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Abstract 

Computational thinking (CT) is seen as a key competence of the 21st century and different countries have started to 

integrate it into their compulsory school curricula. However, few indications exist on how to assess CT in 

compulsory school. This review analyses what tools are used to assess CT in European schools and which 

dimensions are assessed. We analysed 26 studies carried out in K-12 between 2016 and 2020 in Europe. The results 

indicate that 18 different tools have been used and they can be categorized into five groups: questionnaires, 

tests/tasks, observations, interviews and analysis of products. From the tools we analysed, more than 50 dimensions 

were assessed and the vast majority of those were closer to programming skills rather than CT per se. Based on these 

results it seems that a common operational definition of CT, a competence model that indicates which competences 

students should reach at which age, and a tool that allows all different facets of CT to be assessed are currently 

missing. 

Keywords: computational thinking, assessment, k-12, computational thinking dimensions 

1. Introduction 

In recent years, in the wake of digitisation and automation of our society, computational thinking (CT) and more in 

general digital literacy have been seen as key competences of the 21st century (World Economic Forum, 2016). CT 

has been popularized by Wing (2006), and involves "solving problems, designing systems, and understanding 

human behaviour, by drawing on the concepts fundamental to computer science" (p.33). After Wing, different 

authors have proposed other definitions of CT or have tried to operationalise Wing’s idea. For example, according to 

the International Society for Technology in Education (ISTE) and the Computer Science Teachers Association 

(CSTA), CT includes formulating problems; logically organising and analysing data; representing data through 

abstractions, models and simulations; automating problem resolution through algorithmic thinking; testing and 

improving the possible solutions and transferring the problem-solving process to a variety of problems (CSTA & 

ISTE, 2011). 

Brennan and Resnick (2012) distinguish three dimensions of CT: computational concepts (the knowledge 

component) that include concepts that programmers use for example the variables; computational practices (the 

skills component) that include the problem solving practices that occurs in the process of programming; and 

computational perspectives (the attitude component) that include students’ understandings of themselves, their 

relationships to others, and the technological world around them (Lye & Koh, 2014). Other authors define CT as 

"the ability to think with the computer-as-tool" (Berland & Wilensky, 2015, p.630) or as "students using computers 

to model their ideas and develop programs [...] and consider computer programming as one part of computational 

thinking" (Israel, Pearson, Tapia, Wherfel & Reese, 2015, p.264). Shute, Sun and Asbell-Clarke (2017) in a 

literature review, synthesize various definitions of CT and propose a framework for CT particularly for K-12. Their 

working definition of CT is: "The conceptual foundation required to solve problems effectively and efficiently (i.e., 

algorithmically, with or without the assistance of computers) with solutions that are reusable in different contexts" 
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(p.151) and formulated six main facets of CT: decomposition, abstraction, algorithm design, debugging, iteration, 

and generalization. According to Shute et al., (2017), "CT is primarily a way of thinking and acting, which can be 

exhibited through the use of particular skills, which then can become the basis for performance-based assessments of 

CT skills" (p.142). Consequently, computational thinking skills should be expressed in terms of competences, i.e. as 

a combination of knowledge, skills and attitudes that are expressed in a context (European Commission, 2016). 

Due to the augmented importance of CT for our society, there have been increasing calls for CT and related 

concepts such as coding or programming to be integrated into European school curricula (Académie des Sciences, 

2013; European Commission, 2016; Royal Society, 2012; Schweizerische Eidgenossenschaft, 2017). Several States 

therefore have, as part of curricula reforms, included CT and related concepts in compulsory schooling (e.g. England 

(UK), France, Finland, Italy, Germany, and Switzerland at a regional level) or are planning to introduce it in the next 

years (e.g. Norway, Denmark) (Bocconi et al., 2016; Bocconi, Chioccariello & Earp, 2018). 

Different approaches on how to introduce CT in schools exist (Chioccariello & Olimpo, 2017). The most common 

approaches found in the literature are based on programming (e.g., Scratch), educational robotics, game design, or 

paper and pencil activities (Calmet, Hirtzig, & Wilgenbus, 2016). CT is often taught by asking students to create 

algorithms in order to solve exercises first, and open-ended problems after, or to create software artefacts like video 

games or animations for example. Those algorithms can be created without the use of technology (for example, by 

the means of unplugged activities where a student-programmer gives instructions to a student-robot to navigate 

through a maze), with visual programming languages or with textual programming languages (Da Cruz Alves, 

Gresse Von Wangenheim, & Hauck, 2019). 

Despite the numerous suggestions from different didactic materials and tools to carry out CT in class, only a few 

indications exist on how to assess CT skills in K-12. A large body of literature published in recent years indicates 

different challenges in the development of widely accepted assessment methods and frameworks that encompass the 

complexity of CT (Brennan & Resnick, 2012; Denner, Werner, & Ortiz, 2012; Denning, 2017; Fronza, El Ioini, & 

Corral, 2017; Grover et al., 2017; Grover, Pea, & Cooper, 2015; Tikva & Tambouris, 2021; Zhong, Wang, Chen, & 

Li, 2016). These challenges are also due to the variety of CT definitions that make it difficult to develop a common 

and reliable assessment tool (Adams, Cutumisu, & Lu, 2019). The existing tools are often developed to measure 

single dimensions of CT highly linked to the tool adopted (e.g., programming concepts in Scratch, or debugging 

strategies with educational robots). This makes it even more difficult to measure CT in its entirety and therefore 

evaluate the effectiveness of the CT activities that are carried out in schools. This situation neither allows for an 

overview on the different approaches, nor to compare results across various studies (Shute et al., 2017). The 

assessment of CT is however essential in order to successfully implement CT in schools (Grover & Pea, 2013) since 

teachers need to collect evidence on what they propose to better understand their students’ progress. Valid and 

reliable assessments tools also help to evaluate the effectiveness of different CT curricula (Basu, Rutstein, Xu, Wang 

& Shear, 2021). Tools to assess CT need to include all dimension of CT such as the assessment of understanding of 

programming or CT concepts alongside assessment of general problem-solving practices such as logical thinking, 

formulation of a problem as a set of computational steps, pattern recognition, abstraction and generalization, 

decomposition and modularization, data collection and organization; data-based decision making, and systematic 

incremental testing and debugging that are important in contexts beyond programming (Atmatzidou & Demetriadis, 

2016; Barr, Harrison, & Conery, 2011; Basu, Rutstein, Xu, Wang & Shear, 2021; Csizmadia, Curzon, Dorling, 

Humphreys, Ng, Selby, & Woollard, 2015). 

In the last few years, some reviews on CT assessment tools have been published. Those reviews have been carried 

out in Canada (Adams et al., 2019; Cutumisu, Adams, & Lu, 2019), Brazil (Da Cruz Alves et al., 2019) and United 

States (Tang, Yin, Lin, Hadad & Zhai, 2020). The review by Da Cruz Alves et al., (2019), however focuses on the 

tools that assess programming activities based on code and not on CT in a broader sense as defined in this paper. 

Tang et al., (2020) include studies done in colleges, high schools or teacher education, while Cutumisu et al., (2019) 

analyse studies done between 2014 and 2018. The cited reviews show a breadth of methods employed to assess CT 

(Cutumisu et al., 2019) that include four main forms: traditional assessment composed of selected- and/or 

constructed-response questions, portfolio assessments, surveys, as well as interviews, and claim that most of the CT 

assessment tools analyse concepts directly related to algorithms and programming (Tang et al., 2020). Another study 

of Çoban and Korkmaz (2021), highlights in the literature, “it has been seen that computational thinking is evaluated 

with different measurement tools. Many more methods such as scales, portfolio studies, coding, multiple choice 

tests, task-based tests, observations, and rubrics have been applied with different methodologies” (p. 2). There are 
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however no reviews focusing on contemporary studies conducted in European compulsory schools with a broader 

understanding of CT. A review on how CT is currently assessed in European schools and which tools are used can 

therefore help to make an overview on the different existing practices and to formulate implications for the field. In 

this paper, we intend to explore and describe the CT assessment approaches used in K-12 education in Europe 

focusing on the last years. The questions addressed are the following: (1) Which tools are used to assess CT in 

Europe? and (2) Which dimensions of CT are assessed? 

This review will help to create an overview on different approaches and tools used to assess CT in K-12 in Europe 

and on the CT dimensions assessed. This knowledge could potentially help design and develop a reliable and valid 

CT assessment tool. The paper is structured as follows: Section 2 describes the methodology used to obtain the 

reviewed papers. Section 3 presents the results, aggregating the studies and illustrating the tools used, and the 

dimensions of CT assessed. Section 4 discusses the results and Section 5 presents the conclusions. 

2. Methodology 

For this systematic review we adopted the method for implementing reviews in the social sciences by Petticrew and 

Roberts (2006). Specifically, we followed these steps: (1) research questions were formulated; (2) the search terms 

were defined, and appropriate databases were selected; (3) inclusion and exclusion criteria were formulated; (4) the 

obtained papers were screened and selected; (5) the data to answer the research questions were extracted. 

2.1 Definition of Search Terms and Selection of Database 

For this review we have consulted seven databases: ERIC, PsycInfo, Scopus, Web of Science, Google Scholar, 

ACM Digital Library, and ProQuest Dissertations and Theses Global. The selection of these databases includes 

journals involving educational research as well as computer sciences research. We decided to also include Google 

Scholar and ProQuest Dissertations and Theses Global to also reach grey literature and dissertations. The search 

terms used are the following: 

• Query 1: "computational thinking" AND ("K-12" OR "primary school" OR "secondary school") AND 

"assessment" 

• Query 2: "computational thinking" AND ("assessment" OR "test" OR "evaluation" OR "exam" OR 

"measure") AND ("K-12" OR "primary school" OR "elementary school" OR "secondary school" OR "middle 

school") 

• Query 3: "computational thinking" AND "assessment" 

We started with Query 1; however, we noticed that the term assessment could also be used with a synonym like 

"test", "evaluation", "exam", or "measure". We decided therefore to do a second query including also these terms. 

The first two queries however did not allow studies carried out in educational systems that use other names to refer 

to K-12 education other than "primary", "elementary", "secondary", or "middle school". In order to be sure to also 

include educational systems that use other names we carried out a third query with only the terms "computational 

thinking" and "assessment". This query is a superset of the previous two queries, with a much broader spectrum of 

results. Even though such a query ended up including many out-of-scope papers, we decided to keep the results and 

filter them ourselves in order not to exclude a priori papers that use another terminology. The research in fact 

yielded a total of 30432 papers. After removing duplicates, we obtained a corpus of 13872 papers. The consultation 

of the databases has been concluded during the first week of December 2020. 

2.2 Inclusion and Exclusion Criteria 

To select the articles, we used the following inclusion criteria: 

● We decided to include papers conducted from 2016 onward (10 years after Wing’s seminal work). We are 

aware that this criterion could represent a limitation since we are excluding studies carried out before 2016. 

This decision was made in order to limit the number of papers and in order to include only actual and more 

recent assessment tools that are used in European schools. 

● The study needs to be conducted in Europe since we are interested in the assessment tools used in European 

schools. This criterion was formulated in order to avoid including assessment tools that relate to instructional 

practices that are not present in European schools. We are aware that the school systems in Europe are 

different from each other, the instructional practices related to CT (robotics, coding, unplugged activities) 

are however very similar between European countries. 
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● The paper has to be written in English. This criterion could also represent a limitation since European 

literature could be published in different languages. The most common language used in this field of research 

however is English. 

● The paper needs to have the full text available. 

● The study has to be done in the context of formal K-12 education. 

● The paper explains which dimensions of CT are assessed. 

● The paper presents a tool/test to assess CT. 

● The tool has been tested in class. The paper should present a tool that has been applied in class. Papers on 

theoretical reflections on how to assess CT without a tool tested in class have been excluded. 

2.3 Screening of Papers 

The screening process can be seen in Figure 1. All papers have been screened applying the inclusion criteria. A first 

screening round based mostly on the abstracts and metadata of the papers lead us to eliminate studies carried out 

before 2016, non-English papers and papers on studies conducted in non-European countries. After applying these 

first criteria, we obtained 175 papers. In a second round, the inclusion criteria were applied to the full-text versions 

of the 175 selected papers. The execution of this second round resulted in 26 papers that match the inclusion criteria. 

 

Figure 1. Screening process and stages. 

2.4 Data Extraction  

The 26 selected papers were read a second time more in depth and a series of information was selected in order to 

answer the research questions. For all 26 papers we extracted the following data: 

● Authors and date 

● Type of the paper (e.g., scientific article, conference paper, dissertation, ...) 

● Nation where the study was conducted 

● Name of the assessment tool implemented 

● Form of the tool (e.g., paper based, computer based, test, questionnaire, ...) 

● Length of the assessment (e.g., number of items) 

● CT dimensions that were assessed 

● Number of pupils in the study 

● School grade in which the study was conducted 
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3. Results 

The presentation of the findings was divided into three main topics: description of the selected studies, presentation 

of the assessment tools used in the different studies, and a report on the CT dimensions assessed by the different 

tools. 

3.1 General Description of the Selected Studies 

Of the 26 studies selected, 7 were conducted in Spain 4 of which were by the same research team. In Turkey 6 

studies were carried out. In the UK there were 3. In Germany, Greece and Italy, 2 studies were carried out in each. 

Chiazzese, Arrigo, Chifari, Lonati & Tosto (2019) is an extended paper of the study Chiazzese, Arrigo, Chifari, 

Lonati & Tosto (2018). The last 4 studies were conducted in Czech Republic, Finland, Ireland, and in Slovenia. 

Seventeen studies were published as journal papers, 8 were conference papers and 1 as a chapter in a book. The 

number of pupils assessed with the CT tools ranges between 16 (Gillott, Joyce-Gibbons, & Hidson, 2020) and 1251 

(Roman-Gonzalez, Perez-Gonzalez, & Jimenez-Fernandez, 2017). Sixteen studies have been carried out in primary 

schools and 10 in secondary education. The attribution to a grade is however dependent on the country where the 

study was conducted. In this study, in which we are aware that we could not represent all European school systems, 

we divided the school grades as follow: Preschool/Kindergarten (pupils aged below 5 years); Primary School (pupils 

aged between 6 and 11; Grades 1st-6th); Secondary School (pupils aged between 12-15; Grades 7th-10th). In the 

cases where the studies covered more grades, we have counted them according to the grade where the majority of 

the pupils were enrolled considering only the grades in compulsory schools. Table 1 shows all the selected studies 

ordered by school grade. The selected studies are also marked with an * in the reference list. 

Table 1. Selected studies 

Study Nr. of 

pupils 

Grade Nation Publication Type 

Kalliopi and Michail, 2019 450 1st-2nd Greece Conference paper 

del Olmo-Muñoz, Cózar-Gutiérrez, and 

González-Calero, 2020 

84 2nd Spain Journal paper 

Price and Price-Mohr, 2018 18 2nd-5th UK Journal paper 

Leifheit, Jabs, Ninaus, Moeller and 

Ostermann, 2018 

33 3rd- 4th Germany Conference paper 

Chiazzese, Arrigo, Chifari, Lonati and 

Tosto, 2018 

83 3rd-4th Italy Conference paper 

Chiazzese, Arrigo, Chifari, Lonati and 

Tosto, 2019 

51 3rd-4th Italy Journal paper 

Bryndová and Mališů, 2020 90 3rd-8th Czech Republic Conference paper 

Fagerlund, Häkkinen, Vesisenaho, and 

Viiri, 2020 

57 4th Finland Journal paper 

Kožuh, Krajnc, Hadjileontiadis, and 

Debevc, 2018 

945 4th-6th Slovenia Journal paper 

Pérez-Marín, Hijón-Neira and Bacelo, 

2018 

132 4th-6th Spain Journal paper 

Yildiz Durak, 2018 110 5th Turkey Journal paper 

Tonbuloǧlu and Tonbuloǧlu, 2019 114 5th Turkey Journal paper 

Saez-Lopez, Roman-Gonzalez, and 

Vazquez-Cano, 2016 

139 5th-6th Spain Journal paper 

Allsop, 2019 30 5th-6th UK Journal paper 

Kukul and Karatas, 2019 319 5th-7th Turkey Journal paper 

Korucu, Gencturk, and Gundogdu, 2017 160 5th-8th Turkey Journal paper 

Roman-Gonzalez, Perez-Gonzalez, and 

Jimenez-Fernandez, 2017 

1251 5th-10th Spain Journal paper 

Förster, Förster, and Löwe, 2018 22 6th Germany Conference paper 
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Segredo, Miranda, León and Santos, 

2016 

54 6th-14th Spain Conference paper 

Román-González, Moreno-León, and 

Robles, 2017 

148 7th-8th Spain Conference paper 

Bati, Yetişir, Çalişkan, Güneş and Saçan, 

2018 

104 8th Turkey Journal paper 

Román-González, Pérez-González, 

Moreno-León and Robles, 2018 

314 8th-9th Spain Journal paper 

Sarıtepeci and Durak, 2017 53 9th Turkey Chapter in a book 

Garneli and Chorianopoulos, 2018 34 10th Greece Journal paper 

Gillott, Joyce-Gibbons and Hidson, 2020 16 10th-11th UK Journal paper 

Lockwood and Mooney, 2018 292 10th-12th Ireland Conference paper 

3.2 Which Tools are Used to Assess CT in Europe? 

In this section we present a more in-depth analysis of the tools used to assess CT. Table 2 shows the different types 

of tools used in the 26 studies grouped by tool nature. Across the 26 articles, 18 unique forms of assessment were 

identified and grouped in five categories: test/tasks (Visual Blocks Creative Computing Test, CT Test, PCNT test, 

Bebras tasks, Code.org tasks, Scratch tasks, Alice tasks, Java tasks, Educational robotics tasks, CT activities, 

PhysGramming), questionnaires (CT Self-efficacy Scales, CT Ability Scale, CONT questionnaire and self-

developed online questionnaires), observations, interviews, and analysis of products (manually, or automated with 

Dr Scratch). The most used tools are the CT Test (5 times), Bebras tasks (5 times), the Computational Thinking 

Ability Scale (4 times) Dr. Scratch (3 times), and Scratch tasks (3 times). 

Table 2. Tool used by the analyzed papers. 

Study Name of Tool Tool nature Length of assessment 

Fagerlund, Häkkinen, Vesisenaho, 

and Viiri, 2020 

Scratch tasks Analysis of products - 

Garneli and Chorianopoulos, 2017 Dr. Scratch Analysis of products - 

Förster, Förster, and Löwe, 2018 Dr. Scratch Analysis of products Automatic assessment 

over 24 program 

elements 

Price and Price-Mohr, 2018 Java tasks Interview and analysis 

of products 

- 

Allsop, 2019 Scratch and Alice 

tasks, observations 

and interviews 

Observation, interview, 

analysis of products 

- 

Gillot, Gibbons, and Hidson, 2020 Scratch tasks and 

observations 

Observations, interview - 

Kalliopi and Michail, 2019 PhysGramming Tasks, observations and 

interview 

- 

Chiazzese, Arrigo, Chifari, Lonati 

and Tosto, 2018 

Bebras task Tasks - 

Chiazzese, Arrigo, Chifari, Lonati 

and Tosto, 2019 

Bebras task Tasks 10 items 

del Olmo-Munoz, Cózar-Gutiérrez 

and González-Calero, 2020 

Bebras task Tasks 10 items 

Lockwood and Mooney, 2018 Bebras task Tasks 13 items 

Segredo, Miranda, León and 

Santos, 2016 

CT activities Tasks 5 activities 

Leifheit, Jabs, Ninaus, Moeller and 

Ostermann, 2018 

Code.org tasks Tasks 9 tasks 

Bryndová and Mališů, 2020 Educational 

robotics tasks 

Tasks 16 items 
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Saez-Lopez, Roman-Gonzalez, and 

Vazquez-Cano, 2016 

Visual Blocks 

Creative 

Computing Test 

Test 40 items 

Korucu, Gencturk, and Gundogdu, 

2017 

CT Ability Scale Questionnaire 22 items 

Sarıtepeci and Durak, 2017 CT Ability Scale Questionnaire 22 items 

Yildiz Durak, 2018 CT Ability Scale Questionnaire 22 items 

Tonbuloglu and Tonbuloglu, 2019 CT Ability Scale 

and observations 

Questionnaire and 

observations 

22 items 

Román-González, Moreno-León, 

and Robles, 2017 

CT Test, Dr. 

Scratch and Bebras 

tasks 

Questionnaire, analysis 

of product and tasks 

28 items (CT Test) 

Román-González, Perez-Gonzalez, 

and Jimenez-Fernandez, 2017 

CT Test Questionnaire 28 items 

Román-González, Pérez-González, 

Moreno-León and Robles, 2018 

CT Test Questionnaire 28 items 

Bati, Yetişir, Çalişkan, Güneş and 

Saçan, 2018 

CT Test, 

observations and 

interviews 

Questionnaire, 

observations and 

interviews 

Depends on the module 

Pérez-Marín, Hijón-Neira, and 

Bacelo, 2018 

CT Test, PCNT 

Test, CONT 

questionnaire 

Questionnaire 15 items (CONT), 28 

items (CT Test), 14 Items 

(PCNT) 

Kožuh, Krajnc, Hadjileontiadis, and 

Debevc, 2018 

Online survey 

questionnaire 

Questionnaire 13 items 

Kukul and Karatas, 2019 CT Self-efficacy 

Scale 

Questionnaire 18 items 

Test/Tasks. The majority of the selected studies uses a test or a task to assess CT. Under this category we can find 

for example the Visual Blocks Creative Computing Test. This test has 40 items with a structured and progressive 

sequence. Students answer items related to sequences, loops, conditional statements, parallel execution, 

coordination, event handling, and keyboard input. Another frequently used test is the CT Test (Roman-Gonzalez et 

al., 2017), in which pupils have to solve 28 tasks. For example, a sequence of instructions is given to them and they 

have to decide how many times the sequence has to be executed in order to move a character from point A to point 

B on a grid. The CT test targets secondary school pupils. A similar test for primary school pupils is the PCNT Test 

(Pérez-Marín et al., 2018). Other often used tasks to assess CT skills are the Bebras tasks. The Bebras tasks are a 

large set of tasks used for the worldwide annual International Challenge on Informatics and Computational 

Thinking. The aim of the challenge is to increase pupils’ engagement in informatics and to promote the development 

of computational thinking through the resolution of real-life and attractive problems (Chiazzese et al., 2018). Also 

the code.org tasks can be used to assess CT: the platform offers in fact different online courses for pupils which 

contain assessment tasks to be solved. In other cases, the researchers used tasks created with different programming 

languages for example Scratch, Alice or Java. In some cases, educational robotics tasks also can be used. Bryndová 

and Mališů (2020) for example use the robots Ozobot EVO and BIT. A last system that has been used to assess CT 

is PhysGramming (Kalliopi & Michail, 2019). PhysGramming is a digital environment that allows pupils to create 

their own games. 

Questionnaires. Questionnaires related to CT are also often used to assess CT skills. Kukul et al. (2019) have for 

example developed the CT Self-Efficacy Scale. The original scale contained 51 items arranged as 5-point Likert 

scale (1 = "Completely Disagree" - 5 = "Fully Agree"). The scale was applied as a pilot to secondary school pupils 

and the items were reduced to 18 items. Example items on the scale are: "If there are sub-problems in the problem, I 

can manage the solution processes of these sub-problems"; "I can make connections between the current problem 

and previously encountered problems". Another questionnaire used is the CT Ability Scale developed by Korkmaz, 

Çakır, and Özden (2016). The scale was originally developed for university students and then was adapted for 

secondary school pupils. Also in this case, a five-point Likert scale is used. Examples of items in the test are "I 

believe that I can easily catch the relation between the figures"; "It is fun to try to solve the complex problems". 

Other questionnaires allowed open questions an example is the CONT questionnaire that measure knowledge of 
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programming concepts. An example of a question is "What do you think a program is? Can you give an example?" 

(Pérez-Marín et al., 2018). 

Observations. In some studies, CT skills have been assessed by observing pupils solving different tasks. For 

example, Allsop (2019) collected data on CT skills by observing "the language children used for their ’self’ 

explanations and group discussions, the gestures, the context of their relations with teacher, peers and technology in 

their classroom setting" (p.33). 

Interviews. In order to assess CT, few studies also asked pupils to create a product (a coded story) and then 

interviewed them to let them explain their coded story (Price & Price-Mohr, 2018). 

Analysis of products. Another method to assess CT skills is to analyse pupils’ projects. An example of this are 

projects created in Scratch. The products can be analysed manually or automatically with Dr. Scratch for example. 

Dr. Scratch is an online analysis tool which can assess CT skills of a Scratch project based on the number of sprites, 

blocks, loops, and other concepts used in the project, and calculate a CT skills score. Dr Scratch however has some 

limitations as it cannot detect if the program is functioning as intended: a project with the appropriate blocks could 

get a high CT score, although it may lack functionality (Moreno-León & Robles, 2015). 

3.3 Which Dimensions are Assessed? 

The presented tools have been used to analyse different dimensions of CT. Table 3 shows an overview of the 

analysed dimensions according to used tools and study grouped by tool name. Analysed dimensions is composed of 

keywords taken from the papers where the tool was used. The analysed dimensions of a specific tool used in more 

than one paper could be different or have slightly different terminology among the papers, depending on the authors’ 

research focus and on how they have used the instrument.  

In terms of concepts and processes, we stayed with what the authors defined as a CT dimension in the reviewed 

papers. This could include programming constructs as well as non-programming terms and processes. We addressed 

this difference in Section 4 and Section 5 and we highlighted why this is still an issue to reach a common operational 

definition of CT. 

Table 3. Tools used in the selected studies and dimensions analyzed by the tools. 

Study Name of Tool (or 

type if N.A.) 

Analysed dimensions 

Chiazzese, Arrigo, 

Chifari, Lonati and Tosto, 

2018 

Bebras tasks Algorithmic thinking, Implementing simple algorithmic 

procedures, Logically analyzing data, Logically 

organizing data, Representing data through formal 

encoding 

Lockwood and Mooney, 

2018 

Bebras tasks Data ordering, Encoding, Gossip problem, If then else 

objects, Pattern matching attributes and variables, 

Stacks, Trees ciphering, Sorting 

Del Olmo-Muñoz, Cózar-

Gutiérrez, and González-

Calero, 2020 

Bebras tasks Algorithmic thinking, Decomposition, Evaluation, 

Generalisation 

Leifheit, Jabs, Ninaus, 

Moeller and Ostermann, 

2018 

Code.org tasks Conditionals, Debugging, Events 

Korucu, Gencturk, and 

Gundogdu, 2017 

CT Ability Scale Algorithmic thinking, Analytical Thinking, 

Collaboration, Creativity, Problem solving 

Sarıtepeci and Durak, 

2017 

CT Ability Scale Algorithmic thinking, Collaboration, Creativity, Critical 

thinking, Problem solving 

Yildiz Durak, 2018 CT Ability Scale Algorithmic thinking, Collaboration, Creativity, Critical 

thinking, Problem solving 

Tonbuloǧlu and 

Tonbuloǧlu, 2019 

CT Ability Scale Algorithmic thinking, Collaboration, Creativity, Critical 

thinking, Problem solving 

Segredo, Miranda, León 

and Santos, 2016 

CT activities Abstraction, Algorithmic thinking, Cognitive planning, 

Logical thinking 
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Kukul and Karatas, 2019 CT Self-efficacy Scale Abstraction, Decomposition, Generalization, Reasoning 

Román-González, Perez-

Gonzalez, and Jimenez-

Fernandez, 2017 

CT Test Computational concepts (sequences, loops, 

conditionals, operators), Computational practices 

(testing and debugging, reusing and remixing, 

abstracting and modularizing) 

Román-González, 

Moreno-León, and 

Robles, 2017 

CT Test, Dr Scratch, 

and Bebras tasks 

Abstraction and problem decomposition, Data 

representation, Flow control, Logical thinking, 

Parallelism, Synchronization, User interactivity 

Bati, Yetişir, Çalişkan, 

Güneş and Saçan, 2018 

CT Test, observations, 

and interviews 

Assessing different approaches/solutions to a problem, 

choosing effective computational tools, Creating 

abstractions, Developing modular computational 

solutions, Programming, Troubleshooting and 

debugging, Using problem solving strategies 

Pérez-Marín, Hijón-

Neira, and Bacelo, 2018 

CT Test, PCNT Test, 

CONT questionnaire 

Abstract and encapsulate, Incremental and iterative 

development, Mix and reuse, Test and Debugging 

Román-González, Pérez-

González, Moreno-León 

and Robles, 2018 

CT Test Computational concepts (sequences, loops, 

conditionals, operators), Computational practices 

(testing and debugging, reusing and remixing, 

abstracting and modularizing) 

Garneli and 

Chorianopoulos, 2017 

Dr Scratch Data, Computational practices and perspectives, 

Conditionals, Events, Loops, Operators, Parallelism, 

Sequences 

Förster, Förster, and 

Löwe, 2018 

Dr Scratch Abstraction and problem decomposition, Algorithmic 

notions of flow control, Data representation, Logical 

thinking, Parallelism, Synchronization, User 

interactivity 

Bryndová and Mališů, 

2020 

Educational robotic 

tasks 

Abstraction, Algorithmization, Decomposition, 

Evaluation, Generalization 

Price and Price-Mohr, 

2018 

Java tasks Abstraction, Algorithmic thinking, Decomposition 

Kožuh, Krajnc, 

Hadjileontiadis, and 

Debevc, 2018 

Online survey 

questionnaire 

If-clause, Loops, Series of execute commands, 

Variables 

Kalliopi and Michail, 

2019 

PhysGramming Abstraction, Algorithmic thinking, Data analysis 

(identifying misconceptions, reconsider choices), Data 

collection, Data organization 

Allsop, 2019 Scratch and Alice 

tasks, interviews, and 

observations 

Abstractions, Conditionals, Events, Loops, Operators, 

Parallelism, Sequences, Variables 

Fagerlund, Häkkinen, 

Vesisenaho, and Viiri, 

2020 

Scratch Abstraction, Algorithms, Automation, Coordination, 

Creativity, Data, Logic, Modeling and design, Patterns, 

Problem decomposition 

Gillott, Joyce-Gibbons, 

and Hidson, 2020 

Scratch tasks, 

interviews, and 

observations 

Abstraction, Algorithmic thinking, Computational 

concepts, Computational perspectives, 

Debugging/Testing, Decomposition, Evaluation, 

Formulate problems, Generalization/Reusing, Logical 

reasoning 

Saez-Lopez, Roman-

Gonzalez, and Vazquez-

Cano, 2016 

Visual Blocks Creative 

Computing Test 

Conditional statements, Event handling, 

Experimentation, Iteration, Keyboard input, Sequence, 

Threads, User Interface Design 

Table 4 shows the dimensions analysed in the selected papers ordered by number of appearances. The table doesn’t 

take into account duplicates (that is, if a tool appeared in more than one study, the dimensions it analysed are 

counted only once). Whenever there are differences in the terminology used when referring to the same dimension, 

all the used terms are presented in the same row (e.g., abstract, abstraction). It is interesting to note that the tools 
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presented in the selected studies allow 59 different dimensions to be analysed. Only 21 dimensions however appear 

more than once, while all the others (38) are representative of a single tool. This gives an initial indication which 

dimensions are most frequently taken into account and thus associated with CT. If the dimensions tested by the tools 

are analysed according to school grades it can be noticed that the type of dimensions used do not differ based on 

students’ grades. 

Table 4. Dimensions analysed by the reviewed papers. 

Dimension Appearances Dimension Appearances 

Abstract / Abstraction 8 Data collection 1 

Algorithm / Algorithmic thinking / 

Algorithmization 

8 Data ordering 1 

Problem decomposition / 

Decomposition 

7 Developing modular 

computational solutions 

1 

Conditionals / Conditional statements 6 Encapsulate 1 

Generalization / Pattern recognition / 

Patterns 

6 Encoding 1 

Loops / Iterations 5 Execute commands 1 

Events / Event handling 4 Experimentation 1 

Logic / Logical thinking / Logical 

reasoning 

4 Flow control 1 

Sequences 4 Formulate problems 1 

Creativity 3 Gossip problem 1 

Debugging 3 Incremental development 1 

Evaluation 3 Iterative development 1 

Operators 3 Keyboard input 1 

Parallelism 3 Mix / Remixing 1 

Variables 3 Modeling and design 1 

Analyze data / Data analysis 2 Programming 1 

Computational practices and 

perspectives 

2 Reasoning 1 

Data 2 Reuse 1 

Data representation 2 Simple functions 1 

Organize data / Data organization 2 Sorting 1 

Problem solving 2 Stacks 1 

Analytical / critical thinking 1 Synchronization 1 

Assessing different 

approaches/solutions to a problem 

1 Test 1 

Automation 1 Threads 1 

Choosing Effective Computational 

Tools 

1 Trees 1 

Ciphering 1 Troubleshooting 1 

Cognitive planning 1 User interactivity 1 

Collaboration 1 User interface / User 

interface design 

1 

Computational Concepts 1 While conditional 1 

Coordination 1   

The dimensions mentioned in Table 4 can be further divided into dimensions purely related to programming and 

informatics, and dimensions related in a broader sense to CT. To this respect, we decided to select the dimensions 

which can be associated with the definition of CT given Wing and Shute’s seminal works and present them in Table 

5. The table shows 19 dimensions in total related to Wing and Shute’s works. Interestingly enough, more than half 

of the dimensions (11) are mentioned in more than one tool. 

Table 5. Dimensions analysed that can be related to CT as seen in Wing and Shute’s seminal work. 
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CT dimension (Wing, 2006 and Shute et al., 2017) Appearances 

Abstract / Abstraction 8 
Algorithm / Algorithmic thinking / Algorithmization 8 

Problem decomposition / Decomposition 7 

Generalization / Pattern recognition / Patterns 6 

Logic / Logical thinking / Logical reasoning 4 

Creativity 3 

Debugging 3 
Evaluation 3 

Analyze data / Data analysis 2 

Organize data / Data organization 2 

Problem solving 2 

Analytical / Critical thinking 1 

Assessing different approaches/solutions to a problem 1 
Cognitive planning 1 

Collaboration 1 

Data collection 1 

Formulate problems 1 

Reasoning 1 

Test 1 

The remaining dimensions fall closer to programming skills rather than to the definition of CT we decided to focus 

on. For example, among these dimensions (Table 6) we find conditional statements, iterations, events, sequences, 

variables, execution of commands, data representation, and operators. While it may be argued which dimensions are 

purely related to programming rather than being adaptable in a broader sense to CT, it is clear that dimensions such 

as conditionals, loops, or programming are concepts that are mostly related to programming and informatics, rather 

than CT. To this end, debugging can be seen as the act of fixing an error in a mental algorithm/procedure (Shute et 

al., 2017), and thus can be seen as part of CT given a much inclusive definition. 

Table 6. Dimensions analyzed that can be seen as purely related to programming. 

Programming dimension Appearances Programming dimension Appearances 

Conditionals / Conditional 

statements 

6 Experimentation 1 

Loops / Iterations 5 Flow control 1 

Events / Event handling 4 Gossip problem 1 

Sequences 4 Incremental development 1 

Operators 3 Iterative development 1 

Parallelism 3 Keyboard input 1 

Variables 3 Mix / Remixing 1 

Computational practices and 

perspectives 

2 Modeling and design 1 

Data 2 Programming 1 

Data representation 2 Reuse 1 

Automation 1 Simple functions 1 

Choosing effective computational 
tools 

1 Sorting 1 

Ciphering 1 Stacks 1 

Computational concepts 1 Synchronization 1 

Coordination 1 Threads 1 

Data ordering 1 Trees 1 

Developing modular 

computational solutions 

1 Troubleshooting 1 

Encapsulate 1 User interactivity 1 
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Encoding 1 User interface / User 

interface design 

1 

Execute commands  1 While conditional 1 

4. Discussion 

This paper reports the assessment tools and the assessed dimensions of 26 European studies conducted between 

2016 and 2020. The results conform to the existing literature that shows a variety of CT assessments methodologies 

(e.g., Çoban, & Korkmaz, 2021) and indicates different CT assessment tools exist that can be categorized in five 

groups: questionnaires, tests/tasks, observations, interviews and analysis of products. The first two categories 

(questionnaires and test/tasks) were the two most common. Most studies use a single form of assessment (either 

questionnaire, test, interview, etc...) and often limit themselves to assess if students can recognize and recall 

knowledge out of context. These forms therefore do not allow assessment of the competences and in particular CT 

skills that have a multifaceted nature. This can also be noticed analysing the dimensions of CT that the reviewed 

tools allow to assess. Wing (2006) defined CT as a fundamental skill, a definition further expanded by Shute et al. 

(2017), clearly decoupling it from basic computer science. Nonetheless most of the dimensions that the review tools 

assess are related to programming skills, rather than effectively measuring the ability to solve problems through CT 

which goes beyond computer science. Our review focused on European K-12 education confirms some of the results 

found in other reviews carried out by researchers in non-European countries: a breadth of methods employed to 

assess CT (Cutumisu et al., 2019) and the majority of them analysing concepts directly related to algorithms and 

programming (Tang et al. 2020). The need for tools that allow to assess all facets of CT has been discussed already 

in other studies such as highlighted in Basu, Rutstein, Xu, Wang and Shear, 2021. This is also related to the different 

operational definitions of CT making it difficult to agree on the dimensions of CT and to develop a common and 

reliable assessment tool (Adams et al., 2019). In fact, in the 26 studies selected, as many as 59 different dimensions 

are associated with CT, however only 21 dimensions appear more than once, while the remaining 38 are 

representative of a single tool. The analysis of the tools also shows that they do not refer to a shared competence 

model of CT differentiated by age. The different studies assess CT in pupils in different grades, however it is not 

clear what competences pupils should reach at which age since the same dimensions and tools are used for pupils of 

different ages. The challenges in the development of assessment methods and frameworks that include all facets of 

CT is already mentioned by different authors (e.g. Brennan & Resnick, 2012; Denner, Werner, & Ortiz, 2012; 

Denning, 2017; Fronza, El Ioini, & Corral, 2017; Grover et al., 2017; Grover, Pea, & Cooper, 2015; Tikva & 

Tambouris, 2021; Zhong, Wang, Chen, & Li, 2016) are still present and should drive the need for future research in 

the field. 

5. Conclusion 

In this paper we focused on answering two main questions: “Which tools are used to assess CT in Europe?” and 

“Which dimensions of CT are assessed?”. In her 2006 paper, Wing describes CT as "[...] solving problems, 

designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer 

science". The dimensions shown in Table 6 can be associated with the fundamental concepts of computer science, 

yet on an abstract level they can also be used to describe human behavior when solving a problem (Voskoglou & 

Buckley, 2012). We argue that the presented tools rely too much on computer science concepts rather than focusing 

on problem-solving skills in educational contexts (Rahman, 2019). 

Based on these reflections we can formulate following issues that are present in the assessment of CT in European 

K-12 education and should drive future research in the field:  

● A common operational definition of CT is still absent.  

● A competence model that indicates which competences students should reach in CT at which age is absent. 

● Still missing is a tool that takes into consideration all the different dimensions of CT and does not focus only 

on a few of them or just on programming skills.  

In order to advance in this research field, we believe it would be important to define a competence model of CT 

according to the pupil’s age, i.e., a model of the pupil’s skills, knowledge and possible behaviours in a given 

context. Based on this model, assessment rubrics (Popham, 1997) could be defined.  

An assessment rubric consists, in general, in a qualitative description of possible observable behaviours that can be 

observed during the accomplishment of a task, corresponding to different performance levels with respect to the 
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components of the competence being assessed. The different performance levels could be expressed in different 

ways (Dawson, 2017), for example, they could be defined through the amount of assistance needed during the 

resolution of the task. In this case, during the activity students can have access to different aid; the more aid they 

need, in form of hints, suggestions, or supplementary tools or instruments to produce an acceptable solution to the 

given problem, the less competent they are. With the help of these rubrics, students could potentially be assessed by 

being given tasks to be solved that include all dimensions of a shared operational definition of CT. 
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Abstract 

Current research has not fully explored how summer programming camps can help students increase motivation and 

interest to pursue computing career, and their programming knowledge. Informal CS education through summer 

programming camps provides K-12 students the opportunity to learn how to code through fun and interactive 

activities outside of their typical classroom experiences. In this study, we examined the effectiveness of a weeklong 

summer programming camp for promoting students’ motivation and interest in programming, and their 

programming knowledge. Participants were 19 middle school students from rural Washington. Students participated 

in a project-based learning approach through game development in Python. Using a within-subjects design, we 

analyzed students' pre and post motivation and knowledge assessment scores. Results from the analysis indicated a 

significant improvement in post-test programming knowledge scores (d = 0.93). The findings also indicated that 

students were able to achieve basic abstraction and algorithmic thinking but not code analysis and debugging skills. 

On their motivation to pursue computing careers, the results did not show any difference before and after the camp 

due to their prior existing interest in attending the camp. 

Keywords: Computer science education, pre-college programs, STEM, programming camps, K-12 education 

 

1. Introduction 

The number of individuals graduating with a Science, Technology, Engineering, and Mathematics (STEM) major 

remains low despite the increase in STEM jobs in the United States (Bureau of Labor Statistics, 2019; National 

Science Board, 2016; Xianglei & Weko, 2009). Two plausible reasons include the lack of interest in pursuing 

STEM-related courses, and the lack of early opportunities and exposure to STEM (Tai et al., 2016.). This issue is 

further exacerbated in computing where there is rapid demand for talent in the tech industry in the United States, but 

not enough of graduates in computing-related degrees (Zweben & Bizot, 2020). According to the Bureau of Labor 

Statistics, computing occupations, such as software developers and computer programmers, are projected to grow 

13% between 2020 and 2030 (Bureau of Labor Statistics, 2019). It is then important to ensure that we spark interest 

in computing early among K-12 students in hopes that they become the next generation to maintain and develop our 

technological infrastructures. Early exposure to computing opportunities, especially for girls, is important as it may 

increase a child’s interest in computing, improve their perceptions, and eliminate gender stereotypes (Bagiati et al., 

2010; Tai et al., 2016) In fact, it has been shown that early exposure to computing prior to high school yields a 

higher chance that their interest in computing maintains into higher education (Christensen et al., 2014; Hirsch et al., 

2017; Taub et al., 2012) Out-of-school activities or informal learning experiences through STEM camps is one 
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potential way to provide early exposure to  STEM (Bell et al., 2009, p. 20; Cabrera et al., 2021; Mohr-Schroeder et 

al., 2014), especially computing (DeWitt et al., 2017b; Frye et al., 2016; Master et al., 2017).  

Informal learning environments go beyond the traditional classroom and provide a casual learning experience for 

students (Roberts et al., 2018). Within computer science (CS) education, these learning opportunities commonly 

introduce computing concepts in a hands-on approach or relatable manner that may be beneficial for supporting 

formal computer science (CS) education in the future (DeWitt et al., 2017a; Franklin et al., 2013; Lakanen & 

Kärkkäinen, 2019; Xianglei & Weko, 2009). Currently, many school districts in the United States still do not 

incorporate programming as part of their STEM curriculum, due to the lack of resources, such as finding teachers 

who can teach it (Warner et al., 2019). Informal CS learning opportunities may be the only time students in a 

particular region would be able to engage in programming outside of the classroom and possibly prior to college 

(Warner et al., 2019). Informal STEM learning opportunities, such as programming camps, are often offered during 

the summer after the school year (Frye et al., 2016; Roberts et al., 2018; Webb & Rosson, 2011). Since knowledge 

loss typically occurs over summer breaks due to the lack of access to learning opportunities (McCombs et al., 2011), 

free informal STEM opportunities, like programming camps, are particularly important for students from low 

socioeconomic backgrounds who otherwise may not have access (Lusa Krug et al., 2021). Since programming 

camps can use various STEM concepts as a context for learning how to code (LePendu et al., 2020; Nite et al., 

2020), these programs can provide the opportunity to engage in STEM topics covered during the school year while 

also introducing coding concepts.  

Given the positive effects of summer programming camps on students’ interest in computing, the research team 

developed a free summer camp for middle school students in rural Eastern Washington. A one-time programming 

camp was previously offered in the region, albeit only for middle-school-aged girls. Due to the lack of programming 

resources in the area, this camp was designed for middle school students. The study has two broad aims. 

First, we are interested in examining the impact of participation in a week-long summer programming camp on 

students’ motivation in programming and interest in pursuing a programming-related career. Research suggests that 

even a short week-long exposure to STEM activities may increase students’ interest in STEM and positively 

influence their perceptions about STEM (National Science Board, 2016; Xianglei & Weko, 2009). We have also 

seen this reflected in longitudinal studies. Girls who were exposed to computing at a programming camp maintained 

an interest in programming over time (Outlay et al., 2017).   

We are also interested in examining whether participation in the week-long camp is sufficient exposure to increase 

students’ knowledge of programming and their ability to apply programming concepts. Franklin et al.’s study found 

that exposing students to two weeks of programming was sufficient for imparting computer science knowledge 

(Franklin et al., 2013). Programming provides the opportunity to exercise several computational thinking skills, such 

as understanding abstraction, problem formulation, and debugging for K-12 students (Lye & Koh, 2014). Thus, we 

are also interested in assessing students’ computational thinking (CT) skills based on their programming knowledge 

performance. Despite the little research on learning to code through informal learning environments (i.e., 

programming camps), preliminary research indicates that informal learning experiences are effective in teaching 

code to students (Akcaoglu, 2014; Denner et al., 2012; Wang & Frye, 2019; Zamin et al., 2018). It is less clear as to 

how informal learning experiences in computing are effective in teaching  computational thinking skills, especially 

since there is still ongoing discussion among scholars as to what CT comprises and ongoing efforts to measure CT 

skills (Shute et al., 2017; Werner et al., 2012) 

Second, we are interested in the effectiveness of a hands-on project-based approach in helping students learn and 

retain programming concepts. In this approach, key concepts are interwoven into each step of the project that 

students are required to work on. Essentially, students learn and apply those key concepts simultaneously. To 

address these two broad aims, this study seeks to answer the following research questions:  

RQ 1) How does participation in project-based learning influence students’ motivation and interest before and 

after a short informal programming camp?  

RQ 2) How does project-based learning influence students’ programming knowledge before and after a short 

informal programming camp? 

2. Related Work  
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Informal learning experiences are frequently offered outside of the classroom and structured curricula (Franklin et 

al., 2013; Roberts et al., 2018). Examples of informal learning environments include after-school programs, 

museum/field trips, and summer camps (Hofstein & Rosenfeld, 1996). In such environments, instructors and 

organizers are typically concerned with engaged participation, affective outcomes, and developing interest among 

students with loose learning objectives set for the duration of the informal learning opportunity(Hofstein & 

Rosenfeld, 1996; Stewart & Jordan, 2017).  

Such opportunities are valuable for a couple of reasons. The emphasis on engaging participants and developing 

interest is especially important for female students who tend to lose interest in STEM while in middle school and 

through post-graduate education (Bagiati et al., 2010; Master et al., 2017). In addition, without sufficient exposure to 

STEM opportunities, students may develop a negative attitude towards STEM (Weinberg et al., 2011). Existing 

studies provide insights on the positive impact informal STEM opportunities have on students in future college 

major choices and interest in a STEM-related field (Miller et al., 2018; Weinberg et al., 2011). 

In K-12 computer science education, there has been a gradual increase in recent years in summer programming 

camps as a popular form of an informal learning opportunity to stimulate interest in pursuing computer science(Bell 

et al., 2009; Bureau of Labor Statistics, 2019). These programming camps offer students the opportunity to delve 

into computing concepts that are largely not covered in many K-12 school curricula in the nation, especially in 

elementary and middle schools (Fields et al., 2015; Frye et al., 2016). The likelihood of a K-12 school curriculum 

that covers computing concepts becomes less in rural communities (Code Advocacy Coalition, 2018). For students 

in these underserved areas, a programming camp provides a learning opportunity in STEM that may be fun and 

engaging through an informal learning environment (Roberts et al., 2018). 

2.1 Structure of Programming Camps for Middle School Students  

One of the aims of programming camps is to provide students with an opportunity where they can learn problem-

solving skills, have fun with programming tasks, and interact with their peers with similar interests (Adams, 2010). 

These camps cater to a range of students from elementary school (Chaudhary et al., 2016) to high school (Al-Bow et 

al., 2009). However, there has been a focus to provide programming opportunities particularly to middle school 

students (DeWitt et al., 2017b). Choices made in middle school can impact future education and career pursuits (Al-

Bow et al., 2009; Wang et al., 2019). A major predictor of a student pursuing a STEM career upon graduating high 

school is their interest at the start of high school (Lakanen & Kärkkäinen, 2019; McCombs et al., 2011). Since 

interest in STEM careers may decline as a student matures (Ayar & Yalvac, 2016), it is crucial to spark interest in 

STEM in middle school students before they start high school (Hofstein & Rosenfeld, 1996; Xianglei & Weko, 

2009).  

Programming camps for middle school students are often in the form of hands-on workshops that utilize block 

programming languages, such as Scratch, or text-based languages, such as Python (Bryant et al., 2019). Such 

programs provide guidance in completing coding activities (Austin & Pinkard, 2008; Bagiati et al., 2010; Bell et al., 

2009; Stewart & Jordan, 2017; Wang et al., 2019; Xianglei & Weko, 2009). Such camps have been found to be 

effective in generating interest in computer science and teaching students of varying backgrounds how to code 

(Maiorca et al., 2021; Weinberg et al., 2011).  

Interestingly, although programming camps generate interest in computer science, little research has been conducted 

to examine how well these camps promote the acquisition and retention of students’ programming knowledge. More 

specifically, there is a lack of research on the effective teaching methods in these informal learning environments. 

Thus, this study seeks to explore whether a project-based programming camp is able to foster learning of 

challenging programming concepts.  

2.2 Project-based Programming Camps  

In K-12 computer science education, there have been some efforts to discuss how to support students’ growth in 

programming knowledge through project-based learning in informal learning environments, such as programming 

camps (Fields et al., 2015). Project-based learning is one of the most common teaching approaches in introducing K-

12 students to STEM fields (“2018 NSSME+,” 2018.; Adams, 2010; Austin & Pinkard, 2008; Burack et al., 2018; 

DeWitt et al., 2017; Jones, 2019). This approach allows students to apply taught concepts to real-world experience 

through a project (Hugerat, 2016; Webb & Rosson, 2011). Project-based learning differs from traditional learning in 

that the project plays the main role in the curriculum.  Students learn about concepts as they progress in their 
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project, which is often student-driven with some guidance from instructors/organizers. Project-based learning in 

STEM is also an effective way to promote K-12 students’ STEM career interest (Al-Bow et al., 2009; DeWitt et al., 

2017b). However, the effectiveness of project-based learning in gaining skills to prosper in STEM is largely 

unexplored within informal learning environments. As concepts in a project-based learning approach are introduced 

as students need them, it is unclear whether such concepts are retained at the end of their learning experience.   

2.3 Project-based Programming Camps for Increasing Motivation & Interest 

Project-based programming camps are typically organized to provide programming knowledge for middle school 

students to start working on their projects by the first or second day. Webb and Rosson held a week-long 

programming camp for middle school girls using Alice, a visual block programming environment, to gradually 

introduce programming concepts that they would need to create their individual 3D story (Webb & Rosson, 2011). 

At the end of the camp, they found that students were more interested in pursuing computer programing. In a shorter 

two-day programming camp, this method of gradually introducing just enough programming concepts to middle 

school students was also effective in promoting interest in computing careers (Outlay et al., 2017).  

Another characteristic of project-based programming camps is the ability for students to share their completed 

projects at the end of the camp to instructors, friends, and even family(Bryant et al., 2019). In other camps, students 

have also created research posters to showcase their projects (Wang et al., 2019). Incorporating a project 

presentation component in a project-based programming camp might enhance students’ sense of accomplishment by 

the end of the program (Sadler et al., 2018; Weinberg et al., 2011).  

In general, project-based programming camps have been found to be very effective in generating middle school 

students’ interest and motivation in computing careers. By providing as- needed information and concepts so 

students can complete their projects helps to build their confidence from the very beginning. The presentation 

component also allows them to share their success with others (Adams, 2010; National Science Board, 2016; 

Stewart & Jordan, 2017) .  

2.4 Project-based Programming Camps for Increasing Programming Knowledge 

The desired outcomes for middle school students attending programming camps are an increased interest in 

programming careers, increased programming knowledge, and enjoyment in completing programming activities. 

Research highlights three different ways instructors can assess participants’ knowledge. Ericson and McKlin utilized 

a 10-item multiple choice pre and post survey to assess middle and high school participants’ programming 

knowledge. Results showed significant increases from pretest to posttest across different programming concepts, 

such as loops, variables, conditional statements etc., (Ericson & McKlin, 2012). In another study, students were 

asked to rate how much they knew about programming on a scale of 0 (nothing) to 5 (expert) after the camp. 

Seventy-three percent reported an increase in programming knowledge while 27% reported no change (Mohr-

Schroeder et al., 2014). Unlike Ericson and McKlin, Franklin et al. analyzed participants’ programming projects on 

Scratch to assess whether students acquired programming concepts (Franklin et al., 2013). This assessment allowed 

researchers to conclude that at the end of their two-weeklong camp, students successfully mastered event-driven 

programming, message passing, state initialization, and say/sound synchronization (Franklin et al., 2013). 

Interestingly, less attention has been paid to the assessment of more foundational type concepts such as variables, 

loops, conditional statements, data structures, and functions. 

3. Method 

In the present study, we examined the impact of a one-week project-based informal computer programming summer 

experience on students’ perceptions of programming and programming knowledge in rural Washington where the 

availability of such opportunities is sparse.  

3.1 Sample Information and Research Design  

Nineteen middle school students (Mage = 12.72; SDage = 0.96; Girls = 13, Boys = 6) participated in the summer 

programming camp. Majority of the students identified as Asian (n = 10), followed by Caucasian (n = 3), and Black 

(n = 1). The other students either preferred not to answer (n = 4) or indicated that their race/ethnicity was not listed 

(n = 1). Students self-selected based on their interest (or parents’ interest) to attend the week-long summer 

programming camp at a large pacific northwestern university. Students who were a part of this programming camp 

had some familiarity with programming concepts before the week-long program. To examine the effect of the 
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programming camp exposure on students’ programming motivation and knowledge, we used as a within-subjects 

research design. Students completed pre- and post- motivation surveys and learning assessments. This study was 

deemed exempt by the University’s Institutional Review Board.  

  

Table 1. Daily Breakdown of Programming Camp  

Day Programming Concept Activities 

1 A quick introduction to 

Python, run code from 

the command line, 

introduction to 

variables, lists, and 

Turtle library 

Make snake game 

screen using Turtle 

library to make simple 

shapes. 

 

2 Introduction to loops, 

conditional statements, 

user input, generating 

randomness  

Implement 

functionality for 

snakehead placement 

and apple placement. 

 

3 Introduction to 

functions 

Implement functions 

and further snake game 

improvements. 

 

4 No new content 

coverage 

Finish snake game. 

 

5 No new content 

coverage 

Have fun and help 

students make 

improvements to the 

snake game. 

 

3.2 Data Collection Tools 

To examine the influence of the programming camp on students’ motivation and interest in programming, we 

administered a 20-item survey. The 20-item survey was adapted from exiting measures on students’ interest and 

motivation in STEM (see Glynn et al., 2011; Korkmaz, 2017; Yadav et al., 2011), in addition to a handful of 

researcher-developed questions. The items were further divided into 5 subscales, Career Interest, Interest, Value, 

Critical Thinking, Proficiency. Students were asked to indicate the extent to which they agreed or disagreed with 

each of the following items using a 5-point Likert scale, where 1 = Strongly Disagree and 5 = Strongly Agree. See 

Table 2 for the list of items that were included on the survey and for each subscale. 

To assess programming knowledge, we administered the same 10-item multi-step programming knowledge 

assessment before and after the camp (see Appendix A). The 10 items used in this programming knowledge test 

were researcher-developed. The items were developed around the concepts that were taught in the programming 

camp. The 10 items on the pre- and post-programming knowledge assessment were categorized into 3 broad 

categories related to CT skills: basic abstraction/operations, code analysis, and code writing. We decided to center 

on these CT skills, since we are able to connect the programming questions which exercise abstraction (basic 

abstraction/operations), problem formulation (code writing), and debugging/analysis (code analysis). However, we 

recognize that there is still ongoing discussion on what constitutes as CT skills within literature (Shute et al., 2017). 

The basic abstraction/operations category contained questions related to basic programming operations like printing 

out values, mathematical operations, string concatenation, variables etc. In the code analysis category, snippets of 

code were provided to the participants for analysis. They were required to write out the output of the code snippet. 

This category also tested if participants could detect issues with the code snippet. The code snippets focused mainly 
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on loops and conditional statements. In the code writing category, challenges were presented to the participants, and 

they were required to write code to solve the challenge. For example, the participants were asked to write code that 

would print a phrase 10 times. The expectation was for the participants to use loops rather than write a print 

statement 10 times.  

 

Table 2. Survey Items for Pre- & Post- Motivation  

Career Interest  

19. My knowledge of computer programming will help me choose a career in 

computing. 

20. I am interested in a career in programming. 

11. The computer programming skills I learn will be useful in my life. 

14. I put effort into learning about computer programming. 

12. I believe I can master computer programming knowledge and skills. 

10. I will use computer programming skills in the future.  

4. I will take more computer programming courses if I have the opportunity. 

Interest 

13. I enjoy learning about computer programming. 

5. I have a special interest in mathematical processes. 

1. Learning computer programming is interesting. 

Value 

2. Having an understanding of computer programming is valuable. 

15. Understanding computer programming is important to me. 

Critical Thinking 

3. The challenge of solving problems using computer programming skills is 

appealing to me. 

8. It is fun to try to solve complex computer programming problems. 

9. I am willing to learn challenging computer programming problems. 

18. What I already know about computer programming will help me think critically. 

Proficiency 

17. I am proficient in computer programming. 

16. I know how to write computer programs. 

7. I can easily understand the relationship between figures. 

6. I can better learn instructions with the help of mathematical symbols and 

concepts. 

 

3.3 Scoring 

To calculate the total for each subscale on the motivation survey, we summed the students’ responses for the items 

on each subscale. Both the pre- and post- motivation surveys had high reliability ( = .94, and  = .96, respectively). 

The individual subscales for the pre- and post- surveys also had moderate to high reliability with Cronbach’s alpha 

ranging from .60 to .90. 

To score the programming knowledge test, we graded the assessments based on an answer key developed by the 

instructors. We used the overall score of the assessments to determine whether there was a difference before and 

after the programming camp. First, the team evaluated and grouped questions based on programming concepts and 

the question type: basic concepts, original code, and code analysis. Second, two members of our team rated the 

mastery level for students’ answers to each programming concept question from 1 (low understanding) to 5 (high 

understanding). Full agreement in inter-rater reliability was obtained between the two graders. Scores were obtained 

for the three broad categories basic operations (15 points), code analysis (15 points), and code writing (20 points), 

and the sum of these three categories provided the overall score (50 points). There was moderate to high reliability 

for the pre-assessment categories: basic operations,  = .50, code analysis,  = .60, and code writing,  = .84. There 
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was also moderate to high reliability for the post-assessment categories: basic operations,  = .59, code analysis,  = 

.46, and code writing,  = .87. Finally, there was moderate to high reliability for the pre- and post- assessment as a 

whole,  = .83 and  = .74, respectively. Examples of low and high rated answers are included in Appendix B.  

3.4 Procedure 

The computer programming camp was held in a spacious computer lab on the campus of a large university in the 

Pacific Northwest of the United States. Laptops equipped with the appropriate software were provided to students 

during the duration of the programming camp. On the first day, students completed both the pre-motivation survey 

and the pre-knowledge assessment test before commencing the camp activities. Each day, the instructors started with 

an overview of the day’s lesson. Lessons on the programming concepts were interwoven into a hands-on project-

based activity of building a snake game app from starter code. Instructors started with a brief lecture on core 

concepts for the day before walking through their own example code as students paid attention. Following this, 

students were given ample time to apply their newly acquired programming knowledge to the development of their 

game app. Instructors and teaching assistants provided one-on-one instructional support as needed. Each day 

comprised of at least two lectures and two sessions of individual coding time to develop the game app. This process 

is important because it allows students to examine how their knowledge of programming translates directly into the 

design and functionality of their game, which is likely to increase their appreciation and interest in programming. On 

the last day of the camp, students completed the post-motivation survey and the post-knowledge assessment test. An 

outline of each day’s programming content coverage as it relates to the activities and project is provided on Table 1. 

4. Results 

To address our research question, separate analyses were conducted for the motivation and knowledge assessment 

measures. The results section is organized around these two analyses.  

4.1 Motivation Analysis  

To address RQ1, we analyzed data from pre-and post- motivation surveys which were administered on the first and 

last day of the programming camp. Nineteen students completed the pre- and post-motivation survey before and 

after the camp. There were 2 missing data entries for the pre-motivation survey and 2 missing data entries for the 

post-motivation survey. As the data was missing at random, we employed the EM algorithm to compute missing 

data points. The data was normally distributed for each of the motivation subscales. Table 3 provides the descriptive 

statistics for each individual subscale’s score. 

Table 3. Descriptive Statistics for Motivation Subscales  

 Pre   Post    

Assessment M  SD M SD  Cohen’s d 

Career Interest 26.62  4.80 26.95 4.60  0.16 

Interest 12.58  1.68 12.21 1.87  -0.32 

Value 8.42  1.35 8.05 1.35  -0.44 

Critical Thinking 16.47  2.80 16.00 2.92  -0.39 

Proficiency 13.21  2.37 14.53 2.41  0.99 

 

Paired-samples t-tests were conducted to assess students’ change in motivation score for the five subscales (career 

interest, interest, value, critical thinking, proficiency). Results showed that there were significant differences in 

students’ score for the proficiency subscale, t(18) = 4.29, p < .001. Specifically, students self-reported higher 

proficiency after the programming camp (M = 14.53, SD = 2.41) as compared to before the camp (M = 13.21, SD = 

2.37; d = 0.99). There were no significant differences for career interest, t(18) = 0.59, p < .57; interest, t(18) = -1.38, 

p = .19; value, t(18) = -1.93, p < .07; and critical thinking, t(18) = -1.69, p = .11. 
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Table 4. Descriptive Statistics for Programming Knowledge Assessments   

 Pre   Post    

Assessment M  SD M SD  Cohen’s d 

Overall 21.37  9.76 30.05 8.66  0.93 

Basic Operations 10.84  3.67 13.26 2.90  0.71 

Code Analysis 4.89  3.74 6.74 3.69  0.50 

Code Writing 5.63  4.30 10.05 5.40  0.88 

        

 

4.2 Programming Knowledge Analysis  

To address RQ2, paired-samples t-tests were conducted to analyze the differences between the pre- and post-

programming knowledge assessments. Both the overall assessment scores and the scores for each of the three 

categories were analyzed separately. Each of the knowledge assessment categories were considered (Basic 

Operations, Code Writing, Code Analysis, and Overall scores). Normality and outlier tests were performed on the 

overall scores (each category is a sub-score of the overall score). No outliers were detected. The assumption of 

normality was also not violated, as assessed by Shapiro-Wilk’s test (p = .313). There were no outliers in the data, as 

assessed by inspection of a boxplot. Overall results indicate a statistically significant mean increase in programming 

knowledge, t(18) = 5.82, p < .01 (See Table 4 for descriptive statistics). 

 

 
Figure 1. Programming Knowledge Assessment Boxplot 

 

The results show that the students had significantly higher scores from the post-assessment. The mean difference 

between the pre- and post-assessment score also seem to suggest that the participants gained a lot of programming 

knowledge from the camp (Figure 1).  
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The results also show that the participants performed better in Basic Operations and Code Writing sections of the 

assessment. However, the increase in Code Analysis after the camp was moderate. A review of the activities done 

during the camp shows that the camp focused more on code writing and not analyzing existing code. In our future 

camps, we plan to bring code analysis more into focus in the curriculum. 

5. Discussion 

5.1 Motivation  

Based on the results of our survey, no significant changes were observed in several aspects of students’ motivation, 

such as career interest, interest in computing, the value of learning computing, perception of their critical thinking 

skills, and perception of proficiency in coding. However, students’ perception of proficiency in coding did increase 

slightly. This finding is not surprising. Most students started the camp with basic understanding of programming. 

However, the snake game activity required them to integrate both their prior programming knowledge as well as the 

new programming knowledge taught at the camp for their app. Interestingly, we did not observe significant changes 

in the other motivation subscales across time. It may be possible that the short duration of the camp precluded 

students from fully exploring the possibilities of programming and the applicability of programming in their current 

lives.  

5.2 Programming Knowledge Analysis  

Based on the overall pre-and post- total score, our project-based curriculum for the weeklong programming camp 

was effective in increasing programming knowledge. This aligns with the expectations set by other studies which 

have used project-based approaches in two-week programming camps (Franklin et al., 2013) and other longer 

informal learning opportunities (Wang et al., 2019). The snake game allowed students in our programming camp to 

incrementally learn programming concepts while making progress and seeing their game come to fruition. Since the 

snake game required the usage of several core programming concepts, such as variables, basic operations, loops, 

data structures, conditional statements, and functions, students had to learn how to implement them for their snake 

game to work. For example, the students needed to know what purpose variables served in the snake game, such as 

an integer that kept track of scores, which instructors covered during the camp.  

Testing for computational thinking skills in an informal education setting, like a programming camp, is very 

seldomly done in research (Tang et al., 2020). Although we did not explicitly test for all individual computational 

thinking skills directly, we were able to group questions based on three types of computational thinking skills, such 

as basic abstraction concepts, analysis/debugging of existing code, and algorithmic/logical thinking by original code 

construction (Tang et al., 2020). The programming camp was successful in increasing overall knowledge of core 

programming concepts; however, the results of our programming knowledge pre-and post- scores with grouped 

questions showed that there are some computing skills, such as code analysis and debugging, where students had 

some trouble answering.  

The following sub-sections will discuss the role of computational thinking skills covered using the results of 

different sub-group question types such as basic abstraction concepts, code analysis/debugging, and original code 

construction.  

5.2.1 Basic Abstraction Concepts 

Students were asked to answer basic variable and variable manipulation questions using math operations. In terms of 

teaching the basic programming concepts, such as variables, the increase of understanding in these concepts covered 

in these questions could be attributed to the fact that students had a good starting point on how variables and 

operations could work within the context of the snake game. Since variables and performing mathematical and 

logical operations on variables is a level of abstraction K-12 students may not be familiar with, research shows that 

program execution or deep familiarity of the context in which these concepts will be used, such as a game, can help 

students visualize how these programming concepts work(Mladenović et al., 2021). Since the instructors had 

continuously demonstrated the snake game throughout the programming camp, students were able to make 

connections on how abstraction was used in creating game components, such as displaying scores, updating snake 

tail length, and changing values for their game customizations on the fly. For teaching students about basic 

abstraction concepts, like variables, helping students visualize their final project outcome by demonstrating the 

game can support their learning of programming concepts. Although visualization in the form of Powerpoint 
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animations, whiteboard examples, or sketching can provide support for students to learn basic abstraction concepts 

(Mladenović et al., 2021), our results show that demonstrating the project they will work on, like the snake game, 

and explicitly connecting it to programming concepts can be used as a visual aide to support their learning as well. 

This is aligned with several empirical studies which emphasized rich, visual coding experiences for students to learn 

basic abstraction concepts (Tang et al., 2020). 

5.2.2 Code Analysis and Debugging 

The second category of questions required students to analyze and debug code. Between pre-and post- scores for this 

group, developing this computational thinking skill did not change significantly. The lack of change between pre-

and post- scores could be the fact that the instructors did not explicitly ask students to analyze pre-existing code or 

teach the specific code scenarios, such as the undefined variables and starting a while loop with a met condition. 

Although there have been many calls-to-actions to teach K-12 students a more systematic approach to debugging 

and analyzing code, it is common to not extensively cover debugging strategies when the goal is to generate interest 

in code (Michaeli & Romeike, 2019). However, since students do face issues while coding, Debugging and analysis 

of code on an on-demand basis to help students fix their code is the common approach, since students may 

sometimes attempt debugging techniques unsuccessfully, leaving them to feel helpless when they are unable to 

make progress (Michaeli & Romeike, 2019). In our case, we did not have enough time to strategically teach the 

students systematic ways to debug their code on their own, so it is reflected in our results for this question group.  

Since creating code and debugging code are different skills (Michaeli & Romeike, 2019), it probably is the case that 

our students did not have ample time to develop their debugging skills, especially when looking at code that was not 

written by them. Analyzing and debugging others’ code also requires more practice and development of their 

debugging skills both systematically and unsystematically (Bryant et al., 2019; Wilson, 2020). Reading and 

understanding code that was not written by them requires training students to decipher syntax and semantic meaning 

of the code (Lynch et al., 2019). It requires outlining and coming up with the conceptual picture of the code’s 

intention, which requires practice (Busjahn & Schulte, 2013). It is to no surprise that students who attend 

programming camps with a short duration like ours likely did not develop these advanced computing skills due to 

lack of time to practice in class. 

5.2.3 Algorithmic and Logical Thinking Skills 

Questions in this third category required students to construct original code based on a particular prompt. For 

example, writing a loop that prints a string five times or constructs a function that adds two integers. According to 

the pre-and post-scores within this question group, there was a significant increase in students’ algorithmic and 

logical thinking skills through constructing original code.  Although instructors provided pieces of code to students, 

students were guided through the process of constructing original code for the snake game through daily incremental 

progress. Creating original code based on the prompt involves the development of algorithmic thinking skills, such 

as defining the problem, gathering relevant and applicable concepts, thinking of the logical steps, and writing the 

code (Braswell, 2020; Young et al., 2017). Each day, students were tasked to complete progress on another snake 

game milestone, such as the snake game interface on Day 1 or game piece placements on Day 2. To complete this 

functionality, instructors introduced the relevant programming concepts needed to complete those game milestones 

for that day, such as loops and conditional statements on Day 2. Using those concepts, students constructed the next 

snake game milestone with instructor guidance in algorithmically thinking through the problem. Although there are 

not many studies in informal learning context on project-based curriculums for developing algorithmic thinking 

skills, there are several studies in K-12 education that show that project-based curriculum can help teach students 

algorithmic thinking skills (Chiazzese et al., 2018; Garneli et al., 2015; Karaman et al., 2017). 

6. Limitations 

Although our one-week programming camp provided opportunities to learn how to code and explore computing to 

middle school students, we recognize that our single study, sample size, and location may not be generalizable to 

other groups. This may limit potential replications of our project-based short programming camp experience. 

Currently, we are in the process of collecting more programming camp data to strengthen our developing findings 

on programming knowledge and motivation to learn coding.  

Secondly, our programming knowledge assessment reflected our curriculums’ content coverage, but we realize that 

it may not have been appropriate to test students to analyze and debug code during the assessment since we did not 
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intentionally cover it during the camp. In the next programming camp, we plan to either simplify our programming 

camp assessment questions to include and cover simpler forms of code analysis and debugging and/or remove these 

questions. 

Thirdly, we recognize that the participants self-selected to participate in the programming camp and students already 

came in with some basic understanding. Maintaining interest after sparking initial interest increases the likelihood of 

future pursuit of a related career (Christensen et al., 2014; Hidi & Renninger, 2006; Hirsch et al., 2017; Taub et al., 

2012); however, we must be careful to not generalize by saying that the programming camp was successful in 

promoting interest where no interest may have existed in middle school students who attend the camp. Since they 

were self-selected, it is not surprising that their interest and motivation was high.  

7. Conclusion  

Informal learning environments, such as programming camps, can provide the opportunity to empower students to 

create a project from the ground up while learning basic programming concepts. However, instructors need to 

balance content coverage in terms of introducing other fundamental computational thinking skills, such as 

debugging and analyzing code. To keep students interested in the programming camp, we may need to temporarily 

forgo teaching them (and testing them) on more complex computational thinking skills such as reading code that 

was not created by them and debugging skills.  

Regardless of making cuts to content coverage, a week-long project-based programming camp can inspire and teach 

students to code in a short amount of time. Although our programming camp did not significantly change students’ 

attitudes towards pursuing computing due to students coming in with high interest in programming, we did 

significantly increase their programming knowledge and their perceptions of their ability to code, which could 

support their self-efficacy to jumpstart and continue exploring the tech field in high school, and, hopefully, into 

college. 
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Appendix A  

Pre- and Post-Knowledge Assessment Administered 

Boeing Programming Boot Camp for Middle Scholar 2019 

1- What are these variables (integer, float, or string)? 

    n = 10 

    x = 0.98 

    s = 'dog' 

ANSWER: n is an Integer; x is a float, s is a string 

 

2- What is the result of code below? 

    20-2*(3+5) 

ANSWER = 4 
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3- What is the result of code below? 

    x = 10 

    y = 30 

    z = 400 

    z - y * x 

ANSWER = 100 

 

4- what would this code print? 

while n > 10: 

    print(n) 

    n = n+1 

ANSWER = it prints nothing 

 

5- what dose the code below prints? 

    jar = ['candy', 'gums', 'm&m'] 

    hungry = True 

    for x in jar: 

        if x == 'gums': 

            print('jane is happy') 

        elif x == 'candy': 

            print('alex is happy') 

        elif x == 'm&m': 

            if hungry: 

                print('I need food') 

            else: 

                print('party time') 

        else: 

            print('marry is happy') 

  

    ANSWER: 

        alex is happy 

        jane is happy 

        I need real food 

 

6- what would this code print? 

n = 10  
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while n > 10: 

    print(n) 

    n = n+1 

ANSWER: it prints nothing 

 

7- Write a loop that prints 'GO COUGES!' five times: 

 

    ANSWER1: 

        n = 0 

        while n < 5: 

            print('GO COUGS!') 

            n = n+1 

    ANSWER2: 

        for i in range(5): 

            print('GO COUGS!') 

    BOTH ANSWERS ARE CORRECT 

 

8- Answer the following questions based on the below list 

    names = ['kris', 'aj', 'jake', 'robert', 'liz'] 

    a- write a loop to print all the elemnts of the list $x$: 

        ANSWER1: 

            for name in names: 

                print(name) 

        ANSWER2: 

            n_names = len(names) 

            for idx in range(n_names): 

                print(names[idx]) 

        ANSWER3: 

            idx = 0 

            n_names = len(names) 

            while idx < n_names: 

                print(names[idx]) 

                idx = idx+1 

        ANY OF THESE ANSWERS ARE CORRECT 

  

    b- what is the result of the code below? 
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        print(len(x)) 

    ANSWER = 5 

 

9- write a function that takes two variables in its argument and returns the addition. 

ANSWER: 

def add(n1, n2): 

    return n1+n2 
 

10- Write a function get the first name and last name as input and print the 'first_name last_name 
is awesome!'? 

  

    ANSWER: 

    def awesome(first_name, last_name): 

 

        print(first_name + ' ' + last_name + 'is awesome!') 

 

Appendix B 

Samples of Low and High Rated Responses to Programming Questions 

Low Rated Responses High Rated Responses 
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Abstract 

With the increasing need for the incorporation of computer science (CS) concepts into elementary and secondary 

education, it is imperative that the teaching workforce is adequately prepared to ensure that instruction in CS is robust, 

relevant, and aligned with appropriate learning standards, where appropriate. This paper shares results from a recent 

survey administered to current computer science educators across the K-12 space in the state of New Jersey. Using 

these results and recent literature, this research distills actionable, assessed needs to guide the provision of professional 

learning to ensure that educators have the necessary tools and knowledge to ensure robust and equitable 

implementation of computer science education. Results point towards a need to expand the present understanding of 

computer science by effectively differentiating CS from technology-based instruction and addressing an 

overrepresentation of analytical content domains, reaffirm a commitment to equity by acknowledging the persistent 

gaps in participation of marginalized student groups, and critically examine when and where the use of technology is 

necessary in delivering CS instruction. 

Keywords: computer science education, elementary education, secondary education, professional learning, diversity 

equity and inclusion 

1. Introduction 

As a relatively new field, computer science (CS), and the education of it, are continuously expanding to meet 

growing economic, social, and cultural needs surrounding students’ computational thinking and overall digital 

literacy (Webb et al., 2017). As the climate surrounding computing changes, society relies on the next generation of 

students to become competitive innovators and cultural drivers in a reality that is increasingly dependent on 

technology (Webb et al., 2017). At the same time, computer science education benefits students by challenging the 

way they think, and by teaching them to approach problems in novel and rigorous ways that are innately rooted in 

logical reasoning (Nager & Atkinson, 2016). According to the U.S. Bureau of Labor Statistics, jobs in the field of 

computer and information research are projected to increase by 22% by 2030, faster than the average for all other 

occupations (Bureau of Labor Statistics, 2022). Additionally, wages have been steadily increasing in the field, 

making computer science education an excellent opportunity for economic advancement (Nager & Atkinson, 2016).  

Despite the value of computer science education (CSE), a recent study revealed that only 19 percent of high 

school seniors had taken any computer science courses (Nager & Atkinson, 2016). The study also a noted gender 

gap with only 14% of females having taken a computer science course, compared to 24% of males (Nager & 

Atkinson, 2016); female students of color are represented even less (Code.org et al., 2021). Researchers attribute this 

disparity to additional barriers faced by BIPOC learners, including lack of social encouragement, self-efficacy 

beliefs, academic exposure, and career perception (Nager & Atkinson, 2016). These participation gaps are also 
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visible within the current computing workforce, in which women account for only 25% of positions across the world 

(Scott et al., 2017). Women of color are even more staunchly underrepresented in the workforce than their white 

counterparts, with African American, Latinx, Native American, Native Hawaiian, and Pacific Islander women in the 

U.S. comprising 20% of the population but only holding only 4% of positions in the computing workforce (Scott et 

al., 2017). 

Even considering the growing centrality of CS in education, many current computer science teachers have never 

received adequate pre-service training in computational methods (Nager & Atkinson, 2016), meaning they may be 

unfamiliar with CS content knowledge and pedagogical practices. Many computer science teachers are also new to 

the field of education itself, with under 20% having more than 10 years of experience (Code.org et al., 2021). At this 

time, most states still do not require individuals teaching computer science courses to hold a certification in 

computer science (Code.org et al., 2021) and, at the time of writing, only 46% of computer science teachers across 

the country held a credential in computer science, with 23% of these teachers holding a CTE credential (Code.org et 

al., 2021), opposed to a credential dedicated to computer science. 

Thus, pre-service teacher preparation and in-service professional development are promising avenues to both 

prepare teachers to deliver CS instruction and to introduce pedagogical practices that have shown promise in 

effectively conveying concepts in CS and computational thinking while broadening participation in the field, 

effectively tackling persistent participation and achievement gaps. At this time, many efforts have occurred at a 

national scale, including CSforAll and Code.org, among others. 

1.1. The Case in New Jersey 

Computer science has only recently become a standard discipline in public schools in both the U.S. and across 

the world (Andrew et al., 2016). Specifically in New Jersey (NJ), although computer science is not a graduation 

requirement, high schools are required to offer CS classes. Since this mandate was enacted in January 2018 (and 

going into effect that fall), school-level implementation of classes have been a challenge: in 2020, only 68% of high 

schools offered any form of computer science course (Code.org et al., 2021). Recently, NJ has adopted student 

learning standards in computer science and design thinking, which span the entire K-12 space.  

For the first time, starting in the 2022 school year, CSE will become a mandatory part of education in the K-8 

space in NJ schools. Similar trends are unfolding nationwide, with schools across the United States beginning to 

adopt computer science across the K-12 spectrum (Code.org et al., 2021). Organizations like CS is Elementary are 

working to spread awareness and increase adoption of computer science instruction at lower grade levels. Given that 

unlike other subject areas, computer science does not benefit from decades of research on best practices in content 

delivery and teacher preparation, efforts seeking to collect information about where computer science is being taught 

and what that instruction looks like will be important in understanding where and how CSE is successful. 

Alongside such learning standards, educators will require support as they prepare to implement CSE in their 

classes. This professional learning, although inclusive of content and pedagogical knowledge, must also extend 

beyond the traditional scope of professional development to increase understanding of the broad scope and 

definition of the discipline itself. This is especially important considering that the New Jersey standards, as well 

those from the national Computer Science Teachers Association standards (CSTA), include elements that extend 

beyond coding and analysis, which are commonly misunderstood to represent the entirety of CS.  

Additionally, the timely implementation of computer science standards provides a platform to address the 

persistent issues of equity and participation in computer science education. As all students (regardless of race, 

gender, socioeconomic status, or ethnicity) will be required to receive computer science instruction. This provides 

educators with opportunity to broaden the CS pipeline from younger grade levels and promote more authentic and 

responsive engagement with the subject.  

To support this work, New Jersey has piloted three professional learning hubs centered at universities across the 

state. These hubs, based on the model of the United Kingdom’s Teaching School Hubs (Department for Education), 

are designed to provide professional learning to educators across the state to equip them with the content and 

pedagogical knowledge (inclusive of culturally responsive and equitable practices) needed to ensure the success of 

the standards’ implementation. 

2. Methods 

The purpose of this research is to generate a snapshot of computer science educators in New Jersey that can 

inform the allocation of resources for the intentional, effective provision of professional learning. To this end, a 20-
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question survey was developed and distributed to attendees of an annual computer science education summit. The 

research acknowledges a sampling bias of those completing the survey, who are significantly more likely to 

themselves be computer science teachers, or at least involved with CSE in some way. However, although the survey 

was administered to a convenience sample, given that the purpose of their insight is to inform resource allocation, 

we are confident that the assessed needs of this sample will provide, at the very least, a lower bound for the more 

broadly needed supports (as those completing the survey are likely to be among those receiving such supports). The 

survey contained several demographic questions, a series of scale items adapted from a similar instrument 

(Banilower et al., 2018), as well as items directly related to the implementation of NJ CS Standards. Appendix A 

contains the survey questions that were used in the analyses discussed in this paper. This research sought to address 

the following questions: 

1. What are teachers’ perceptions of their own knowledge of various content domains of computer science, and 

how confident are teachers in delivering CS instruction? (Instructional Practices) 

2. What are teachers’ perceptions of the barriers to implementing rigorous computer science instruction? 

(Institutional Practices) 

3. How can professional learning better be tailored to bolster teacher capacity using findings related to teachers’ 

perceptions of the above instructional and institutional practices in CSE? 

All routine data analyses took place in SPSS Version 28, including the creation of scale item aggregate scores, 

the generation of frequency tables, and the calculation of reported means and standard deviations. This survey is part 

of a larger campaign to gather robust and relevant information on the landscape of computer science educators 

across the state and disseminate such information to educational agencies, policymakers and advocates, and 

professional learning providers to maximize the cumulative impact of efforts to support computer science education. 

This study received approval from the Rutgers University Institutional Review Board. 

3. Results 

3.1. About the Sample 

The survey was sent to a total of 93 individuals and received a total of 

41 responses; after removing abandoned submissions and those that did not 

pass screening questions, 29 valid responses remained and were used in the 

analysis discussed throughout this paper. After an initial response rate of 

44%, 31% of responses were used in analysis. Of this sample, 83% (n=24) 

identified as female, and the remaining 17% (n=5) identified as male. The 

vast majority, 90%, of respondents identified as White or Caucasian, while 

3.3% identified as Black or African American, 3.3% Asian American or 

Pacific Islander, and 3.3% as mixed race (Black & Caucasian). 10% 

reported that they have no formal training or education specifically in 

computer science, 35% reported formal training or education less than an 

undergraduate minor in CS, 7% reported obtaining an undergraduate CS 

minor, 38% reported an undergraduate CS major, and 10% reported their 

highest education in computer science is a graduate degree. 

Figure 1 shows a heatmap of valid survey responses received across the 

state, with yellow and orange indicating a higher concentration of responses. 

Each data point represents the geographic region of where the individual teaches computer science, not necessarily 

their place of residence. Of these, 52% of individuals reported teaching in a district where most students are from 

poor or working-class families, 41% reported teaching in a district where most students are from middle class 

families, and the remaining 7% reported teaching in predominately wealthy districts. 

Most respondents indicated teaching computer science most recently at the high school level, with 33% 

indicating they teach computer science in grades 11-12 and 30% indicating they teach computer science in grades 9-

10. Outside of high school grades, 17% indicated they most recently taught computer science in grades 6-8, 11% in 

grades 3-5, and 9% in grades PreK-2. Further, the majority (55%) indicated that they exclusively teach computer 

science, with 21% indicating that 0% - 50% of their course load is computer science and 24% reporting between 

50% and 75%. 

Figure 2. Heatmap of Analyzed Responses 
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3.2. Instructional Practices 

Participating educators shared insights on their self-perceptions of knowledge for each content domain covered 

in the 2020 New Jersey CS Student Learning Standards. On a scale from 1 (“I have not heard of these concepts”) 

through 4 (“I have mastered these concepts”), educators reported they were most comfortable with algorithms and 

programming, with an average weighted score of 3.34, with standard deviation of 0.67. From highest to lowest 

weighted score, educators rated their confidence with the various disciplinary domains as computing systems (3.31, 

SD=.60), impact of computing (3.28, SD=.70), networks and the internet (3.20, SD=.55), data and analysis (3.17, 

SD=.71), interaction of humans and machines (3.17, SD=.71), ethics of computing (3.03, SD=.73), engineering 

design (2.96, SD=.73), effects of computing (2.93, SD=.84), and nature of technology (2.86, SD=.79). Table 1 

further details the distribution of responses for each content area.  

Participants also shared how prepared they feel in delivering computer science instruction. On a scale of 1 (“Not 

adequately prepared”) to 4 (“Very prepared”), teachers rated, on average, that they were most prepared to teach the 

relevance of computer science (3.6 weighted score, SD=.56), followed by teaching introductory computer science 

(3.55, SD=.57), ensure equal student participation (3.55, SD=.69), garner student interest in computer science (3.52, 

SD=.51), foster group interactions with students (3.45, SD=.69), reach students from traditionally underrepresented 

populations (3.41, SD=.73), teach using a guided inquiry approach (3.14, SD=.74), and utilize culturally relevant 

teaching and associated pedagogies (2.93, 70); teachers reported they felt least prepared to teach computer science to 

English Language Learners (2.34, SD=.81). Table 2 shows the distribution of responses related to participants’ 

preparation for computer science instruction. 

 

 
I have not heard of 
these concepts (1)  

I have heard of 
these concepts (2)  

I am familiar with 
these concepts (3) 

I have mastered 
these concepts (4) 

Algorithms & Programming 0% 10% 45% 45% 

Computing Systems 0% 7% 55% 38% 

Data & Analysis 0% 17% 48% 35% 

Effects of Computing 7% 17% 52% 24% 

Engineering Design 3% 17% 59% 21% 

Ethics of Computing 0% 24% 48% 28% 

Impacts of Computing 0% 14% 45% 41% 

Interaction of Humans & Machines 3% 7% 59% 31% 

Nature of Technology 3% 28% 48% 21% 

Networks & the Internet 0% 7% 66% 28% 

 

Table 1. Teachers’ Perceptions of Content Knowledge of CS Standard Domains (N=29) 

 
Not Adequately 
Prepared (1) 

Somewhat 
Prepared (2) 

Moderately 
Prepared (3) 

Very Prepared 
(4) 

Differentiate Instruction 0% 28% 35% 38% 

Teach ELLs 10% 55% 24% 10% 

Generate Student Interest 0% 0% 48% 52% 

Reach Underrepresented Minorities 0% 14% 31% 55% 

Teach Relevance of CS 0% 3% 31% 66% 

Use Guided Inquiry 0% 21% 45% 35% 

Ensure Equal Participation 0% 13% 24% 66% 

Foster Group Interactions 0% 13% 35% 55% 

Teach Introductory Concepts 0% 3% 38% 59% 

Utilize CRT/Pedagogies 0% 28% 52% 21% 

 

Table 2. Teacher-Reported Levels of Preparation to Deliver Computer Science Instruction (N=29) 
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3.3. Institutional Practices 

Participating educators shared their perceptions of challenges to implementing rigorous computer science 

education at the school level. On average, the greatest challenges shared was rapidly changing technology (with a 

weighted score of 1.97/3, SD=.68), closely followed by a lack of hardware and software resources (1.93, SD=.70). 

Other prominent challenges included difficult subject matter (1.76, SD=.64) and a lack of support from the school 

and staff (1.76, SD=.64). Table 3 further details these responses. 

Educators also reflected on student interest and broadening participation in computer science education at their 

institutions. At the high school level1, less than 20% of respondents indicated that the demographic composition of 

their computer science classrooms was identical or nearly identical to the demographic composition of their school. 

Around 30% indicated that the two demographic groups were slightly different, and 56% indicated that they were 

moderately different. It is also worth noting that the participants that indicated a (nearly) identical match also 

reported they teach in districts with relatively homogeneous demographic composition. Further, participants shared 

that in the last 5 years, the demographic composition of the computer science classroom is becoming more like the 

demographic composition of the school. All educators responded that their classrooms were moving more towards 

equal demographic composition, with the most common response being a 7 on a scale of 1 (“much less similar”) to 

10 (“much more similar”). 

When considering student interest in computer science education, most teachers indicated that there is strong 

student interest at their school for computer science (with a combined score of 3.79/4, SD=.94), but “enrolling in 

computer science is a student priority” received the lowest responses in the category (2.93, SD=.75). Teachers 

indicated that students taking introductory computer science tend to move to more advanced classes (3.72, SD=.59), 

student dropout of computer science classes is low (3.41, SD=1.0), and that there is demand for more computer 

science classes (3.44, SD=.95). 

4. Discussion 

With the insights from the results discussed above, the research sought to distill actionable, assessed “needs” to 

inform the path forward in the provision of professional development to K-12 educators surrounding computer 

science education. These needs, situated with relevant literature, offer suggestions for resource allocation and better 

articulation of programming to maximize the impact of efforts by organizations in this space.  

4.1. Encompassing Need: Expand the Present Understanding of Computer Science 

The idea that computer science is synonymous with programming remains a common misconception in 

computer science education. This pervasive myth is true for many prospective computer science students, who often 

do not consider that while programming is indeed an important component, professionals in the field also engage in 

activities that include hardware and software design, research into the impact on society (Barr & Stephenson, 2011; 

Denning, 2004; Denning et al., 2017; Pardaboyevich et al., 2021) and routine engagement in problem solving 

(Peckham et al., 2000). Survey results show that the majority of computer science teachers also have a background 

in teaching mathematics (with a large number currently teaching both subjects), which could contribute to the 

overrepresentation of these analytical concepts. Further, teachers rated their understanding of content knowledge for 

Algorithms & Programming most highly out of all content domains, whereas Nature of Technology, Effects of 

 
1 To control for the fact that computer science instruction, when offered at the K-8 level, is often a mandatory elective, only 

responses that indicated teaching at the 9-12 level were considered for this question. 

 
Minor/no 

Challenge 

Moderate 

Challenge 

Great Challenge 

Lack of Student Interest 48% 38% 14% 

Rapidly Changing Technology 24% 55% 21% 

Difficult Subject Matter 28% 59% 14% 

Lack of School/Staff Support 35% 55% 10% 

Lack of Student Knowledge 35% 55% 10% 

Lack of Curriculum Resources 45% 38% 17% 

Lack of Software/Hardware 28% 52% 21% 

 

Table 3. Teachers’ Perceptions of Challenges to Implement CSE (N=29) 



International Journal of Computer Science Education in Schools, September 2022, Vol. 5, No. 4  

ISSN 2513-8359 

 43 

Computing, and Ethics of Computing (all 

non-analytic) received the lowest ratings 

of confidence (Nature of Technology 

received an average rating of 2.86, which 

is over 1.5 deviations below average). 

These results are not unique to this 

survey; a recent study assessed the 

perceptions of digital technology teachers 

attending a computer science workshop 

in which a majority of teachers surveyed 

indicated that they felt that computer 

science is mostly about programming 

(Prieto-Rodriguez & Berretta, 2014). 

As illustrated in Figure 22, teachers 

rated their content knowledge, on 

average, nearly a full standard deviation 

lower in non-analytic domains when compared to analytic ones. This difference is seen in all grade bands, though is 

most distinct in grades K-5. It is worth noting that teachers indicating they currently teach introduction to computer 

science rate their understanding of analytic concepts 0.26 points higher than non-analytic – a full deviation above 

the mean. This is not to say that these teachers do not understand non-analytic concepts but suggest that an 

overemphasis of more mathematical aspects of computer science can begin at the introductory level, as teachers may 

feel more comfortable in providing deeper insight, answering questions more completely, or offering more 

thoughtful discussion in those areas where they have a stronger understanding. 

These findings present an urgent need to expand the current understanding of computer science as a discipline, 

both to students and to educators. Survey results, combined with analyses of current institutional practices, show that 

computer science is often contained in the mathematics department and that CS courses are classified as 

mathematics electives (Blitz et al., 2021); this can present computer science to students as a close alternative to 

math. The overemphasis of analytic and mathematical concepts in computer science education can not only deter 

students from participating in computer science but has also constructed a false barrier-to-entry for educators, 

especially in the K-8 spaces, who may be concerned about their own knowledge of the subject or not see the value in 

introducing computer science in younger grades (Barr & Stephenson, 2011; Denning, 2004; Denning et al., 2017). 

Professional learning providers therefore must challenge these conceptions of computer science and more broadly 

and intentionally disseminate information that highlights computer science as a multidisciplinary area of study 

centered around problem solving, computational thinking, and the creation of technology to meet today’s demands. 

4.2 Ancillary Need: Reaffirm Commitment to Equity 

Expanding the present understanding of computer science in this way will be a fundamental part of bringing 

computer science to the K-8 space (and in New Jersey, in the implementation of upcoming standards), and it will 

also be a powerful tool in moving forward the work of ensuring equitable participation in computer science. It will 

be important for educators to authentically engage young learners with the full spectrum of computer science to 

encourage long-term participation. In this way, computer science can ‘start broad’ to invite engagement, rather than 

starting with narrow specialization such as programming or web design, as is often the case when computer science 

is first offered at the high school level. 

Across the board, teachers felt strongly that they were able to teach the relevance of computer science to their 

students (with a combined score of 3.62/4, but an incomplete understanding of computer science may be hindering 

these efforts (especially when considered alongside respondents identifying “lack of student interest” as the most 

minor challenge to computer science education). Survey results show that over 40% of educators report that their 

computer science classroom is at least moderately different in demographics from their overall student population; 

when considering only high school classes, where CS is most likely to be an ‘opt-in’ course, that number increases 

 
2 Figure 2 shows the average scores received from 29 survey participants when asked to rate their level of mastery of content 

knowledge in the various domains of computer science and design thinking. Content domains were categorized as analytic 

(engineering design, algorithms and programming, data and analysis, networks and the internet, and computing systems) or non-

analytic (nature of technology, effects of computing, ethics of computing, human-computer interaction, and impacts of 

computing), and ratings were averaged across each category. 

2.7

2.8

2.9

3

3.1

3.2

3.3

Grades K-5 Grades 6-8 Grades 9-12

Analytic Domains Non-Analytic Domains

Figure 3. Self-Rating of Content Knowledge Across Grade Band & 

Analytic v. Non-Analytic Content Domains 
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to 56%. However, results also show that educators feel strongly that there is student interest in computer science. 

These results point to a need to reaffirm educators’ commitment to equity in CSE and broadening participation in 

computing; professional development should not only increase awareness of the persistent inequities in the field but 

equip educators with culturally relevant pedagogies in CS to tackle such disparities. 

4.3. Ancillary Need: Equip Educators with Ways to Leverage Existing, Available Technology 

Recent years have seen a sharp increase in the availability of “plug and play” curricula, which are 

implementation-ready programs to bring computing instruction to classrooms. To educators, the ongoing release of 

new curricular options using rapidly developing computer technologies, although to the same end, can be 

overwhelming (Pardaboyevich et al., 2021). In fact, rapidly changing technology was cited as the number one 

challenge to teaching computer science among both new and veteran teachers. Although most of these curricula 

teach to the same set of standards (those created by CSTA), many do so through different approaches. Some take an 

approach through physical computing, others through app development, others center around drag-and-drop 

programming, and so on.  

As such, although rapidly changing technology is perceived as a challenge (one that was cited as at least a 

moderate challenge by around 75% of survey respondents), it may be a manufactured one. To respond, professional 

learning providers should clearly articulate that although there are many curricular and technological resources 

available, it is likely the case that only one, if any, will be needed to deliver quality CSE, even as new resources 

become available. A school’s curriculum (whether purchased as a pre-created curriculum or developed) does not 

need to respond to each release of a new platform; similar research has shown that teachers require professional 

development that is aligned with their curricular needs (Qian et al., 2018), which does not always call for the use of 

new, or any, computing devices. 

Following closely behind is the lack of software or hardware resources, which was cited as at least a moderate 

challenge by 73% of survey respondents. As work is done to frame computer science education as a discipline 

centered around problem solving and computational thinking in addition to programming, it will be necessary to 

understand that the newest instructional or curricular resources are not always necessary to implement and sustain a 

rigorous computer science education. Additionally, a promising way to engage students in computational thinking 

without the need for expensive equipment is through the use of “CS Unplugged” activities (Bell et al., 2009). 

Although these instructional practices have demonstrated efficacy across the board, they can be particularly helpful 

in under resourced schools (Bell et al., 2009).  

5. Conclusion 

As computer science is being recognized as a driving force in our world, a useful lens to understand and process 

the world around us, and a vehicle for financial growth, computer science education is becoming an increasing part 

of students’ academic experience. This increase is facilitated by efforts such as the implementation of learning 

standards, increased resource allocation for clubs or extra-curricular activities, and national efforts like the CSforAll 

program or the nonprofit CS is Elementary. However, to ensure that these efforts are fully realizing their potential 

(and that all students are effectively reached and engaged in the process), it is necessary for educators to have a more 

complete understanding of computer science, which will increase the efficacy in the adoption of learning standards, 

promote equity in CSE and broadening participation in computing, and dismantle challenges perceived by CS 

educators. Professional learning providers, such as regional learning Hubs or curriculum developers, and other 

advocating agencies must act quickly to fill in gaps in understanding as educational interventions are implemented 

and scaled. 

5.1. Implications for Future Work & Study Limitations 

Results from the present study offer a promising direction for the provision of professional learning to educators 

in computer science education. As providers work to address the research-identified dearth of rigorous professional 

learning opportunities for computer science teachers (Yadav et al., 2016), it will be crucial to ensure that educators 

have a complete, nuanced understanding of what computer science is as a discipline. First, teachers’ under-

confidence in non-analytic content areas of computer science illustrate the need for an intentional emphasis on 

aspects of CS that extend beyond algorithms and computer programming, such as problem solving, computational 

thinking, and the social impacts and implications of a technology-driven world. In doing so, professional learning 

has the potential to address misconceptions about computer science as a discipline and tackle false barriers to entry 

caused by inaccurate equivalences between CS and mathematics. Further, in broadening the present understanding 

of computer science, educators, especially in elementary spaces and those where CS instruction is mandatory for all 
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students, will be better equipped to cast a wider net while delivering CS instruction, effectively broadening the CS 

pipeline at its early entry-points. Additionally, building awareness of the breadth CS will help address teachers’ 

primary concerns of rapidly changing technology and lack of hardware and software resources by better equipping 

educators to teach CS in ways that do not solely rely on (ever-changing) computing devices or canned curricula. 

Although we make the case that an expanded teacher understanding of the complexities and full spectrum of 

computer science can – directly or indirectly – address many of the present challenges in CSE, we also acknowledge 

that our study is exploratory in nature and thus presents a set of limitations. First, we recognize that our survey 

sample is likely a biased one, as recruitment for survey respondents took place at a computer science education 

summit. However, given that our sample is likely more CS-inclined, we propose that the challenges distilled from 

these findings can serve as a lower bound towards generalization. Second, we caution readers to consider our 

proposed need for an expanded understanding as a backdrop for interpreting survey results. 

Finally, as both a limitation of this study and a promising avenue for future work, results illustrate the need for a 

better understanding of the current CS teacher landscape. Input from various educational stakeholders is necessary 

in determining the best direction for professional learning, and although this study hopes to provide a solid 

foundation, we recognize our limited sample and call for future research to validate and expand findings discussed 

herein. We also acknowledge that this study, along with several points from the survey instrument, are narrowly 

focused on the current CSE ecosystem in New Jersey and may not be directly generalizable to other geographic 

regions, though we hope that our approach and findings may be important markers. 
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Appendix A 

Selected Survey Questions

1. [Multiple Choice Matrix] How would you rate 

your level of content knowledge in each of the 

following areas related to computer science? (Cols: I 

have heard of these concepts, I am familiar with 

these concepts, I understand these concepts, I have 

mastered these concepts) 

• Computing Systems 

• Networks and the Internet 

• Impacts of Computing 

• Data & Analysis 

• Algorithms & Programming 

• Engineering Design 

• Interaction of Technology and Humans 

• Nature of Technology 

• Effects of Technology on the Natural World 

• Ethics & Culture 

2. [Multiple Choice Matrix] How prepared do you 

feel to do each of the following in your computer 

science instruction? (Cols: Not adequately prepared, 

Somewhat prepared, Moderately prepared, Very 

prepared) 

• Plan differentiated instruction for your 

students 

• Teach computer science to English language 

learners 

• Encourage students’ interest in computer 

science 

• Teach computer science to underrepresented 

student populations (females, racial or ethnic 

minorities, students who are economically 

disadvantaged) 

• Teach students the relevance of computer 

science in their daily lives 

• Teach computer science using a guided 

inquiry approach 

• Ensure that every student in the class 

participates in the learning activities 

• Foster group interactions during the learning 

activities 

• Plan and facilitate learning activities focused 

on introductory computer science concepts 

• Utilize culturally relevant pedagogical 

practices 

3. [Multiple Choice Matrix] How would you rate 

each of the following potential challenges to teaching 

CS? (Cols: Minor/No challenge, Moderate challenge, 

Great challenge) 

• Lack of student interest/enrollment 

• Rapidly changing technology 

• Difficult subject matter 

• Lack of support/interest from school staff 

• Lack of student subject knowledge 

• Lack of curriculum resources 

• Lack of hardware/software resources 

4. [Multiple Choice Matrix] How much do you 

agree or disagree with the following statements? 

(Cols: Strongly Disagree, Disagree, Agree, Strongly 

Agree) 

• There is strong interest from students in the 

computer science courses offered in my 

school. 

• Enrolling in computer science courses is a 

top priority for students in my school. 

• Students who enroll in introductory 

computer science courses typically want to 

take an advanced course. 

https://doi.org/10.1080/15391523.2018.1433565
https://doi.org/10.1145/3149921
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1080/08993408.2016.1257418
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• Student dropout from computer science 

courses offered in my school is low. 

• There is student demand for more computer 

science courses in my school. 

5. [Multiple Choice] How well does the current 

demographic composition of your computer science 

classroom match the demographic composition of 

your school? 

• They are (nearly) identical 

• They are slightly different 

• They are moderately different 

• They are significantly different 

• They are dramatically different 

6. [Sliding Scale] In the last 5 years, has your 

classroom demographic makeup become more or less 

similar to the demographic makeup of your school? 

(Scale from 1-10, Labels: 1= Classroom has become 

much less similar, 5 = No change, 10 = Classroom 

has become much more simila
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