) explored how collaborative practices in programming courses can 
cause fear and tension in learners. They concluded that working in groups prevented students from feeling 
comfortable in classes. There are also studies in the programming literature on the effects of gender on 
programming anxiety. According to Olipas and Luciano's (2020) study, female students show more 
programming anxiety than male students. Chang (2005) also explored a possible association between the 
perceived complexity of programming tasks and programming anxiety with 307 participants. According to the 
findings, there was a strong association between these two variables, indicating that as the perceived complexity 
of programming assignments increased, so did students' perceived programming anxiety levels. 

Many studies in the literature state that programming anxiety is one of the factors that cause students to fail and 
lose interest in programming courses. It is reported that programming anxiety is critical in determining students' 
success in a programming course (Connolly et al., 2007; Figueroa & Amoloza, 2015; Kinnunen & Malmi, 2006; 
Nolan, Bergin & Mooney, 2019; Owolabi et al., 2014; Scott, 2015). With self-beliefs being the case, Kinnunen 
and Simon (2012) assert that learners' self-beliefs are developed due to the experiences students have while they 
engage in programming activities rather than the resulting quality of the programs they write. As a consequence 
of negative experiences and self-appraisals, learners lack the time or have no motivation to program (Kinnunen 
& Malmi, 2006; Scott, 2015). Similarly, Maguire et al. (2017) assert that programming anxiety causes a lack of 
confidence and plays a crucial role in discouraging students from carrying out programming independently. 
Results of the study of Özmen and Altun (2014) show that while students with a low level of programming 
anxiety spend extra time on programming and code more qualified programs, students with a high level of 
anxiety devote limited time on programming practices and avoid learning programming. Similar results have 
been cited by Scott (2015), concluding that programming anxiety inhibits time spent practicing programming 
and decreases course participation (Bergin & Reilly, 2005). Scott and Ghinea (2014) investigated the possible 
adverse effects of programming anxiety on students' programming practice. Participants of the study were 239 
university students. The findings revealed that students are frequently concerned when undertaking debugging 
activities.  

In the light of all these studies in the literature, it is essential to measure the programming anxiety levels of 
students with reliable and valid instruments to determine students' anxiety levels and help learners overcome 
their anxiety and frustration in programming courses. However, despite anxiety's critical role in programming, 
research on anxiety scale development has been deficient. Information about these measurement instruments is 
summarized in Table 1. 
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Table 1. A Summary of the Relevant Scales 

Name of the Scale/Survey Factors 
The Total 

Number of Items 
Programming Anxiety Survey  
(Figueroa & Amoloza, 2015) 

- Not Applicable 6 

The Computer Programming Anxiety 
Questionnaire (Connolly et al., 2009) 

- Gaining Initial Computing Skills 
- Sense of Control 
- Computer Self Concept 
- State of Anxiety in Computer Situations 

15 

The Computer Programming Anxiety Scale  
(Choo & Cheung, 1991) 

- Errors 
- Significant Others 
- Confidence 

19 

 

As presented in Table 1, three scales are prepared to measure primarily programming anxiety. All of the scales 
are based on self-reported data. In addition to these scales, it was noted that computer anxiety or information 
technology (IT) anxiety scales were adapted for measuring programming anxiety in several studies (see Olipas & 
Luciano, 2020; Scott & Ghinea, 2014, and Orehovacki, Radosevic & Konecki, 2012). Furhermore, Demir (2021) 
recently adapted Choo and Cheung's (1991) programming anxiety scale into Turkish.  

1.2 Purpose of the Study 

Studies show that reducing anxiety can enhance academic performance and achievement (Hattie, 2008). The 
same is true when it comes to improving the efficiency of programming courses. It is vital to identify learners' 
programming anxiety and work closely with students with high anxiety to develop the learning outcomes of 
programming courses at the highest level. In this sense, there is a need for reliable measurement tools designed 
to measure programming anxiety to make meaningful conclusions from the analysis. As a result, the current 
research aims to create a proper and reliable tool to measure programming anxiety in university students. 

2. Method 

The Computer Programming Anxiety Scale was developed and validated in three phases, illustrated in Figure 2. 
In summary, dimensions of the draft scale were identified, and the item pool was generated in the first phase. In 
the second phase, content and phase validity were assessed. In the last stage, exploratory and confirmatory factor 
analysis was conducted, and construct validity was evaluated.  

2.1 Phase 1: Identifying dimensions & item generation 

Clark and Watson (1995) recommend beginning scale development by clearly conceptualizing the target 
construct and clarifying its breadth and scope. The researchers conducted a comprehensive literature review and 
content analysis to identify different dimensions of programming anxiety. With this respect, models and 
explanations related to programming anxiety were examined to develop a clear conceptualization. Furthermore, 
related constructs including computer anxiety, math anxiety, and test anxiety were investigated. The Computer 
Programming Anxiety Scale (Choo & Cheung, 1991) was used to identify programming anxiety dimensions. At 
the same time, scales developed to measure students' anxiety, such as programming anxiety, computer anxiety, 
test anxiety, math anxiety, and foreign language learning anxiety, were investigated. Depending on the studies on 
programming anxiety, three dimensions were proposed: (1) classmates, (2) self-confidence, and (3) errors. The 
"Classmates" subscale measures students' anxiety in the presence of more proficient students. The "Programming 
confidence" subscale measures students' feelings of inadequacy while programming. "Errors" subscale measures 
students' anxiety when confronted with errors during programming.  

Next, a pool of 33 items was constructed to capture negative emotions during program development and 
debugging. The rationale underpinning including as many items as possible in the draft scale was that the 
number of items at the start should be twice as numerous as the final scale (Nunnally, 1994). To obtain precise 
and unambiguous items that reflect the specified conceptual definitions, item wording rules suggested by 
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Carpenter (2018) were applied. This cyclical item development procedure yielded a total of 33 items, each rated 
on a 5-point scale from 1 ("never true") to 5 ("always true"). In this regard, "seldom true" was scored as 2, 
"sometimes true" was 3, and "often true" was 4. 

2.2 Phase 2: Development of the scale 

2.2.1 Content validity 

Content validity of the draft scale was tested by interviewing five experts, three of whom were from the field of 
instructional technology, one from the field of Turkish language, and one from the field of psychological 
counseling and guidance. An expert opinion form was created in this phase. The experts were requested to rate 
each scale item using this form on a four-point rating scale (1 = not relevant; 2 = item requires so much revision 
that it is no longer relevant; 3 = item is suitable but needs minor changes; 4 = highly relevant). Data gathered 
from the expert opinion was used to quantify the content validity process and calculate Content Validity Index 
(I-CVI; Polit, Beck, & Owen, 2007). The I-CVI was calculated by dividing the experts who provided a 3 or 4 by 
the total number of experts for each item (Lynn, 1986). Nine items with an I-CVI-score of less than one were 
excluded from the draft scale using Lynn's (1986) criteria. In addition, based on the experts' recommendations, 
two of the retained items were revised to simplify the language. This operation yielded 24 items in the final pool 
(classmates: 8 items; self-confidence: 9 items; errors: 7 items). Table 2 depicts the item pool on the draft scale. 

2.2.2 Face validity 

The questionnaire's face validity was assessed quantitatively. To evaluate the qualitative face validity, nine 
college students enrolled in a programming course were interviewed face to face and participants rated the items 
based on clarity and relevancy. Despite some minor errors, all of the interviewees concurred on the clarity and 
comprehensibility of all of the items. 

2.2.3 Translation of the Scale 

The Programming Anxiety Scale items were created and written in Turkish at first. The data were collected 
utilizing this original scale. The translation of the original scale to English was carried out after the data 
collection process. A mixed translation strategy utilizing the back-translation method and the committee 
approach that was distinct from Jones, Lee, Phillips, Zhang & Jaceldo (2001) was used in the translation process. 
The researchers initially translated each item in the original version into English. Next, three Turkish/English 
bilingual professors thoroughly inspected each translated item. With the help of the multilingual teacher group, 
any necessary modifications to problematic items were performed. The bilingual experts agreed on the translated 
and original versions of the scale. 
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Figure 2. An overview of phases of the PAS development. (Adapted from Zarouali, Boerman & de Vreese, 
2021) 



International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3 
ISSN 2513-8359 

 23 

Table 2. Item Pool of the Draft Scale 

Factor Items Code Item 

Classmates 

Item1 I am concerned about not being able to stay calm like my 
classmates while coding a program. 

Item2 I feel humiliated if a classmate easily debugs an error on which I 
worked so hard. 

Item3 Believing that I cannot reach the level of my friends who have 
taken programming lessons before makes me anxious. 

Item4 The presence of my classmates who have previously taken 
programming courses makes me nervous. 

Item5 It makes me anxious when many of my classmates can write the 
code that I cannot write. 

Item6 I get worried if my classmates comprehend a programming topic 
and I don't. 

Item7 
I feel tense when my friends talk about programming topics that I 
don't understand. 

Item8 
I am concerned about not being able to write a program and 
being ridiculed by my classmates. 

Self-confidence 

 Item9 I think I do not understand programming well. 

  Item10 It makes me anxious to feel that I memorize programming topics 
instead of learning the logic. 

  Item11 It makes me anxious to feel that I quickly forget what I have 
learned in programming lessons. 

  Item12 I have doubts about creating the steps (algorithm) necessary for 
the solution while coding the program. 

  Item13 I have concerns about my programming abilities. 

  Item14 I feel confused when the program lines become complicated. 

  Item15 I don't trust myself in writing programs. 

  Item16 I get nervous when we talk about programming. 

  Item17 It scares me that there are too many topics to learn in the 
programming lesson. 

Errors 

  Item18 I get worried when I can not understand error messages. 

  Item19 The number of errors in my program makes me worried. 

  Item20 I am worried about encountering errors in my programs. 

  Item21 I feel worried when my program fails to run. 

  Item22 Debugging programs is a major worry for me. 

  Item23 I get worried about debugging my software over and over again. 

  Item24 It makes me worried to think that my codes will have bugs. 

 

2.3 Phase 3: Validation of the scale 

2.3.1 Sample 

The draft scale was validated primarily in two phases. Since using the same data set for exploratory factor 
analysis (EFA) and confirmatory factor analysis (CFA) is not generally accepted as the correct method in the 
literature (Fokkema & Greiff, 2017), data were collected from two distinct sample groups of university students 
(first and second sample). While the data from the first sample was used to investigate the scale's underlying 
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factor structure in the EFA phase, the data from the second sample was used in the CFA phase to cross-validate 
the EFA results. All subjects were recruited using a convenience sampling method. 

The first sample comprised 392 university students (29 females, 363 males) taking programming courses at two 
different universities in Turkey. The female and male participants' mean age was 20.30 and 19.46 years, 
respectively. The first sample consists of students from the Department of Electronics Technology (82.4), 
Computer Education and Instructional Technology (CEIT) (10.2%), and Computer Technology (7.4). While 
81.89% (n=321) of the students were experienced in a programming, 18.11% (n=71) were novices. 

The second sample consisted of 295 college students recruited voluntarily from different programs (32 females, 
263 males). The female and male participants' mean age was 21.12 and 19.89 years, respectively. The second 
sample consists of students from the Department of Electronics Technology (69.04), CEIT (16.01%), and 
Computer Technology (14.95). While 76.61% (n=226) of the students were experienced, 23.39% (n=69) had no 
prior programming experience. Data from both samples were collected using Google Forms.  

2.3.2 Analytical Strategy 

The PAS was validated using Boateng, Neilands, Frongillo, Melgar-Quiñonez, & Young's (2018) scale 
development recommendations. The number and character of the underlying components in the scale were 
determined using EFA, which CFA followed to ensure that the data fit the retrieved factor structure. The 
construct validity was then examined after a reliability analysis. The Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy (KMO) and Bartlett's test were implemented to assess the adequacy of the study group (Tabachnick & 
Fidell, 2001). The tests showed that the data was suitable for EFA. In addition, considering Hair, Black, Babin, 
& Anderson's (2010) suggestions on the cutoff value for factor loadings and commonalities, these values were 
determined as .50 and .30, respectively. Items that loaded only one factor without any cross-loadings were kept. 
The research employed SPSS 22 software for EFA. For CFA, Maximum likelihood estimation was adopted to 
calculate the structure parameters using AMOS 22 software. 

The internal consistency coefficient (Cronbach's alpha) was calculated for the full scale and each dimension for 
reliability analysis. For convergent validity, the factor loading of the indicator, the average variance extracted 
(AVE), composite reliability (CR), and maximum share variance (MSV) values were calculated (Hair, Hult, 
Ringle, & Sarstedt, 2014). These calculations were conducted using Gaskin's (2016) AMOS MasterValidity 
Plugin. Furthermore, convergent validity was assessed through (1) comparison of mean values of factors and 
total programming anxiety depending on gender and (2) correlation analysis of factors, total programming 
anxiety, and course grade of students. The Fornell & Larcker criterion and the Heterotrait-Monotrait (HTMT) 
correlation ratio were utilized to examine discriminant validity (Ab Hamid, Sami & Sidek, 2017). HTMT was 
calculated using Excel 2016 software. Results of EFA, CFA, reliability, and validity analysis were presented in 
the manuscript's results section. 

3. Results 

3.1 Exploratory Factor Analysis 

The data's appropriateness for factor analysis was assessed before doing EFA. For this reason, Mahalanobis 
distance values for probable multivariate outliers were determined. Thirty-nine instances were eliminated from 
the analysis because their Mahalanobis values were above the necessary chi-square value of 54.05 (df = 26, 
alpha=.001) (Pallant, 2007). In addition, KMO was used to determine the adequacy of the sample size, and 
Bartlett's Test of Sphericity was used to determine whether the datum was suitable for factor analysis. The KMO 
sampling adequacy metric was .951, higher than the acceptable value of .60. Barlett's Test of Sphericity was also 
statistically significant (x2=3790.593, p=.000), demonstrating that the data was considerably factorable (Pallant, 
2007). 

In the first stage of EFA, principal axis factoring was employed for 24 items with direct oblimin rotation. The 
direct oblimin rotation approach was chosen because of the associated factors (Costello & Osborne, 2005; 
Gorsuch, 1983). After the EFA process, the correlation matrix was investigated for multicollinearity issues. 
Correlations in the .80's or .90's (Field, 2018) were examined, and six items (Item18, Item19, Item20, Item21, 
Item23, and Item24) in the "errors" factor with a correlation coefficient greater than .8 were excluded from the 
scale. Next, EFA was conducted again for the remaining 18 items. Four items (Item2 and Item6 in classmates 
and Item13 and Item16 in self-confidence) with high factor loadings in multiple factors were excluded (Burns & 
Machin, 2009; Howard, 2016). EFA was executed with the remaining 14 items. Based on the cutoffs for the 
eigenvalues and inspection of the scree plot, a two-factor model was identified that explained 69.4% of the 
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variance in programming anxiety. The two-factor model was confirmed by a parallel analysis with 5000 
randomly generated data matrices through Parallel Analysis Web Application (Patil, Surendra, Sanjay, & 
Donavan, 2017). These factors were labeled: (1) Classmates and (2) Self-Confidence. Table 3 includes the 
complete list of factor loadings. Internal consistency reliabilities (i.e., Cronbach's alpha coefficient) for the full 
scale and the subscales were .95, .90, and .94, respectively. 

 

Table 3. Factor Loadings of the PAS 
Items 
Code Item Classmates Self-Confidence 

Item1 I am concerned about not being able to stay calm like my 
classmates while coding a program. .633  

Item3 Believing that I cannot reach the level of my friends who have 
taken programming lessons before makes me anxious. .806  

Item4 The presence of my classmates who have previously taken 
programming courses makes me nervous. .918  

Item5 It makes me anxious when many of my classmates can write 
the code that I cannot write. .643  

Item7 I feel tense when my friends talk about programming topics 
that I don't understand. 

.634  

Item8 I am concerned about not being able to write a program and 
being ridiculed by my classmates. 

.877  

Item9 I think I do not understand programming well.  .818 
Item10 It makes me anxious to feel that I memorize programming 

topics instead of learning the logic.  .726 

Item11 It makes me anxious to feel that I quickly forget what I have 
learned in programming lessons.  .851 

Item12 I have doubts about creating the steps (algorithm) necessary for 
the solution while coding the program.  .844 

Item14 I feel confused when the program lines become complicated.  .909 
Item15 I don't trust myself in writing programs.  .780 
Item17 It scares me that there are too many topics to learn in the 

programming lesson.  .852 

Item22 Debugging programs is a major worry for me.  .822 

3.2 Confirmatory Factor Analysis 

The 14-item Programming Anxiety Scale's two-factor model was subjected to CFA using second sample data. 
Before the analysis, data were screened for missing values and outliers. With this respect, 13 respondents were 
detected unengaged in the scale evidence by getting the same response for every item. Thus, 14 cases were 
deleted from the sample. Next, CFA was conducted with 282 samples using maximum likelihood estimation. 
After CFA, three items (i.e., Item1, Item9, and Item11) had standardized parameter estimates smaller than the 
recommended value of .50 (Hair et al., 2010). 
Furthermore, AVE values for factors below .50 were calculated, indicating the absence of convergent validity. 
After removing these three items, 11 item structure of the PAS was re-subjected to CFA. The diagram regarding 
the factor structure of programming anxiety with new item codes (See Appendix) and the parameter estimates 
was given in Figure 2.  
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Figure 2. Standardized Coefficients for the Two-Factor Model of PAS 

According to Hu and Bentler (1999), researchers employ numerous goodness-of-fit metrics to analyze a model. 
In this study, the Chi-square goodness of fit test, Root Mean Square of Error of Approximation (RMSEA), 
Standardized Root Mean Square Residuals (SRMR), Goodness of Fit Index (GFI), Normative Fit Index (NFI), 
and Comparative Fit Index (CFI) were employed to assess model fit (Brown, 2006; Browne & Cudeck, 1993; 
Hair et al., 2010; Kline, 1998). Table 4 presents the fit statistics for the confirmative factor analysis. 

  
Table 4. Values of the Goodness-of-Fit Test for Programming Anxiety 

X2 X2/df p-value RMSEA SRMR GFI NFI CFI 
114.226* 2.79 .000 .071 0.032 .93 .93 .95 

  * p<0.01 

When Table 4 was analyzed, the chi-square value (X2 = 114.226, X2/ df = 2.79, p = .000) was found to be 
significant. RMSEA value of .071 indicate good adaptation (Brown, 2006; Browne & Cudeck, 1993). GFI, CFI, 
and NFI values greater than .90 indicate a good fit (Hair et al., 2010; Kline, 1998). The CFA results indicate that 
the structural model is a good fit. As shown in Fig. 2., each item loaded significantly on its particular dimension 
and was relatively large (.50 and above).  

3.3 Assessment of Reliability and Validity 

To assess convergent validity, standardized factor loadings, CR, and AVE were calculated (Hair et al., 2010). 
Cronbach alpha values for factors and the whole scale were calculated for reliability analysis (Taber, 2018). The 
condition that factor loading values greater than .5, Cronbach alpha values greater than .7, and AVE and CR 
values greater than .5 and .7 were taken into account (Taber, 2018; Hair et al., 2010). Table 5 illustrates that all 
constructs are reliable since they fulfill the above criteria. Furthermore, each construct's Cronbach's alpha 
exceeds the recommended value. The Cronbach's alpha value of the whole scale was calculated as .901, which 
fulfilled the reliability criterion.   

   
Table 5. Evaluation of the Measurement Model 

Factors CR AVE MSV Cronbach Alpha 
Classmates .835 .506 .498 .843 

Self-Confidence .881 .554 .498 .882 
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Furthermore, convergent validity was assessed through (1) comparison of mean values of factors and total 
programming anxiety depending on gender (Table 6) and (2) correlation analysis of factors, total programming 
anxiety, and course grade of students (Table 7). As shown in Table 6, female students had more programming 
anxiety than male respondents. Gender differences in programming anxiety were also investigated using a t-test. 
The test results showed that while there was no significant difference between male and female students in self-
confidence factor (t = .767, p>.05), there was a significant difference in classmates factor (t =4.058, p=.000) and 
total programming anxiety (t = 2.518, p=.012). Correlation analysis results (Table 7) revealed that classmates 
(r=-.194) and self-confidence (r=-.315) factors, as well as total programming anxiety (r=-.284), were negatively 
associated with course grade, p<.01. All of these correlations were found as weak (Schober, Boer & Schwarte, 
2018; Senthilnathan, 2019).      

 
Table 6. Gender differences in programming anxiety 

Gender 
 Factors Total Programming 

Anxiety Classmates Self-Confidence 
 N M SD M SD M SD 

Female 30 16.00 4.69 16.87 4.75 32.87 8.45 
Male 252 11.96 5.19 15.96 6.27 27.91 10.34 

 
Table 7. Correlation analysis results 

 Classmates Self-Confidence Total Programming 
Anxiety Course Grade 

Classmates —    
Self-Confidence .688** —   

Total Programming Anxiety .898** .938** —  
Course Grade -.194** -.315** -.284** — 

**. Correlation is significant at the 0.01 level (2-tailed). 
 
The Fornell & Larcker and the HTMT criteria were used to test the scale's discriminant validity. Table 8 
summarizes the results of the Fornell & Larcker criteria. In Table 8, each AVE's square root was given on the 
diagonal, and the correlation coefficients (off-diagonal) for each construct were displayed in the corresponding 
rows and columns. Fornel and Larcker (1981) state that the AVE values' square root should be higher than the 
correlations between the components included in the analysis. As shown in Table 8, this condition was satisfied, 
and the model met the Fornell & Larcker criterion for discriminant validity. In addition to the Fornell & Larcker 
criterion, discriminant validity was assessed through the HTMT coefficient. The HTMT coefficient was 
calculated as .705 in this model. According to Henseler, Ringle, and Sarstedt (2015), the HTMT coefficient 
should be less than .90 if the components to be evaluated are hypothetically close to one other. The HTMT 
coefficient was found to be below the threshold levels. 

 
Table 8. The square root of the average variance extracted (AVE) and correlations matrix 

 Factors 
Factors Classmates Self-Confidence 

Classmates .711  
Self-Confidence .705 .745 
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4. Discussion and Conclusion 

In computing education research, accurate measurement is critical (Scott, 2015). On the other hand, few 
measurement tools are available to computer education researchers (Scott & Ghinea, 2014). The current research 
fills a gap in the literature by developing and validating a measurement tool to assess the computer programming 
anxiety of university students. The development and validation of the programming anxiety scale in the current 
study were carried out in harmony with the scale studies recently published in several fields (Nasir, Adil, & 
Kumar, 2021; Rosario-Hernández, Rovira-Millán, & Blanco-Rovira, 2022; Sun et al., 2022; Zarouali, Boerman, 
& de Vreese, 2021). EFA, DFA, reliability, and validity analysis resulted in a scale including 11 items, five 
items for classmates, and six for self-confidence. The minimum obtainable score from the Programming Anxiety 
Scale is 11, while the maximum score is 55. As the score obtained from the scale increases, programming 
anxiety also increases. Choo and Cheung's (1991) Computer Programming Anxiety Scale served as a guide to 
develop the present scale.  

In the current study, no factor related to errors was found, while there was a factor for error anxiety in the study 
of Choo & Cheung (1991) and Demir (2021), in which Choo & Cheung's (1991) scale was adapted into Turkish. 
Although seven items were included in the draft scale for this factor, six of these items showed high 
multicollinearity. They were removed from the draft scale due to the exploratory factor analysis, and one item 
was kept. Although the inclusion of an item about error anxiety shows that debugging is a source of anxiety for 
students (Dasuki & Quaye, 2016; Nolan & Bergin, 2016), it is worth examining why it is not included as a 
factor. Not having an "errors" factor may indicate that encountering errors is a source of anxiety regardless of the 
number of errors and the time spent for debugging, which was utilized as parameters in Choo & Cheung (1991) 
and Demir (2021). In other words, encountering errors in programs may exist as a single source of anxiety, 
regardless of the frequency of encountering errors, the number of errors, or the time it takes to debug. The fact 
that Demir's (2021) study does not contain any information about CFA makes it impossible to make inferences 
about whether the three-factor model shows a good fit in the Turkish version of the scale and make comparisons 
about the error factor. 

Within the scope of the current study, the only item related to error anxiety was included in the self-confidence 
factor. One of the reasons for this result may be the differences in perception of debugging as a process in 
programming activities between the novices and the relatively more experienced individuals. From this point of 
view, while debugging may be perceived as an independent process for novice programmers, debugging may be 
perceived as an integral process of programming and an element of self-efficacy perception. Considering a high 
degree of relationship between self-confidence and self-efficacy perception (Blanco et al., 2020; Malureanu, 
Panisoara & Lazar, 2021; Tsai, 2019), it is not surprising that an item in the error factor is included in the self-
confidence factor. It is evident that enhanced debugging skills develop a programmer's confidence, and fear of 
making mistakes may be related to programming skills (Ahmadzadeh, Elliman, & Higgins, 2005; Connolly et 
al., 2009; Nolan & Bergin, 2016). From this point of view, the experience of the participant group of Choo & 
Cheung's (1991) study on programming was not explained in detail. The participant group was specified only as 
of grade 12 level. However, participants in both the EFA and CFA stages of the current study were relatively 
more experienced with programming than the participants in Choo & Cheung's (1991) study. They have 
developed at least one project and were familiar with the debugging process. This result may indicate that 
perceptions of debugging are related to programming experience. 

Another reason may be the attitudes of the participants towards programming. Choo & Cheung's (1991) 
participant group consisted of grade 12 junior high school students. In contrast, the current study participants 
comprised university students who perceived programming as a profession. The students' awareness that the 
programming profession will include debugging may have caused them to perceive debugging as a personal 
competence and an aspect of their career. The last reason for this result may be the software development 
environments (Integrated Development Environments-IDEs) and the resources and materials that can be 
facilitated for debugging. Scratch was used in Demir (2021) as the program development environment. On the 
contrary, Visual Studio was used in the current study. The nature of the errors encountered in Scratch and Visual 
Studio show differences. The IDE used by Choo & Cheung (1991) was not specified. However, the number of 
resources found on debugging in the 1990s and today's resources are very different. Today, the internet is used 
for interpretations of error messages, and previous experiences of other people are utilized for solutions. 
Nowadays, even IDEs that translate error messages into users' native language exist. Therefore, the 
characteristics of IDEs and the resources may alter the perception of debugging anxiety. 
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The validity of the developed scale was tested by comparing the results of studies examining the relationship 
between programming anxiety and theoretically related variables in the literature. In the current study, female 
students had more programming anxiety than male respondents. The t-test result also revealed that while there 
was no significant difference between male and female students in self-confidence, there was a substantial 
difference in classmates factor and total programming anxiety. This result is consistent with Olipas and 
Luciano's (2020) study. Similarly, consistent with the former findings ((Connolly et al., 2007; Figueroa & 
Amoloza, 2015; Kinnunen & Malmi, 2006; Nolan et al., 2019; Owolabi et al., 2014; Scott, 2015), factors of the 
PAS and total programming anxiety was correlated with course grades of students. These results indicate that the 
developed scale is valid and reliable. 

Another issue is related to the fact that this scale was developed specifically for programming anxiety. Since this 
scale was designed specifically to measure programming anxiety, it differs from scales adapted to programming 
anxiety, such as computer anxiety, computer attitude, and IT anxiety (Chang, 2005; Olipas & Luciano, 2020; 
Owolabi et al., 2014). There were insufficient instruments to assess programming anxiety in the literature, and 
the current study offered a psychometrically reliable scale. With the help of the present scale, programming 
anxiety levels in students can be measured, methods and techniques that can reduce students' anxiety can be 
developed, and special attention can be paid to students with high programming anxiety. In addition, situations 
that increase programming anxiety in students can be investigated. The PAS developed in the current study is 
recommended for study groups that have somewhat experience in creating, coding, and debugging programming 
projects. Future research may concentrate on a different group of college students from various cultures and 
countries. 
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Appendix   

The Programming Anxiety Scale in its Original and Translated Form 

Original Items (in Turkish) Translated Items (in English) 

CA_1 Daha önce programlama dersi alan 
arkadaşlarımın seviyesine yetişemeyeceğime 
inanmak beni kaygılandırır. 

Believing that I cannot reach the level of my friends 
who have taken programming lessons before makes 
me anxious. 

CA_2 Daha önce programlama dersi alan sınıf 
arkadaşlarımın varlığı beni tedirgin eder. 

The presence of my classmates who have previously 
taken programming courses makes me nervous. 

CA_3 Benim yazamadığım bir kodu çoğu sınıf 
arkadaşım yazabilmesi beni kaygılandırır. 

It makes me anxious when many of my classmates 
can write the code that I cannot write. 

CA_4 Arkadaşlarım benim anlamadığım 
programlama konularında konuştuğunda gergin 
hissederim. 

I feel tense when my friends talk about programming 
topics that I don't understand. 

CA_5 Program yazamayıp sınıf arkadaşlarımın 
önünde gülünç duruma düşeceğimden 
endişelenirim. 

I am concerned about not being able to write a 
program and being ridiculed by my classmates. 

SC_1 Programlamayı iyi anlayamadığımı 
düşünürüm. 

I think I do not understand programming well. 

SC_2 Program yazarken çözüm için gerekli olan 
basamakları (algoritmayı) doğru oluşturabileceğim 
konusunda şüphelerim var. 

I have doubts about creating the steps (algorithm) 
necessary for the solution while coding the program. 

SC_3 Program satırları karmaşık olmaya 
başladığında aklımın karıştığını hissederim. 

I feel confused when the program lines become 
complicated. 

SC_4 Program yazma konusunda kendime 
güvenmem. 

I don't trust myself in writing programs. 

SC_5 Programlama dersinde öğrenilecek çok fazla 
konunun olması beni korkutur. 

It scares me that there are too many topics to learn in 
the programming lesson. 

SC_6 Programlarımda hatalarla karşılaşmak benim 
için büyük bir endişe kaynağıdır. 

Debugging programs is a major worry for me. 
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Abstract 
 

This study aims to explore the influences of the CS-unplugged activities in developing problem-solving skills of 
preschool children. The participants were 11 children (4-5 aged) enrolled in a public preschool and Code.org 
activities were used as an instructional package. Activity evaluation form and interviews were used to understand 
children’s problem-solving processes. In order to determine the problem-solving performances, the tasks were 
divided into the meaningful sub-tasks with regard to problem steps of Nance’ problem solving model. The results 
indicated that CS-unplugged activities positively influenced students’ understanding and planning performances 
more than doing and evaluation skills. Preschool children developmental characteristics and the nature of the 
problems somewhat hampered the development of their performances in doing and evaluation steps. It is hoped 
that the study may provide insights for the efforts on enhancing preschool children’s problem-solving processes.   

Key words: CS unplugged activities; problem solving; preschool children 

1. Introduction   

Over the past decade, computational thinking (CT) has become a very hot topic in educational research and 
practice. After Wing’s (2006) declaration, a common idea for CT definition entails at least thinking in a way that 
formulating problems and their solutions are represented in a form that can be effectively carried out with an 
information-processing agent (Wing, 2011). It leaded researchers to study on supporting young children to acquire 
thinking skills that are transferable to problem solving in computing related subjects (Bransford et al., 2000, 
Brackmann et al., 2017).  

Wing (2006) argued that CT is a fundamental skill for everyone, not just for computer scientists. Researchers also 
highlighted that CT is an important skill that should be taught to the next generation (Barr et al., 2011; Brown et 
al., 2013; Grgurina et al., 2014; Grover & Pea, 2013; Hodhod et al., 2016; Kafai & Burke, 2013; Voogt et al., 
2015; Wing, 2006). Thus, many countries have updated their computer science (CS) curriculum to teach children 
starting from young ages (Bargury et al., 2012; Bers et al., 2014; Grgurina et al., 2014; Grout & Houlden, 2014; 
Kalelioglu et al., 2014; Lee, Martin, & Apone, 2014; Repenning, Webb, & Ioannidou, 2010). In an attempt to 
increase interest in CS, much effort has gone into developing some preliminary learning materials, activities, 
methods or tools for teaching CT for young children. In these studies, programming (Dann, Cooper, & Pausch, 
2009; Resnick et al., 2009), educational robotics and CS-unplugged activities (Bell, Witten, & Fellows, 2005, 
Wohl et al., 2015) are frequently used considering the educational levels.  

Since it is difficult to teach CT to young children via programming or robotics, CS-unplugged activities are 
suggested as an introduction strategy (Battal, Adanır & Gülbahar, 2021). Additionally, not all children are lucky 
enough to access to powerful tools and toys and CS-unplugged activities yield equal opportunity across all learners 
as individuals that do not require so many technological tools. Unplugged activities also have potentials to learn 
the concepts without the need for technological devices or computers (Kalelioğlu & Keskinkılıç, 2017).  
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Previous research has demonstrated beneficial effects of CS-unplugged initiative as a way of teaching CT in early 
ages.  For example, Del Olmo-Munoz ˜ et al. (2020) found that in the early stages of primary education, it is more 
suitable to perform CT through unplugged programming activities before plugged-in activities.  Bell and 
Vahrenhold (2018) found through a literature review that unplugged programming activities can help students and 
teachers stimulate motivation to explore CS in a meaningful and attractive way and can also help students to carry 
out subsequent ‘plugged-in’ learning. Wohl et al. (2015) compared Scratch, Cubelets, and unplugged activities in 
teaching CS to 5-7 aged children and found that unplugged activities are more powerful in teaching concept of 
algorithm than others. On the other hand, Caelien and Yadav (2020) pointed out that unplugged programming 
activities can support students’ participation in plugged-in programming activities in the future. Some other 
researchers also emphasized the role of CS-unplugged activities as a priming step to help students understand 
algorithmic steps before they write code (Gardeli &Vosinakis, 2017; Uchida et al., 2015). Following conclusions 
from the previous studies we aim at gaining an insight into the relationships between the nature of CS-unplugged 
activities and the problem-solving process of preschool students.  

1.1. CS-unplugged Activities for Developing Problem Solving Skills  

According to Wing (2008) CS-unplugged activities are various kinds of problems that do not directly involve 
coding tasks. CS-unplugged is defined as a widely used collection of activities and ideas to engage a variety of 
audiences with great ideas from CS, without having to learn programming or even use a digital device (Bell & 
Vahrenhold, 2018, p. 497). Research have shown that CS-unplugged activities contribute to the acquisition of 
basic CS concepts (Hermans & Aivaloglou 2017; Wohl et al. 2015; Taub et al., 2009), support improvement of 
CT (Leifheit et al., 2018; Jagušt et al., 2018; Rodriguez, 2015), provide entertainment for the lesson (Bell & 
Vahrenhold 2018; Curzon, 2014) and help to overcome misconceptions or negative attitudes towards programming 
(Bell & Vahrenhold 2018). Researchers argued that using CS-unplugged activities would break the wall between 
CS and using computers in real life problem solving for children of young ages (Nishida et al., 2008; Lambert and 
Guiffre, 2009; Bell & Vahrenhold, 2018). Ahn, Sung, and Black (2021) also reported that CS-unplugged activities 
enhance younger students’ problem-solving skills, debugging, and confidence, and to reduce the obstacles that 
programming can present for novice learners.  Besides, unplugged approaches may be less intimidating to 
teachers without a background in CS or programming and avoid the high costs of teaching coding or dealing with 
hardware (Huang & Looi, 2021). Taking their advantages in learning with games, trial-and-error with real objects 
and learning within groups have made CS-unplugged popular in problem solving activities (Nishida et al., 2008).  

There is a significant research effort invested on discussing the effects of CS-unplugged activities on problem 
solving skills to convey fundamental CS concepts to children without any computer skills in the schools (Bell et 
al., 2009; Prottsman, 2014; Wohl et al., 2015). According to Dwyer et al. (2014), while acting in CS-unplugged 
activities young children can describe problems, identify the requisites to solve the problem, break the problem 
into small logical steps, use these steps to meaningful problem-solving process, and then evaluate this process. In 
this sense, Alamer et al. (2015) used CS-unplugged in a camp to introduce programming concepts. In another 
study, Dwyer et al. (2014) implemented CS-unplugged to measure students’ ability to work with systematic 
instructions in algorithms. In secondary education, Thies and Vahrenhold (2012) used CS-unplugged activities 
and addressed positive results in CT skills of students. There have been some projects undertaken to propose the 
potentials of CS-unplugged.  For instance, Bebras is a test of computational problem solving that does not require 
the use of a programming language (Dagienė, et al., 2016; Gujberova & Kalas, 2013). In addition, 
(csunplugged.org) by CS Education Research Group in New Zealand introduces CT principles without using a 
computer (Bell, Witten, & Fellows, 2015). Another popular CS-unplugged project is Code.org. It introduces a 
blocky coding platform for preschool students through the 8th grade and older. It also covers a variety of 
algorithmic concepts that are connected to everyday life dedicated for children from the 4th year.  

In order to improve problem-solving skills of young children, researchers suggested preparing activities focusing 
on children’s developmental characteristics (Çetin, 2016). Although an increasing number of nations have plans 
for introducing CS-unplugged activities in early childhood, problem solving activities within CS-unplugged 
activities are not formally integrated into the preschool curriculum. Thus, a need exists to present models to guide 
the educators. Following the idea that CS-unplugged activities can promote young children to engage better in 
problem solving activities; this study seeks to examine the influences of CS-unplugged activities on their problem-
solving skills.  

1.2. Research Problem 
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The aim of this research is exploring the development of problem-solving skills of preschool children with CS-
unplugged activities. More specifically, the research question is “To what extent do the CS activities-unplugged 
develop young children’s problem-solving skills?”  was investigated. 

2. Method 

In this study, an instructional package including CS-unplugged activities was used for developing problem solving 
skills was implemented. A sequential explanatory mixed method was implemented in this research. This study 
undertakes the sequential approach where the quantitative phase is followed by the qualitative phase and the 
qualitative findings are used to contextualize the quantitative ones (Creswell, et al., 2003). Activity evaluation 
forms were used for evaluating the problem-solving skills quantitatively and interview data were used to explain 
the reasons of developments in problem solving skills through the students’ experiences.  

During implementation, one of the researchers was observed the students’ behaviors in their learning environment 
as a participant researcher and tried to understand the atmosphere, language, or views of the group. At the same 
time, observation data were also used in the analysis of qualitative data by observing the group in depth through 
this participated researcher.  

2.1. Participants 

This study was carried out with 11 children (aged 48-60 months) enrolled in a preschool. They did not take similar 
activities focusing directly problem-solving skills. They normally show the basic developmental characteristics 
behaviors of their young age during implementations which took place in the class environment.   

2.2. Process 

The study lasted 5 weeks, 2 class hours per week with Code.org unplugged activities. Children at the age of 48-72 
months can perform activities such as matching, establishing cause-effect relations, reading object graph and 
creating graphics with regard to their developmental characteristics (Piaget, 1976). Accordingly, the activities in 
Code.org were selected considering the motor, linguistics, cognitive and social development of young children 
characteristics. The activities covered direction, rhythm and classification skills including loops, conditionals or 
patterns. The children can provide different decisions, learn to carry out the iterative process to achieve tasks and 
produce tangible artifacts. The acquisitions covered in the activities are presented in Appendix1. Three experts (2 
preschool and 1 IT experts) reviewed the activities for content validity regarding the covered skills. Activities were 
selected based on in the 2013 preschool education program of the MoNE for 36-72 months old children considering 
the grouping and thinking skills on Code.org (Table 1). All activities in the Code.org have developmental 
foundations and evaluation worksheets, as well as various daily life problems appropriate for all age groups.  

Code.org worksheet assessment forms were followed to develop a detailed lesson plan that would be applied in a 
30-min. class period. The teacher introduced materials and basic problem-solving activities by following the lesson 
plans. The children worked on the tasks around common tables and followed the worksheets to complete the 
activity individually. The researcher only guided the children when they did not understand the tasks but did not 
explain how to solve the problem. The researcher as an observer took notes by observing the children’s behaviors 
and filled the evaluation form regarding their problem-solving performances. The research process is summarized 
in Figure 1. 
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Figure1. Research Procedure 

 

2.3. Selected CS-unplugged Activities for this Research 

The “36-48 and 48-60-month-old Preschool Students' Developmental Characteristics Guide” was guied us to test 
the compatibility of the activities with the developmental characteristics of the children (Ministry of Education 
(MoNE), 2013). Table1 presents students’ developmental characteristics and the activities. The tasks in the 
activities are assigned into four steps (understanding, planning, implementation, and evaluation).  

 

Table1. Activities Associated with Students’ Characteristics  

Code.org Unplugged 
Activities 

Pre-
School 
Level 

Language 
Development 

Cognitive 
Development 

Social 
Development 

Motor 
Development 

1- Happy Maps 

 

36-48 
Months 
Old 
Groups 

Expresses 
their feelings 
verbally. 

Creates one-to-
one matching. 

Participates in 
group games. 

Cuts the given 
simple shapes. 

Follows the 
rules under 
adult 
supervision. 

Performs the 
printing paste 
operation. 

48-60 
Months 
Old 
Groups 

Answers 
questions 
such as Why? 
How? Who? 

Answers 
questions about 
the 
object/person/pict
ure that he/she has 
seen a short while 
ago. 

Adapts to 
adult/peer 
leadership. 

Bounces the 
ball on the 
ground three 
times. 
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The activity involves 
constructing an algorithm 
that takes the character to 
the desired goal by 
cutting out simple shapes 
about instructions. 
 
CT Skill: 
Logical thinking, 
Algorithmic thinking, 
Problem solving 

Answers 
questions 
about shortly 
simple 
stories. 

Completes the 
missing parts in 
the pictures by 
looking at the 
example. 

 

Answers questions 
involving cause-
effect relationship. 

2-Real Life Algorithms 
 

 
In this activity, the 
algorithm flow of daily 
life examples is given in a 
mixed order and must be 
ordered correctly. 
 
CT Skill: Algorithmic 
thinking, Efficiency, 
Problem solving 

36-48 
Months 
Old 
Groups 

Expresses 
their feelings 
verbally. 

Creates one-to-
one matching. 

Participates in 
group games. 

Cuts the given 
simple shapes. 

Describes two 
events in the 
order in 
which they 
occurred. 
 
Answers 
questions 
about him/her 
daily routine. 

Identifies the 
object whose 
picture she sees. 

Follows the 
rules under 
adult 
supervision. 

Performs the 
printing paste 
operation. 

Continues the 
pattern consisting 
of two objects by 
looking at the 
model. 

 

48-60 
Months 
Old 
Groups 

Answers 
questions 
such as Why? 
How? Who? 

Sorts an event in 
the order in which 
it occurred. 

Adapts to 
adult/peer 
leadership. 

 

Answers 
questions 
about shortly 

Answers 
questions about 
the 
object/person/pict
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simple 
stories. 

ure that he/she has 
seen a short while 
ago. 

Creates a story 
from the shown 
pictures. 

Answers 
questions 
involving cause-
effect relationship. 

3-Getting Loopy 

 
This activity includes 
recognizing repetitive 
steps and performing 
loops in order of flow 
with body movements 
including the language, 
self-care, cognition and 
motor development skills 
of children. 
 
CT Skill: Algorithmic 
thinking, Innovative 
thinking 

36-48 
Months 
Old 
Groups 

Expresses 
their feelings 
verbally. 

Shows the parts of 
their body which 
are said to 
her/him. 

Participates in 
group games. 

Cuts the given 
simple shapes. 

Describes two 
events in the 
order in 
which they 
occurred. 

Follows the 
rules under 
adult 
supervision. 

Performs the 
printing paste 
operation. 

48-60 
Months 
Old 
Groups 

Performs two 
or three 
consecutive 
instructions. 
  

Groups 1-5 
objects according 
to their common 
properties. 

Adapts to 
adult/peer 
leadership. 
 
Efforts to go 
on the work 
he/she started. 

Makes simple 
dance steps. 

Answers 
questions about 
the 
object/person/pict
ure that he/she has 
seen a short while 
ago. 

 
Completes the 
missing parts in 
the pictures by 
looking at the 
example. 

Answers 
questions 
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involving cause-
effect relationship. 

4-My Robotic Friends 

 

 
 
This activity includes 
making the different 
shapes of towers with 
plastic cups by following 
the given instructions. 
 
CT Skill: Algorithmic 
thinking, Innovative 
thinking 

36-48 
Months 
Old 
Groups 

Expresses 
their feelings 
verbally. 

Sorts an event in 
the order in which 
it occurred. 

Participates in 
group games. 

Cuts the given 
simple shapes. 

Describes two 
events in the 
order in 
which they 
occurred. 

Follows the 
rules under 
adult 
supervision. 

Performs the 
printing paste 
operation. 

Fulfills simple 
responsibilities 

Builds a tower 
by 8 cubes. 

Answers 
questions 
about him/her. 

 

48-60 
Months 
Old 
Groups 

Performs two 
or three 
consecutive 
instructions. 
 
Performs 
tasks related 
to objects out 
of own sight. 

Groups 1-5 
objects according 
to their common 
properties. 

Adapts to 
adult/peer 
leadership. 

Builds a tower 
by 10 cubes. 

Answers 
questions about 
the 
object/person/pict
ure that he/she has 
seen a short while 
ago. 

 Completes the 
missing parts in 
the pictures by 
looking at the 
example. 

Answers 
questions 
involving cause-
effect relationship. 
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5-The Big Event 

 

 
In this activity, the 
teacher asks the students 
when the teacher touches 
different shapes to make 
different sounds to get the 
meaning of the shapes. 
Then, with the same 
logic, the students are 
expected to match the 
shapes' representative 
animal characters. 
 
 
CT Skills: Algorithmic 
thinking, Innovative 
thinking, Problem 
solving, Critical thinking 

36-48 
Months 
Old 
Groups 

Expresses 
their feelings 
verbally. 

Creates one-to-
one matching. 

Participates in 
group games. 

Draws the 
model shown 
by looking at 
the example. 

Performs two 
or three 
consecutive 
instructions. 

Identifies the 
object whose 
picture she sees. 

Follows the 
rules under 
adult 
supervision. 

Continues the 
pattern consisting 
of two objects by 
looking at the 
model. 

48-60 
Months 
Old 
Groups 

It tells what 
the source of 
the sound is. 

Sorts an event in 
the order in which 
it occurred. 

Adapts to 
adult/peer 
leadership. 

Answers 
questions 
such as Why? 
How? Who? 

Groups 1-5 
objects according 
to their common 
properties. 

Performs two 
or three 
consecutive 
instructions. 

Completes the 
missing parts in 
the pictures by 
looking at the 
example. 

Answers 
questions 
involving cause-
effect relationship. 

 
Compares objects 
according to their 
various properties. 

 

2.4. Data Collection Tools 

In this study, activity evaluation form and interviews were two main data collection tools. 

2.4.1. Activity Evaluation Form (AEF) 

AEF was developed for evaluating the problem-solving skills by monitoring the children’s behaviors in the 
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problem-solving tasks and considering their perspectives about their experiences. Nance (2016) problem solving 
steps understanding, planning, doing, and looking back were taken as a framework for each activity.  

Understand: The researcher asked, “What does this activity ask you to do?” and achievement of the student's 
ability to understand and verbally express the problem was evaluated.  

Plan: The children were asked the question of “What will you do for this activity, what do you need to achieve 
the result?” to determine their planning of the problem. 

Do: Children were asked to perform specific tasks for each activity. For example, in Happy map activity, they 
were expected to complete the task of the “Finding correct and short way arrows”.  

Look Back: The questions “Do you think you got this activity right? Do you think what you did was right? Do you 
have any idea how to fix it if you think you did wrong?” were asked to the children to reveal how they check their 
solutions. 

Considering Nance (2016) framework, each activity was divided into sub-tasks and indicators were defined for 
each of the tasks. The problem-solving performances were evaluated through these indicators. Students’ answers 
were scored as “satisfactory”, “partially-satisfactory” and “unsatisfactory” for each activity. The behaviors of the 
children in the activity were observed and confirmed with the interview data. Two researchers scored the students’ 
answers in the AEF individually. Then, they discussed the scores together until they came to an agreement about 
the scores. The scores were also confirmed via the teachers’ opinions. So, a triangulation is done with the 
quantitative and qualitative data handled to reveal the problem-solving skill development of the students. 

For instance, in “Understanding” step, AEF was filled for the Activity-1 as described below. 

Satisfactory: Using a correct sense of the expected expressions of the activity. For example, using the arrows to 
bring the character to the apple etc. 

Partially Satisfactory: Although not emphasizing the expected concepts, short but meaningful expressions are 
explained. For example, do not eat apple, do not go to the apple etc. 

Unsatisfactory: Wrong representation of different expressions or failure to fully understanding about the task. For 
example, independent expressions or took apples to the character (vice versa). 

Activity  

Appropriate Tasks for the 
event  
(Based on Nance's problem-
solving steps) 

Evaluation Criteria 

Happy 
map 
activity 

Problem Solving Step: 
Understanding Satisfactory Partially- 

Satisfactory Unsatisfactory 

Question (Teacher): What will 
you do in this event according to 
your opinion? 

What will you do in this game? 

What does this activity ask you to 
do? 

 

Task-1: To express the logical 
flow of the game verbally. 

(Saying something similar to 
“character should go towards 

use to "go to 
toward to apples 
via using 
arrows" or use a 
similar 
expression 

use to "go to 
toward to 
apples or eat 
apples" use a 
similar but 
right 
expression 

use to different 
expressions such 
as "apple should 
go to character" 
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A view from the AEF including the “Understanding” step for the Happy map is presented in Table2. 

Table2. A view from the activity evaluation form  

 

In order to calculate the total scores obtained from all activities, if the “satisfactory” and “partially-satisfactory” 
scores for the activity were more than “unsatisfactory” scores, the children’s performance was assigned as 
“satisfactory” for that activity. If the scores obtained from all activities were “partially-satisfactory” and 
“unsatisfactory”, the score is assigned as “partially-satisfactory” for the activity. If the scores assigned for almost 
all activities were “unsatisfactory”, the student’s performance was defined “unsatisfactory” for the activity. The 
criteria for determining the total scores are presented in Table3. 

Table 3. Criteria for determining the total programming performance of the children 

Evaluation Criteria Assigned Scores 

Satisfactory + Partially Satisfactory score is more  Satisfactory 

Partially- Satisfactory + Unsatisfactory scored is more Partially- Satisfactory 

Unsatisfactory scored is more Unsatisfactory  

Values from evaluation criteria when analyzing data obtained from this form are scored as Satisfactory=2, Partially 
Satisfactory =1, Unsatisfactory=0.  

 

2. 4. 2. Interviews  

Interviews were conducted one by one and lasted 10-15 minutes. The details of students’ artifacts such as “Why 
did you do that? Do you think you did right? How did you decide?” were asked to children to understand what the 
student thought when they were doing the tasks. Qualitative data were analyzed via content analysis by transcribing 
the interviews. To develop categories and codes, two coders read the children responses carefully. The codes were 
put into categories depending on the programming steps to address the programming performances.  

3. Results  

In this section, children’s problem-solving skills were discussed regarding their performances and their behaviors.  

 

3.1. Problem solving performances in CS unplugged activities 

The children’s total problem-solving performances by taking into account the evaluation criteria (unsatisfactory, 
partially satisfactory, and satisfactory) in the AEF were shown in Figure 2. 

 

apple") 
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Figure 2. Problem solving performances of the children 

Figure2 shows that the lowest average problem solving performance that was observed in Activity 2, and the 
highest score as 2. The average scores regarding the steps of programming performances are normalized and 
presented as percentages is shown in Figure 3.  

 

Figure 3. Average achievement scores in the problem-solving steps 

Figure 3 shows the percentages of students’ average problem-solving performances in all the four sub-steps scores 
(understanding, plan, do, and look back). For example, for the A1 activity, average score from 11 students was 
calculated as 2.54, and then this score converted to the percentage of 84.8% for representing A1 activity 
understanding sub-level. It is seen that, while the average problem-solving performances are high at A1 and A4, 
and those are relatively low in A2 and A5 which includes mostly ordering and matching activities.  

The total problem-solving scores for all activities is shown in Figure 4. 
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Figure 4.  Total problem-solving scores in the activities 

Figure 4 indicates that the scores from the activities vary for each child. For instance, while S2 got 10 from A1, 
she got low scores from other activities. 

 3.2. Students’ Experiences in Problem Solving Tasks 

In this section, the problem-solving performances in the activities are explained with regard to their experiences. 

3.2.1. Activity 1. Happy Maps: The performances in the implementation and evaluation steps were slightly lower. 
In this activity, while determining the correct move within the relevant column for each step, some children focused 
on only one column and chose all their moves from that column.  

In planning step: The majority of the children were able to express their actions in a specific order. However, in 
doing step, instead of completing the tasks as they planned, they moved away from their planned solution ways; 
namely, they did not follow their plans. Some of them attempted to continue with the cross moves. In this sense, 
S4 expressed that “I used the short way because I thought that the character was hungry, and it was tired and 
needed to eat”. This may be related to the imaginations about using an object for different purposes. This kind of 
imagination is frequently seen in young that they sometimes focus on other objects rather than the goal 
(Yeşilyaprak, 2018). Some of them also within their imaginations assigned some new meanings for the tasks and 
acted in the activities like playing games. In this sense, S7 expressed that “I need to stick the arrows in the right 
direction and take this character to dinner by following the path (showing with his finger)”. Although he expressed 
his plan by identifying correct steps, during the activity he tried many wrong ways. He explained this case with 
this statement “...I know the right way for the solution, but I wanted him (character) to get confused so I didn’t 
show it”.  Similarly, S3 explained the reasons why he did not apply his plan in the activity as “I didn't want the 
beast to eat that food, because it always eats all food and is going to be very fat”. In looking back step, S6 stated 
that “I wanted it to go this way” and he did not follow the directives and he did not look back to the situation. In 
general, although the children worked in the tasks as expected in this activity, the labyrinths, which were gradually 
getting difficult, made it difficult to apply the plans.  

3.2.2. Activity2. Real Life: In this activity, children were asked to arrange activities such as tying their shoes, 
brushing teeth and planting seed in a sequential manner. The tasks include ordering the pictures presented in a 
mixed order to form an integrity in accordance with the related games. In the Activity 2, the children performed 
high in understanding and planning steps, but the average scores taken from the tasks given in the doing and 
looking back steps were low. In the tooth brushing activity the children experienced the tasks in their daily lives. 
Similarly, in the shoe-tying activity as they previously experienced, children got high scores in understanding and 
planning tasks. Regarding this activity, some of the children when answered the questions like “Why did you put 
a picture of clean-toothed cat at the end when sorting pictures in this event?”, “Do you think you did this activity 
right?” An example answer is “... because our teeth are clean when we brush our teeth, so I put it in the end 
(showing picture of a clean tooth cat).” 
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In the seed planting activity, the performance of the children was relatively low especially during the doing step. 
In this activity, it was seen that some of the children copied other children’s behaviors while performing the tasks. 
In addition, the symbols of the seeds used in planting seed and potted seedlings were not clear. It is thought that it 
is difficult to establish the relations among the pieces of a whole.  

It is observed that children’s experiences in the tasks significantly influenced their performance particularly in 
doing step.  In fact, children who did not know the symbols in planting seed activity found it difficult to solve the 
problem. Considering the average scores of the three activities, the lower scores of the children can be thought as 
a reflection of the lower scores of the doing step.  In addition, the fact that the planting seed (6 stages) activity 
was completed in more stages than shoe-tying (3 stages), tooth brushing (4 stages) activities may have influenced 
the low performance in implementing their plans. 

3.2.3. Activity3. Getting Loopy: In this Activity, performances related to the tasks given for the understanding and 
doing steps were high but low at the looking back step. It was observed that all of the children in their plans 
provided repeated some actions (loop). However, the majority of the children could not determine the number of 
repetitions in this process, and they could not show the number of loops in the plans correctly. In this sense, S5 
addressed that “...I will repeat clapping, clapping, clapping as my teacher doing” while repeating processes. 
Another student S3 stated, “…I'll repeat the same picture, but I don't know how many times”.  

On the other hand, the tasks in the doing step were done by following the teacher’s presentation. The presentations 
helped children to get high scores even though the children had deficiencies in their plans. At the looking back 
step, some of the children could not perform the tasks by assigning the number of repetitions correctly. 

3.2.4. Activity4. My Robotic Friends: In this activity, the children were asked to put the cups in order as in the 
pattern given on the worksheet. A view from students’ actions is seen in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 5. A view from My Robotic Activity 

In this activity, almost all of the children showed high performance in understanding and planning, and all of the 
children were successful in doing and looking back. For instance, S4 expressed that “… I will put the cups in order 
as shown in picture”, “We were like robots in this activity”. Also, a number of children were able to decide the 
number of cups for the correct solution in the planning step. In addition, it is seen that in all of the tasks in the 
doing step, the children were able to put the cups in order as expected pattern. Using concrete object such as plastic 
cups may be considered as one of the reasons of high performance in this step.  Using daily-recognized objects 
and allowing these objects to create the patterns by heuristic approach might have been contributed to this 
achievement. Accordingly, S1 identified that “sometimes I'm confused while I'm putting the cups in order, but 
then I just lined up like a tower.”  One other reason for the high performance of the children at the looking back 
step may be related to the developing a concrete product. In this sense, the children could review the paths they 
needed to follow when they could not do it correctly. 

3.2.5. Activity5. Big Event: In this activity, the children were asked to match the geometric shapes with the 
appropriate animal figures.  

Figure 3 shows that the majority of the children performed high in understanding and planning steps in Activity5. 
The performances in the doing and looking back steps were quite low.  The average scores in the doing and 
looking back steps were lower than the other steps. Children’s perspectives reflect that one reason for the low 
scores may be the fact that the children cannot remember more than one pattern. For instance, S5 expressed that 



International Journal of Computer Science Education in Schools, April 2022, Vol. 5, No. 3 
ISSN 2513-8359 

 48 

“...When I forgot the pattern, I looked up again and I waited to put my finger on it to not forget” S4 also explained 
his action as “...I've confused which shape corresponds to which animal”. As in other activities, it can be thought 
that the decrease in the performance of the problem solving is regarded to the complexity of cognitive tasks such 
as keeping the one more pattern in mind and creating multiple patterns. In addition, in this activity it is expected 
that while matching, first; understand the hint box given in the introduction, and then keep this information in 
mind, then adapt the following question according to the situation, and lastly, use this information to reach the 
desired result. Since this activity requires sequential follow-up and mental processes, it is not easy to perform the 
expected tasks in this age group sequentially. 

Figure 3 indicates that in Activity 1, Activity 2 and Activity 5, the understanding steps were completed more 
successfully than the other steps, whereas the doing step were more successful than the other steps in the Activity 
3 and Activity 4. It is seen that the planning step is constructed accordingly depending on how well the student 
completes the understanding step. It is noteworthy that children performed lower in the looking back steps except 
for Activity 2 and Activity 4 than other steps. At this point, the result may be about the nature of the activities 
Activity 2 and Activity 4. Because Activity 2 is more directly related to the daily life than others and Activity 4 
(My robotic friends) addressed more motor skills.  

4. Discussion 

This study attempted to determine the effect of CS-unplugged activities on problem solving skills of preschool 
children. The results indicated that the significant increase in problem solving skills may be due to the activities 
designed in accordance with the learning objectives. In this study, in all of the activities the children performed 
high in understanding and planning steps compared to the other steps. The doing step, which is usually used to cut, 
paste, match, sort, etc. resulted in lower scores due to cognitive skills as well as hand skills. It is surprising that 
although the scores during the looking back steps were low, the children began to perform the tasks correctly in 
this step.  

The current study confirmed that CS-unplugged activities can support the young children to establish a relationship 
between activity and real life. Namely, the activities including concrete events such as putting the cups in order 
together activity can provide high performance rates at the looking back steps. In Activity 2, although the children 
did not experience a problem before, they could understand the task, but mostly they could not perform high scores 
in doing step. In this context, one can infer that the activities that the children experienced before can support 
children’ performances in doing step as in the understanding step.  For instance, in Activity 1 (Happy Maps) and 
Activity 5 (Big Event), children's understanding and planning performances were high, but they could not perform 
the similar performance in the doing and looking back steps. In these two activities, keeping multiple moves in 
mind, matching multiple images and performing sequential operations are some examples requiring the advanced 
cognitive skills in which the children could understand the problem but not perform high in the doing step.  

The findings showed that study concluded that the design of the activities and the roles attained to the children 
influenced the development of their problem-solving skills. Similarly, another study suggested that the activities 
in CS-unplugged activities should be explicitly linked to central concepts in CS (Taub, Armoni, & Ben-Ari, 2012). 
In accord to this study, Faber et al. (2017) found that the unplugged materials seem to elicit positive reactions from 
children. Another reason for the achievement in activities is the nature of the activities that preschool students are 
generally considered to have high performance due to their similarity to cut-and-paste activities. In accord to this 
finding; a comparative experiment by Montes-Leon et al. (2020) found that the introduction of unplugged 
programming activities could help students improve their CT skills and have a positive effect on their follow-up 
programming learning.  

It is important for children to engage in the tasks of problem-solving activities. Actually, it is also known that the 
attention of the young children can be distracted quickly, and it is difficult to engage them in different tasks during 
the activities (Radesky & Christakis, 2016; Rodriguez et al, 2016). In the current study, attractive potentials of the 
tasks in CS-unplugged can be seen as engaging children in the activities and being active in problem solving. As 
suggested in prior studies, we ensured that all children had a role to act in the activities (any amount of down time 
potentially results in bored, disengaged children and lower assessment results). 

Research has shown that unplugged programming activities can effectively develop 5–7-year-old children CT 
skills and help them transfer CT skills to other problem-solving scenarios (Conde et al., 2017; Wohl et al., 2015). 
Unplugged debugging activities without the use of programming tools provide more content-focused learning 
experiences for younger students by reducing the cognitive demands for using technological tools (Kotsopoulos 
et al., 2017).  This study also confirmed that CS-unplugged activities including objects or concepts that the 
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children have experienced before positively influence on their planning and doing performances. The results also 
indicated that, the activities should also be designed considering the “imaginary world” of the children. Namely, 
something in the activity may remind them of some different events in their mind. Hence, the activities including 
tangible and basic materials may eliminate this and may provide better problem-solving outcomes.  

This study highlights that CS-unplugged activities may provide successful outcomes for problem solving of 
preschool students. The preschool children can engage cognitively, socially, and creatively in the CS-unplugged 
activities. In this study we separated the problems into the tasks by associating them with the substages of problem 
solving. In this way, we could evaluate the problem-solving processes regarding their achievements in the tasks in 
the understanding, planning, doing and looking back steps.  With both findings provide potential avenues for 
future problem solving, this study moves us one step closer to uncovering a way to evaluate the young children’s 
problem-solving process.   

This research is not exempt from limitations. The most important of which is its exploratory nature. It is difficult 
to provide quantitative data about the young children’s problem-solving processes. It should be noted that this 
study focused on only 5 activities to evaluate the problem-solving performances in CS-unplugged activities. 
Implementing activities by taking objectives in the preschool curriculum and students’ developmental 
characteristics into consideration played a positive role about the implementation process. This study used only 
students’ answers and observations assess the problem-solving processes. In future studies, data from the video 
records including the interactions among children would support evaluating the problem-solving processes more 
accurately. Moreover, Taub, Armoni and Ben-Ari (2012) pointed out that it is difficult to demonstrate that CS-
unplugged activities actually achieve long-term goals about directing young children’s interest in CS concepts.  
Hence, further longitudinal studies may be helpful in clarifying the effect of CS-unplugged activities to the 
achievements in CS.  One other limitation was the small sample size; thus, a larger sample size would increase 
the sensitivity of the analysis.  

5. Conclusion 

This study considered the cognitive development of the young children by directing the roles of children to problem 
solving and evaluated developments in their problem-solving skills. The results indicate that even if the children's 
plans about the tasks is correct, sometimes the problem-solving process cannot be fully completed as expected in 
the doing and looking back steps. The tasks in the activities were also found influential on achieving problem 
solving steps. Preschool children’s developmental and working memory characteristics and their previous 
experiences about the objects and the tasks in the activities also influenced their problem-solving process.  

Overall, the contribution of the findings of this study is in two folds. One is about the design attributes of the 
problem-solving activities for preschool children. The second is about the evaluation process of CS-unplugged 
activities in terms of problem solving.  It is recommended to design worksheets that are both engaging for the 
children and directing them to problem solving process. Incorporating worksheets or assessment techniques into 
lesson plans of preschools is also crucial to take the advantage of problem solving in the early ages. Instructional 
designers should take care when deciding to design certain types of learning activities considering children’s 
developmental characteristics. Educators can adapt CS-unplugged activities to their lessons are to build and 
maintain a collaborative classroom environment and refer them when teaching abstract concepts and solving daily 
problems in preschool classrooms. We hope that the findings of this study would assist in future design and 
implementation of CS- unplugged activities for young children.  
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Appendix1 

Completes puzzle with 10-25 pieces. 

Creates new shapes by combining geometric shapes 

Groups the objects 

Performs addition and subtraction operations of at least 1-10 numbers. 

Explains how to do match, associate and group Establish cause-effect relationships 

Uses comparison statements 
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