
International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Volume 7, No: 3 
February 2026 
ISSN 2513-8359 

 

www.ijcses.org 

International Journal of  
Computer Science Education 
in Schools 

Editors 

Dr Filiz Kalelioglu 

Dr Yasemin Allsop 

 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 2 

 

 

International Journal of Computer 
Science Education in Schools 

 

Nov 2026, Vol 7, No 3 

 

DOI: 10.21585/ijcses.v7i3 

 

Table of Contents 

 Page 

Özcan Toy, Serhat Bahadır Kert 

Teaching Computer Science: Analysing the Key Factors Affecting Educators' Professional 

Motivation 

 

3-35 

 

 

Nicole Marmé, Jens-Peter Knemeyer, Alexandra Švedkijs 

Rubric for the qualitative assessment of student-designed Snap! Projects 

 

 

36-67 

Jonathan D. Becker, Amy D. Corning, Jon S. Graham, James T. Carrigan 

Towards a consensus on program elements of specialized computer science / 

information technology (CS/IT) programs in high schools: A Delphi study 

 

 

68-91 

 

 

 

 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 3 

Teaching Computer Science: Analysing the Key Factors Affecting 

Educators' Professional Motivation1 

 

Özcan TOY1 

  Serhat Bahadır KERT2 

 

1Yıldız Technical University, Türkiye, ozcantoy@gmail.com 

2Yıldız Technical University, Türkiye, sbkert@yildiz.edu.tr 

 

DOI: 10.21585/ijcses.v7i3.243 

Abstract 

Computer science education is essential and presents both pedagogical and technological problems. Computer 

science educators must possess a passion for computing and education. This study investigated the professional 

motivation of computer science educators. A robust and reliable scale has been developed to evaluate the 

elements influencing the professional motivation of computer science instructors. The study used a quantitative 

correlational survey model. The scale was created utilizing data from 798 computer science scholars across 

Turkey's provinces. Data was gathered in three stages. The Exploratory Factor Analysis (EFA) involved 246 

instructors, the Confirmatory Factor Analysis (CFA) included 366 teachers, and the final application 

encompassed 186 teachers. The data analysis software utilized was SPSS version 25.0 and AMOS version 24.0. 

The findings indicate that CFA was employed to examine a structure comprising 18 elements and two factors. 

The results indicated that instructors' motivation did not significantly vary based on gender, alma mater, years of 

experience, or location of assignment. A notable disparity was detected in the management factor based on the 

educational level of the teachers (primary, secondary, or high school). Independent samples t-tests revealed no 

significant difference in motivation scores based on gender (t[184]=.102; p>0.05). ANOVA results indicated no 

significant differences based on years of professional experience (p=0.068; p<0.05) or city of assignment 

(p=0.199; p<0.05). ANOVA indicated a significant impact of educational level (p=0.058; p<0.05) on the 

management-based factor. Post hoc comparisons (Tukey HSD) revealed that high school teachers exhibited 

considerably greater management-related motivation than their counterparts at the primary and secondary levels. 

 

Keywords: Computer science, teacher, motivation, professional motivation, exploratory factor analysis (EFA), 

confirmatory factor analysis (CFA), ANOVA. 

 
1 This research has been derived from the first author's master thesis 
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1. Introduction 

In the last thirty years, computer science has become an essential discipline in technology and education (Popovich 

et al., 2008). The widespread use of computers is increasingly viewed as a vital skill in the digital age, requiring 

the integration of computer science courses into educational programs. This integration has amplified the 

importance of computer science educators' motivation.  The motivation of educators profoundly impacts the 

quality of computer science training. Teacher motivation is a vital factor impacting educational quality, as it 

influences lesson design, student engagement, and overall educational efficacy (Yavuz & Karadeniz, 2009). 

Teacher motivation is a determinant that directly impacts students' achievement in academic pursuits. Motivated 

educators execute their classes with more efficiency, while those lacking motivation view lessons mostly as a 

burden (Mabula, 2013). Teacher motivation is seen as an essential factor for success in education. Modern 

motivation research employs more sophisticated frameworks than merely distinguishing between intrinsic and 

extrinsic motivation; notably, Self-Determination Theory differentiates between autonomous motivation (such as 

intrinsic interest and alignment with professional values) and controlled motivation (such as external pressures), 

providing a more comprehensive foundation for scale development and interpretation (Ryan & Deci, 2000). 

Previous studies frequently differentiated between intrinsic motivation (internal fulfilment) and extrinsic 

motivation (external rewards). Contemporary frameworks, such as Self-Determination Theory (SDT), construct 

motivation on a continuum ranging from autonomous to controlled forms, offering a more complex understanding 

(Ryan & Deci, 2013). Nonetheless, in the rapidly evolving and continuously changing field of computer science 

education, the matter of teacher motivation has not been sufficiently investigated. The framework of computer 

science education requires enhanced technical proficiency and continual updates compared to other disciplines (Ni 

et al., 2023). Therefore, computer science educators must have a compelling motivation to engage in continuous 

professional development and to provide their students with the most current material (Ni et al., 2023; Yadav et 

al., 2017). The motivation of computer science educators is essential for enhancing educational quality and 

promoting student success in this field.  An examination of national and international literature regarding teacher 

motivation in computer science education highlights the importance and shortcomings of the subject. Although 

there is no targeted research on teacher motivation in computer science education within the national literature, 

there exist extensive studies regarding teacher motivation in general. The research highlights various factors 
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affecting teacher motivation, such as the leadership styles of school administrators and the personal expectations 

of teachers (Coşkun, 2009; Duman, 2014; Elibol, 2013; Ertuğrul, 2021; İşgörür, 2020; Kulpcu, 2008).  

 

Nonetheless, there exists a paucity of studies in the global literature regarding the motivation of computer science 

educators. The "Motivation to Teach Computer Science (MTCS)" scale, developed by Martin et al. (2023), is a 

significant and thorough evaluation of the motivations of computer science instructors. This measure evaluates 

instructors' motivations according to self-determination theory across four interconnected criteria. The study 

emphasized that teachers display a spectrum of motivation, ranging from external pressures to intrinsic drive. It 

has been established that efforts to enhance teacher motivation in computer science education must correspond 

with the instructors' requirements (Martin et al., 2023). These studies highlight the impact of teacher motivation 

on educational quality and emphasize the need to develop strategies to enhance teacher motivation in computer 

science education. The results, apparent in both national and international literature, highlight the necessity for 

comprehensive research on teacher motivation in computer science education in this study.  

 

Presently, computer science education has been integrated into the curriculum at both the university level and from 

elementary school forward. Coding classes have been taught from an early age in the USA, Europe, and Far Eastern 

countries (Balanskat & Engelhardt, 2014). This situation constitutes substantial evidence of the swift global 

expansion of interest in computer science education. A primary justification for providing computer science 

education at a young age is the increasing demand for computer skills in the future workforce (Chen et al., 2017). 

In this context, it is essential for students to be introduced to computer science at a young age, allowing them to 

function as both consumers and creators in the technical domain (Grout & Houlden, 2014). Computer science 

education equips students with technical expertise while cultivating vital skills such as problem-solving, critical 

thinking, and creativity (Wing, 2006).  While this study was executed inside the national framework of Türkiye, 

its contributions possess international significance. Motivation serves as a universal catalyst for teacher 

effectiveness, and the validated instrument created herein provides a framework that may be customized or 

evaluated in various nations.   
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This study is grounded in Self-Determination Theory (SDT), which conceptualizes motivation along a continuum 

from autonomous to controlled forms and emphasizes basic psychological needs (autonomy, competence, 

relatedness) as drivers of sustained professional engagement (Ryan & Deci, 2000). To account for organizational 

and management-related influences observed in our factor structure, we complement SDT with the Job Demands–

Resources (JD-R) model, which highlights how job resources (e.g., administrative support, equipment, workload 

management) can foster motivation and buffer job demands (Bakker & Demerouti, 2007). Mapping our instrument 

and findings to these frameworks allows a more nuanced interpretation than a simple intrinsic–extrinsic 

dichotomy. The two-factor structure—encompassing both purpose-driven (SDT) and management-related (JD-R) 

elements—represents constructs that surpass national boundaries. This work offers a psychometrically robust 

instrument and empirical evidence from the burgeoning field of school computers, contributing to worldwide 

dialogues on teacher motivation and facilitating comparative research across many educational systems.  This 

research aims to rectify a significant gap in the field by examining teacher motivation in computer science 

education. This study aims to address the following two principal research topics to accomplish its objective: 

 

RQ1. Is the Perception Scale for Professional Motivation in Computer Science Education a valid and reliable 

instrument for measuring teachers’ professional motivation? 

RQ2. What are the underlying factors that shape the professional motivation of computer science teachers? 

RQ3. To what extent do these motivational factors differ according to demographic and professional 

characteristics (e.g., gender, university of graduation, educational level, years of professional experience, and 

city of assignment)? 

 

2. Method 

This research utilized a quantitative methodology to examine teacher motivation in computer science education. 

The fundamental characteristic of quantitative research is that the data may be represented and analysed 

numerically (Karasar, 1994). The study aims to identify several factors affecting teacher motivation through 

quantitative analysis and to draw implications from the findings. The relational screening model was preferred in 

the study as one of the survey methodologies. This model's correlation type enables a more sophisticated analysis 
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of the relationship between variables. This study utilized the relational screening paradigm to evaluate the 

established scale and examine variations in teachers' professional motivation based on demographic factors like 

gender, educational background, years of experience, and location of assignment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Operations Executed in Phases 1 and 2 

 

This model enables the analysis of the relationship between teacher motivation and recognized effective elements, 

while predicting the prospective effects of these interactions on educational processes. Karasar (2003) contends 

that the relational screening model is an effective method for statistically evaluating the relationship between many 

variables. This study aims to clarify the factors affecting the motivations of computer science educators. 

 
2.1 Participants 

In study, data from extensive cohorts is employed to obtain critical information (Büyüköztürk, et. al., 2017). The 

study population consists of computer educators working throughout Turkey. This research utilized a sampling 

approach to obtain more accurate information about a specific demographic instead of including the entire 

population. A sample is defined as a subset that represents a certain part of the population, forming the foundation 

for the researcher’s inquiry (Büyüköztürk et al., 2017). This study utilized a convenience sampling method, a 
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variant of purposive sampling. This method entails choosing easily accessible individuals to facilitate and optimize 

the data collection process for the researcher (Yıldırım & Şimşek, 2003). As a result, readily accessible computer 

instructors in Turkey have formed the study group for the project. This technique has enabled the formation of a 

sample suitable for the research objectives, taking into account practical limitations such as study duration and 

accessibility. The scale was administered online through a survey link distributed to computer science educators 

in both public and private institutions throughout Türkiye. Nonetheless, the predominant portion of respondents 

originated from public schools, while private school educators were inadequately represented in the sample. The 

study utilized convenience sampling of easily accessible teachers; hence the findings cannot be confidently applied 

to all computer science educators in Türkiye. The sample may not accurately reflect the diversity of geographies, 

educational institutions, and available resources nationwide. Among the final scale participants, Sakarya exhibited 

the highest representation at 15.1% (f=28), whereas only one participant (0.5%) was sourced from various 

provinces including Adıyaman, Afyonkarahisar, Bingöl, Bitlis, Burdur, Edirne, Elazığ, Erzincan, Giresun, 

Karaman, Kırıkkale, Kırşehir, Konya, Mersin, Muğla, Muş, Rize, Tekirdağ, Trabzon, and Yalova. This 

disproportionate distribution further constrains the generalizability of the findings. Furthermore, despite the survey 

being disseminated to educators in both public and private institutions, the questionnaire lacked a question 

specifying the kind of institution, rendering it impossible to ascertain the precise representation of private school 

teachers in the sample. A scale development study was conducted during the project's initial phase. Subsequent to 

the scale's creation, the final application was implemented utilizing the acquired scale. Data were gathered from a 

total of 186 computer educators for the final application. Table 1 below displays the statistics regarding the gender 

variable of the individuals that participated in the final application. 

 

Table 1. Data Regarding the Gender Variable of Participants in the Final Application 

Gender Frequency (f) Percentage 
(%) 

Male 115 61.8 
Female 71 38.2 
Total 186 100.0 
   

 
 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 9 

 
2.2. Data Collection Tools 

This study utilizes a Likert-type scale, designated as the "Perception of Professional Motivation in Computer 

Science Education Scale," developed by the researcher, as the instrument for data collection to achieve the research 

objective. Likert-type scales are tools commonly utilized in social sciences to evaluate individuals' attitudes 

regarding a specific subject. Tezbaşaran (1997) contends that Likert-type scales are often preferred for their 

capacity to measure equal intervals. The scale utilized in this study was deemed appropriate for this reason. The 

developed scale consists of two main dimensions: 'Factors Arising from Education - Teaching' and 'Factors Arising 

from Management.' These two dimensions aim to comprehensively evaluate instructors' views on professional 

motivation. A comprehensive content validation approach was undertaken to guarantee that the scale accurately 

represented the constructs delineated in our theoretical framework (SDT and JD-R). The scale's development 

entailed a multi-phase process: (1) an initial pool of 94 items was created via literature review; (2) items were 

refined following evaluation by a language expert; (3) three experts in computer science education assessed the 

items for clarity, representativeness, and content validity; (4) a pilot version comprising 31 items was administered; 

(5) Exploratory Factor Analysis (EFA) condensed the instrument to 26 items across two factors; and (6) 

Confirmatory Factor Analysis (CFA) further refined the scale to its final structure of 18 items. This systematic 

procedure offers substantial evidence for the construct validity and reliability of the scale. An initial item pool of 

94 statements was developed based on this method. The pool underwent an initial evaluation by a linguistic expert 

for clarity, followed by requisite changes. The modified pool was subsequently appraised by three specialists in 

computer science education, who evaluated the items for relevance, comprehensiveness, and intelligibility. In 

response to their suggestions, the items were improved and condensed to 31, which were included in the pilot 

study. Experts evaluated each item based on clarity, relevance, and representativeness, and their written comment 

was integrated into the modifications. The expert review process demonstrated the content validity of the scale. 

The construction of items and the structure of the scale were guided by Self-Determination Theory (SDT) and the 

Job Demands-Resources (JD-R) model. Items included under the ‘Education/Teaching-Based’ factor 

predominantly represent educators’ perception of professional significance, acknowledgment from parents and the 

community, and support at the classroom level—elements consistent with Self-Determination Theory’s 

autonomous motivation and the needs for relatedness and competence. The components of the 'Management-
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Based' factor encompass administrative support, equipment, and workload concerns, so aligning with JD-R job 

resources. Table 2 presents a comprehensive mapping of each item to its respective theoretical concept. 

 

Table 2. Mapping of Scale Items to Theoretical Constructs 

Item 
Code 

Item (short description) Factor Theoretical Construct 
(SDT / JD-R) 

m27 Lack of peer praise reduces my motivation Management JD-R: Social support as job 
resource 

m30 Adequacy of software affects motivation Management JD-R: Material/technical 
resources 

m21 Admin not sensitive to my work reduces 
motivation 

Management JD-R: Organizational support 

m24 Gaining trust of school administration 
increases motivation 

Management JD-R: Organizational 
trust/support 

m29 Adequacy of equipment affects motivation Management JD-R: Material resources 

m28 Knowing I will retire in this profession 
affects motivation 

Management JD-R:  Perceived Job 
security / long-term prospects 

m22 Admin praise increases motivation Management JD-R: Recognition as job 
resource 

m31 Supervisors’ fair treatment affects 
motivation 

Management JD-R: Fairness / justice as job 
resource 

m26 Peer praise increases motivation Management JD-R: Collegial support 

m23 Admin not praising my work reduces 
motivation 

Management JD-R: Recognition deficit / 
lack of resources 

m19 Transportation between home–school affects 
motivation 

Management JD-R: Physical/structural 
resources (workload strain) 

m16 Living in an urban area affects motivation Management JD-R: Contextual 
resources/constraints 

m25 Lack of admin trust reduces motivation Management JD-R: Organizational trust 
deficit 

m20 Admin sensitivity affects motivation Management JD-R: Organizational support 

m17 Distance home–school affects motivation Management JD-R: Physical strain / 
resource constraint 

m5 Social media’s negative attitude affects 
motivation 

Education/Teaching SDT: Controlled motivation 
(external pressures, social 
image) 

m7 Parents’ trust increases my motivation Education/Teaching SDT: Relatedness / 
autonomous motivation 
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The items on the scale are assessed utilizing a five-point Likert-type rating system. Participants received five 

response options for each item: "Strongly Agree," "Agree," "Neutral," "Somewhat Agree," and "Disagree," so 

obtaining quantitative data on teachers' motivation levels. This grading method allows participants to express their 

ideas with increased flexibility and breadth (Tezbaşaran, 1997). This scale was created to evaluate the professional 

motivations of computer science educators and has become a crucial data source in achieving the study's primary 

goal by analysing various factors that affect instructors' motivations. 

 

2.3 Data Analysis 

The data obtained during the scale development process was subjected to exploratory and confirmatory factor 

analysis. The exploratory factor analysis was conducted using SPSS version 25.0 software. Subsequently, 

confirmatory factor analysis was conducted using AMOS 24.0 software. Following these methods, the data 

obtained from the developed scale were analysed using SPSS 25.0 software.  Exploratory factor analysis (EFA) 

was performed utilizing Principal Axis Factoring on the Pearson correlation matrix with an oblique rotation (Direct 

Oblimin, δ = 0), based on the anticipation of correlated factors. Items were maintained if their principal pattern 

loading was ≥ .40 and the difference between the primary and secondary loading was ≥ .10; items with 

communalities < .30 were deemed for removal. Factor retention was determined by eigenvalues exceeding 1 and 

the examination of the scree plot. 

 

3. Results 

The study methodology is structured into three phases: Phase 1 (item generation and content validation), Phase 2 

(exploratory and confirmatory factor analyses for scale construction), and Phase 3 (final application of the 

validated scale). The findings are delineated into two primary sections: the initial phase (integrating Phases 1 and 

2 for scale development) and the final phase (Phase 3 application) 

 

 

m3 Praise from society increases my motivation Education/Teaching SDT: External recognition 
integrated as autonomous 
motivation 
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3.1Results of Exploratory Factor Analysis (Initial Phase) 

The research technique has three phases: Phase 1 (item generation and content validation), Phase 2 (exploratory 

and confirmatory factor analyses for scale development), and Phase 3 (final implementation of the approved scale). 

The results are categorized into two main sections: the starting phase (combining Phases 1 and 2 for scale 

development) and the concluding phase (Phase 3 application). 

 

Table 2. Results of the Kaiser-Meyer-Olkin (KMO) Measure and Bartlett's Test for the EFA Data Set 

KMO Coefficient  0,968 

Bartlett Test 𝑿𝟐 6251,976 

 sd 325 

 p 0,000 

 

Tabachnick and Fidell (2013) assert that the KMO test value should be at least 0.6. The KMO test value for the 

dataset (KMO= 0.968), beyond the threshold, indicates a highly significant and normal distribution (Tavşancıl, 

2018). After verifying that the KMO test values satisfied the necessary criteria, exploratory factor analysis (EFA) 

was conducted. Subsequent to the exploratory factor analysis, the factor loadings table indicated that specific scale 

components demonstrated cross-loading. Akgün et al. (2017) defines items that load on multiple factors as cross-

loading items, stating that the difference in values between the factors must surpass 0.10. He emphasizes the 

importance of removing items that do not meet this criterion from the scale. Subsequent to the EFA, some 

alterations were executed on the "Computer Science Education Professional Motivation Perception Scale" to 

enhance its effectiveness. The overlapping entries m12, m14, m15, and m18 were subsequently removed from the 

scale. Items were maintained if their primary loading was ≥ .40 and cross-loadings on other factors were < .30, 

with a minimum difference of .10 between primary and secondary loadings to ensure discriminant validity 

(Tabachnick & Fidell, 2013). The tables proposed for examination in the factor analysis study were methodically 

reviewed, indicating that m1 demonstrated no substantial correlation with three items in the correlation matrix. As 

a result, the m1 item was omitted from the scale. Items were preserved according to established EFA criteria: (a) 

primary factor loading of at least .40, (b) cross-loading of less than .30 on any non-primary factor, and (c) 

conceptual alignment with the factor theme. Items that did not meet these criteria were eliminated progressively. 

According to these regulations, five items (m1, m12, m14, m15, m18) were discarded. Table 4 illustrates that items 
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distinctly loaded onto two connected variables. A Heywood case for item m27 (loading = 1.022) was observed but 

is allowable under oblique rotation (see to Table 4 comment). Item m11 was cross loaded but kept under Factor 2 

due to its superior loading of .50. Factor 1 was designated as Management-Based Motivation, whereas Factor 2 

was designated as Education/Teaching-Based Motivation, according to the conceptual consistency of the items. 

Following these processes, it was determined that the scale comprises 26 items and exhibits a two-factor structure. 

The table of total variance produced by these operations is displayed below. Factor retention was determined by 

the Kaiser criterion (eigenvalues > 1.0) and corroborated by visual analysis of the scree plot, both suggesting a 

two-factor solution. 

 

Table 3. Aggregate Variance Table Subsequent to EFA 

Initial Core Values Sum of Squares of Loadings 

Factor Total Variance 

% 

Cumulative 

% 

Total Variance 

% 

Cumulative 

% 

1 16,421 63,158 63,158 16,421 63,158 63,158 

2 1,181 4,541 67,700 1,181 4,541 67,700 

3 0,930 3,576 71,275    

The cumulative total variance must be at least 60% for social sciences. Thus, the overall variance of the dataset 

following the EFA (67.700) surpasses this ratio. Subsequent to the exploratory factor analysis, it is important to 

examine the factor loading table. 

 

Table 4. Pattern Matrix of Factor Loadings (Principal Axis Factoring, Direct Oblimin Rotation)  

Item 

No 

Item Factor  

1 2 

m27 The fact that other teachers at school do not praise my work affects my 

teaching motivation. 

1,022  

m30 The adequacy of the software I will use in the course affects my course 

motivation. 

0,883  

m21 The fact that the school administration is not sensitive to my work 

affects my course motivation. 

0,878  

m24 Gaining the trust of the school administration affects my motivation. 0,877  
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m29 The adequacy of the equipment I will use in the lesson affects my 

motivation. 

0,844  

m28 Knowing that I will retire in this profession affects my teaching 

motivation. 

0,824  

m22 The fact that the school administration praises my work affects my 

course motivation. 

0,778  

m31 Administrative supervisors' fair treatment of the staff affects my course 

motivation. 

0,772  

m26 The fact that other teachers at school praise my work affects my teaching 

motivation. 

0,768  

m23 The school administration not praising my work 0,735  

m19 
The mode of transportation between school and home affects my 

motivation for studying. 
0,710 

 

m16 Living in an urban area affects my motivation to study. 0,656  

m25 
Not having earned the trust of the school administration affects my 

motivation to study. 
0,656 

 

m20 
The school administration's sensitivity to my work affects my 

motivation in class. 
0,641 

 

m17 The distance between school and home affects my motivation to study. 0,576  

m10 Negative parent-teacher cooperation affects my motivation in class. 0,341  

m5 
Social media's negative attitude and stance towards the teaching 

profession affects my motivation in class. 
 

0,95

5 

m7 Parents' trust in me affects my motivation to teach.  
0,92

8 

m3 
People in society praising me for my profession affects my motivation 

to teach. 
 

0,84

5 

m6 
In situations involving students, parental support affects my motivation 

to teach. 
 

0,77

1 

m4 
Social media's positive attitude and stance towards the teaching 

profession affects my motivation in class. 
 

0,75

8 

m9 Good parent-teacher cooperation affects my motivation in class.  
0,75

4 
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m8 
Parents' belief that I perform my job well affects my motivation to 

teach. 
 

0,67

9 

m2 
The negative perception of the teaching profession among people in 

society affects my motivation to study. 
 

0,62

6 

m13 
The fact that the place where I live meets my personal needs affects my 

motivation to study. 
 

0,56

0 

m11 The small size of the place where I live affects my motivation to study. 0,330 
0,50

1 

 

Extraction is equivalent to Principal Axis Factoring. Rotation equals Direct Oblimin (δ = 0). The values reported 

are coefficients of the pattern. Standardized regression weights, as opposed to correlations, can yield values 

marginally exceeding 1.00 (e.g., m27 = 1.022) in oblique solutions (Tabachnick & Fidell, 2013). Item m11 

exhibited cross-loadings of .33 on Factor 1 and .50 on Factor 2. The item was retained under Factor 2 due to its 

larger loading, which surpassed the .40 criterion.  The Cronbach Alpha coefficient for the initial factor of the 

developed scale was 0.965, whilst the coefficient for the succeeding factor was 0.946.  

 

Table 5. Cronbach's Alpha Values for the Factors Derived from Exploratory Factor Analysis 

Factor Article 

Number 

Cronbach's Alpha Value 

1 16 0.965 

2 10 0.946 

The results indicate that the scale possesses high dependability (Alpar, 2016). A study of the top group, which was 

27% lower, was subsequently conducted on the dataset to evaluate the scale's discriminative capabilities. 

 

Table 6. Reliability of Sub-Group and Super-Group Following Exploratory Factor Analysis 

 

 

 

 

Factors N Average Average 

difference 

p 

Top group 66 67,7576 40,37879 0,000 

Subgroup 66 27,3788 40,37879 0,000 
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The t-test results revealed that the mean for the upper group was 67.7576, while the mean for the lower group was 

27.3788. The difference between the means indicates that the developed scale is significantly discriminative 

(p<0.05). The initial factor is classified as Educational – Instructional Factors, whereas the subsequent element is 

referred to as Management-Related Factors, according to the items identified in the investigation. The two 

extracted factors exhibited a moderate correlation, suggesting that although they are conceptually separate, they 

share shared variance in line with theoretical assumptions. 

 

3.2 Results for Confirmatory Factor Analysis (Initial Phase) 

Following the adjustments, the Perception of Professional Motivation Scale in Computer Science Education was 

redistributed online and completed by 366 computer educators. Confirmatory Factor Analysis (CFA) is essential 

in the research of scale development (Akgün et al., 2017). Therefore, to assess the feasibility of doing a 

Confirmatory Factor Analysis (CFA) on the obtained dataset, the correlation between the individual items of the 

scale and the total scale score was examined. The analysis utilized Pearson correlation coefficients. 

 

Table 7. Confirmatory Factor Analysis Table 7. Impact on Mean, Variance, and Item-Total Correlation Table 

Upon the Deletion of an Item from the CFA Data Set 

Article No Effect on the Average when the 

item is deleted 

Effect on Variance 

When Item Deleted 

Item-Total Score 

Correlation 

m2 43,20 115,966 0,319 

m3 42,98 114,268 0,402 

m4 42,81 112,058 0,448 

m5 42,86 112,310 0,454 

m6 42,84 111,230 0,488 

m7 42,63 111,117 0,426 

m8 42,80 112,171 0,457 

m9 42,81 112,418 0,439 

m10 42,71 111,242 0,446 

m11 42,67 109,903 0,517 

m13 42,63 111,824 0,337 
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m16 42,61 113,406 0,284 

m17 42,80 112,963 0,434 

m19 42,75 110,185 0,512 

m20 42,81 110,511 0,533 

m21 42,79 111,702 0,440 

m22 43,06 115,325 0,347 

m23 42,92 113,445 0,405 

m24 42,91 113,389 0,433 

m25 42,80 112,105 0,440 

m26 42,80 112,533 0,433 

m27 42,76 111,201 0,481 

m28 42,87 110,314 0,512 

m29 42,73 111,476 0,417 

The item-total score correlation values of the scale ranged from 0.284 to 0.533, and these correlations were 

statistically significant. Subsequently, the KMO (Kaiser-Meyer-Olkin) test was re-administered to assess the 

adequacy of the dataset for confirmatory factor analysis. 

 

Table 8. Results of the Kaiser-Meyer-Olkin (KMO) and Bartlett's Test for the CFA Data Set 

KMO Coefficient  0,886 

Bartlett Test 𝑿𝟐 2228,704 
 sd 325 
 p 0,000 

The Bartlett test findings indicate a significant chi-square value (x²=2228.704; sd=325; p<0.05), suggesting that 

the dataset demonstrates a multivariate normal distribution. The acceptable fit indices obtained from the 

confirmatory factor analysis significantly influence the scale's acceptability. 
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Table 9. Fit Index Benchmarks Adopted (Schreiber et al., 2006)  

Index Value 

GFI >0,90 

AGFI >0,90 

NFI >0,90 

CFI >0,90 

RMSEA <0,08 

 

Furthermore, Çokluk et al. (2018) assert that an RMSEA value below 0.08 signifies acceptable fit, a CFI value 

above 0.90 denotes acceptable fit, and an NFI value surpassing 0.90 suggests good fit. Alongside these values, 

other critical factors must be considered during confirmatory factor analysis, particularly prior to item removal or 

model enhancement. The Standardized Regression Coefficient is paramount among these. The standardized 

regression coefficient indicates the capacity of observed variables to forecast latent variables, with a preference 

for these values to exceed 0.60 (Karagöz, 2021). Consequently, to enhance the scale, the Standardized Regression 

Coefficient is considered while eliminating items, and the item with the lowest value is discarded from the scale. 

Another element to contemplate in enhancing the Confirmatory Factor Analysis (CFA) model is the modification 

indices. The modification index signifies the anticipated decrease in the Chi-Square value when a parameter is 

altered or a new parameter is incorporated into the model (Sümer, 2000). Consequently, Confirmatory Factor 

Analysis (CFA) was utilized on the dataset. The fit index values derived from the CFA without any alterations are 

presented below. As shown in Table 10, the initial CFA model did not reach acceptable fit indices, indicating that 

the proposed two-factor structure required further refinement. 

 

Table 10. Preliminary Fit Indices and Values for the Confirmatory Factor Analysis Model 

Index Value 

GFI ,874 

AGFI ,852 

NFI ,720 

CFI ,825 

RMSEA ,056 
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As shown in Table 10, the initial CFA model did not reach acceptable fit indices. Consequently, some 

modifications were implemented to improve model fit. Based on low standardized loadings and modification 

indices, items m16, m13, m22, m2, m29, m10, m7, and m21 were sequentially removed from the scale, 

beginning with the lowest loading values. At each step, fit indices were re-assessed. In addition, three error 

covariances suggested by the modification indices were incorporated into the model. After these revisions, the fit 

indices reached acceptable levels, as reported in Table 11.  

 

Table 11. Fit Indices and Values of the Final CFA Model  

 

 

 

 

 

 

 

As shown in Table 11, the final CFA model demonstrated good fit. The RMSEA value (.036) indicates excellent 

fit, while the AGFI (.929), NFI (.870), and CFI (.954) reflect acceptable to good levels of fit (Schreiber et al., 

2006). The GFI value (.945) is also considered satisfactory (Hooper et al., 2008). These results confirm that the 

revised two-factor model provided a valid representation of the data. Note. GFI = Goodness of Fit Index; AGFI = 

Adjusted Goodness of Fit Index; NFI = Normed Fit Index; CFI = Comparative Fit Index; RMSEA = Root Mean 

Square Error of Approximation. 

 

 

Index Value 

GFI ,945 

AGFI ,929 

NFI ,870 

CFI ,954 

RMSEA ,036 
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Figure 2. Conclusive Version of the Confirmatory Factor Analysis Model 

 

Following the Confirmatory Factor Analysis (CFA), a 27% lower group - upper group analysis was performed on 

the dataset to assess the scale's discriminative power, and Cronbach's Alpha was utilized to evaluate its reliability. 

 

Table 12. Reliability of Sub-Group and Upper-Group Post-CFA 

Factors N Average Average 

difference 

p 

Top group 99 41,2121 18,45455 0,000 

Subgroup 99 22,7576 18,45455 0,000 

The established Computer Science Education Professional Motivation Perception Scale significantly differentiates 

between the lower and upper groups (p<0.05) due to the enhancements implemented. 
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Table 13. Cronbach's Alpha Values for Factors Established Post-CFA 

Factor Article 

Number 

Cronbach's Alpha Value 

1 11 0.803 

2 7 0,713 

The Cronbach Alpha values indicate that the scale is at an appropriate level. Upon completion of all phases, the 

scale comprising 2 factors and 18 elements is prepared for final implementation. 

 

3.3 Conclusive Findings of Application Results (Phase Two) 

In the conclusive application of the Computer Science Education Professional Motivation Perception Scale, 186 

computer science educators participated, with the distribution completed digitally. To choose the analytical 

methods for evaluating the final scale data, it is crucial to first examine the normal distribution of the dataset. 

Literature evaluations show that parametric tests are used for data with a normal distribution, while non-parametric 

tests are applied to data that diverges from normality. Subsequently, after analysing the descriptive statistics of the 

final scale, normality tests were conducted by computing the mean of the items that constitute the scale.  

 

Table 14. Statistical Data for the Normality Test of the Final Scale 

 

According to Tabachnick & Fidell (2013), a scale demonstrates a normal distribution if the skewness and kurtosis 

values range from -1.5 to +1.5. Upon analysing the skewness and kurtosis values of the final scale, it was concluded 

that the scale exhibits a normal distribution. Consequently, parametric tests, including the t-Test and One-Way 

ANOVA, were performed on the final scale data. The histogram and Q-Q Plot of the final scale's data set, 

indicating a normal distribution, are presented below. 

 Statistics Standard Error 

Average 1,7572  

Median 1,6667  

Variance ,229  

Standard Deviation ,47898  

Skewness Coefficient ,731 ,178 

Kurtosis Coefficient ,028 ,355 
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Figure 3. Histogram of the Normality Assessment for the Final Measurement 

Figure 4. Q-Q Plot illustrating the normality assessment for the final measurement 

 

Subsequent to these phases, the data acquired about the research's sub-problems were examined.  

In the development process of the Computer Science Education Professional Motivation Perception Scale, 

reliability analyses were conducted, including EFA and CFA, followed by Cronbach's alpha coefficient and 27% 

lower and upper group comparisons. Based on the findings obtained from these analyses, it can be stated that the 

scale in question is a reliable measurement tool. The evaluation of construct validity, guided by EFA and CFA 
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findings, demonstrates that the Computer Science Education Professional Motivation Perception Scale is a 

legitimate tool. The t-test results for the Computer Science Education Professional Motivation Perception Scale 

scores, classified by gender, are displayed in the table below. 

 

Table 15. T-Test Outcomes of the Perception of Professional Motivation Scale in Computer Science Education 

by Gender Variable 

 

 

 

 

 

 

The T-Test results indicate no significant difference between male and female computer science instructors for 

Education – Teaching Source variables (t[184]=0.102; p>0.05). Nonetheless, it has been established that there is 

no substantial difference between male and female computer science educators about Management-Related Factors 

(t[184]=,407;p>0,05). Consequently, it has been determined that the factors influencing the motivation of 

computer science educators remain consistent across genders for each sub-dimension. Prior to conducting the 

analysis of the Computer Science Education Professional Motivation Perception Scale scores based on the 

university attended, the assumption of homogeneity of variances was assessed using the Levene Test to ascertain 

the uniform distribution of the groups. 

 

Table 16. Levene's Test Results for the University Graduated from Variable of the Perception of Professional 

Motivation Scale in Computer Science Education 

Factor Type of Statistics Levene's 
Statistic 

p 

Factors related to Education and 
Training 

Based on the average  
1,409 

 
,108 

Management Factors Based on the 
                   average   

1,604 ,105 

Factor Groups N X ss t sd p 

Factors related to 

Education  

and  

Training 

Male 115 1,7715 ,53436    

 

Female 

 

71 

 

1,7631 

 

,56092 

,102 184 ,919 

Management 

Factors  

Male 115 1,7143 ,53251 ,407 184 ,684 
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The findings of the Levene Test indicate that the factors are homogeneously distributed (p>0.05). A One-Way 

ANOVA test was conducted based on this result. 

 

Table 17. Results of the One-Way ANOVA Test on the Perception of Professional Motivation Scale in Computer 

Science Education by University Graduates 

Factor  Sum of 
Squares 

sd Squares 
Mean. 

F p 

Factors related to 
Education and 
Training 

Between 
Groups 

9,170 35 ,262 ,865 , 684 

In 
Group 

45,410 150 ,303   

Total 54,579 185    

 Between Groups 8,593 35 ,246 ,877 , 667 

Management Factors      
In 
Group 

41,991 150 ,280   

 Total 50,584 185    

The findings of the ANOVA test indicated no significant difference between Education – Teaching-Related factors 

and Management-Related factors concerning the university attended (p<0.05). Prior to analysing the scores of the 

Computer Science Education Professional Motivation Perception Scale based on educational levels through the 

One-Way ANOVA test, the assumption of homogeneity of variances was assessed using the Levene Test to 

ascertain the uniform distribution of the groups. 

 

Table 18. Levene's Test Results for the Educational Level Variable in the Perception of Professional Motivation 

Scale for Computer Science Education 

Factor Type of Statistics Levene's 

Statistic 

p 

Factors related to 

Education and 

Training 

Based on the average ,244 ,865 

Management Factors Based on the 

                   average  

1,423 ,238 
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The Levene Test results indicate that the distributions of Education-Teaching Related Factors and Management 

Related Factors are homogeneous (p > 0.05). Following the confirmation of homogeneity of variances, the One-

Way ANOVA test analysis was performed. 

 

Table 19. Outcomes of the One-Way ANOVA Test for the Variable of Educational Level in the Perception of the 

Professional Motivation Scale in Computer Science Education 

Factor  Sum of 
Squares 

sd Squares 
Mean. 

F p 

Factors 
related to 
Education and 
Training 

Between 
Groups 

2,192 3 ,731 2,539 ,058 

In 
Group 

52,387 182 ,288   

Total 54,579 185    

 Between 
Groups 

2,927 3 ,976 3,725 ,012 

Management 
Factors 

     
In 

Group 
47,658 182 ,262   

 Total 50,584 185    

 

The analysis of the One-Way ANOVA test revealed no significant difference between the education levels 

examined and the Education-Teaching Source components (p=0.058; p<0.05). Furthermore, a statistically 

significant difference has been identified between the sub-dimension of Management-Related Factors and the 

educational level examined (p=0.012; p<0.05). An LSD test was conducted to identify the subgroups exhibiting 

significant differences. The exam results indicate a substantial difference (p<0.05) in Management-Related Factors 

between middle school and vocational high school levels, although no such difference exists among the other 

levels. Prior to conducting the analysis of the Computer Science Education Professional Motivation Perception 

Scale scores based on years of professional experience through a One-Way ANOVA test, the assumption of 

homogeneity of variances was assessed by examining the groups for a uniform distribution via the Levene Test. 
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Table 20. Levene's Test Results for the Variable of Years of Professional Experience in the Perception of 

Professional Motivation Scale for Computer Science Education 

Factor Type of 

Statistics 

Levene's Statistic p 

Factors related to 

Education and Training 

Based on the 

average 

1,309 ,273 

Management Factors Based on the 

                  average  

,581 ,628 

Upon analysing the outcomes of the Levene Test, it was concluded that the variances of Education-Teaching 

Related Factors and Management Related Factors were homogeneously distributed (p>0.05). Upon establishing 

the homogeneity of variances, the One-Way ANOVA test analysis was performed. 

 

Table 21. Outcomes of the One-Way ANOVA Test for the Variable of Years of Professional Experience in 

Relation to the Perception of the Professional Motivation Scale for Computer Science Education 

Factor  Sum of 

Squares 

sd Squares 

Mean. 

F p 

Factors related 

to Education 

and 

Training 

 

Between 

Groups 

2,103 4 ,526 1,813 ,128 

In 

Group 

52,476 181 ,290   

Total 54,579 185    

 

Management 

Factors 

Between 

Groups 

2,369 4 ,592 2,223 ,068 

In Group 48,216 181 ,266   

Total 50,584 185    

The research revealed no significant difference between Education-Training-Related variables and years of 

professional experience (p=0.128; p<0.05). It has been established that there is no substantial difference between 

Management-Related variables and years of professional experience (p=0.068; p<0.05).  Prior to conducting the 

study of the Computer Science Education Professional Motivation Perception Scale scores by city through a One-

Way ANOVA test, the assumption of homogeneity of variance was assessed using the Levene Test to ascertain 

whether the groups exhibit a homogeneous distribution. 
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Table 22. Levene's Test Results for the City Variable in the Perception of Professional Motivation Scale within 

Computer Science Education 

Factor  Type of 

Statistics 

Levene's Statistic p 

Factors related to 

Education and Training 

 Based on the 

average 

 

1,219 

 

,221 

Management Factors  Based on the 

               average  

1,233 ,210 

The findings of the Levene Test indicate that the Education-Training Related Factors and Management Related 

Factors have a homogenous distribution (p>0.05). Following the confirmation of homogeneity of variances, the 

One-Way ANOVA test analysis was performed. 

 

Table 23. Results of One-Way ANOVA for the City of Employment Variable in the Perception of Professional 

Motivation Scale for Computer Science Education 

Factor  Sum of 

Squares 

sd Squares 

Mean. 

F p 

Factors 

related to 

Education and 

Training 

Between 

Groups 

17,902 50 ,358 1,318 ,108 

In 

Group 

36,677 135 ,272   

Total 54,579 185    

 Between 

Groups 

15,622 50 ,312 1,206 ,199 

Management 

Factors 

     

In 

Group 

34,962 135 ,259   

 Total 50,584 185    

The ANOVA test findings indicated no significant difference between Education-Training Related variables and 

the city of duty performance (p=0.108; p<0.05). No substantial difference was seen between the city of duty and 

Management-Related Factors (p=0.199; p<0.05). 
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4. Discussion And Conclusion 

The Computer Science Education Professional Motivation Perception Scale aims to discover the factors affecting 

the motivation of computer science educators. The scale's content validity was first evaluated, subsequently leading 

to the development of a critical item pool through an extensive review of national and international literature. A 

total of 94 items were assessed by a language expert and subsequently submitted to three field specialists. 

Following the integration of expert feedback, revisions were made to the questionnaire, resulting in a 31-item tool 

named "Computer Science Education Professional Motivation Perception Scale." Exploratory Factor Analysis 

(EFA) and Confirmatory Factor Analysis (CFA) were employed to evaluate the construct validity of the 

instrument. Exploratory Factor Analysis (EFA) was conducted on data from 246 participants, resulting in the 

elimination of items m1, m12, m14, m15, and m18 from the scale, so yielding a two-factor structure of 26 items. 

These elements are classified as Education – Teaching-Oriented and Management-Oriented. To assess the scale's 

reliability, Cronbach's Alpha values and 27% upper-lower group comparisons were conducted, indicating that the 

scale exhibits robust dependability. Confirmatory Factor Analysis (CFA) was utilized to assess the structure 

obtained from Exploratory Factor Analysis (EFA) based on data gathered from 366 individuals. Subsequent to the 

CFA, some items (m2, m7, m10, m13, m16, m21, m22, m29) were discarded until the fit indices reached an 

acceptable threshold, culminating in a modified scale comprising 18 items. The model fit was assessed using many 

indices: GFI, AGFI, NFI, CFI, and RMSEA. The final 18-item, two-factor model demonstrated a satisfactory fit 

(GFI= 0.945, AGFI= 0.929, NFI= 0.870, CFI= 0.954, RMSEA= 0.036), conforming to established thresholds (Hu 

and Bentler, 1999). These indices validate that the two-factor model sufficiently encapsulates the data. The 

dependability was re-evaluated by Cronbach's Alpha values, determining that the scale is adequately reliable. 

Cronbach’s Alpha values were .96 for the Management-Based factor and .94 for the Education/Teaching-Based 

component. The total scale produced an Alpha of .97, above the .70 benchmark suggested for internal consistency 

(Kalyar, Ahmad, & Kalyar, 2018). The composite reliability values surpassed .70, hence reinforcing reliability.  

This scale, consisting of two components and eighteen elements, is considered a reliable, valid, and useful 

measurement tool. The two-factor structure is consistent with the theoretical frameworks underpinning this 

investigation. Pragmatic elucidation of the two-factor model. The Education–Teaching-Based aspect underscores 

the significance of autonomy-supportive classroom practices, such as providing meaningful choices and 
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prioritizing mastery feedback, while also enhancing connections with families and the community to reinforce 

teachers’ autonomous motivation. The Management-Based element underscores employment resources 

identified by the JD-R model—transparent and equitable administrative procedures, prompt acknowledgment, 

and sufficient equipment/software—which can mitigate demands and maintain motivation. Explicitly framing 

interventions using Self-Determination Theory (needs for autonomy, competence, relatedness) and the Job 

Demands-Resources model (organizational resources) offers a theoretically informed framework for schools 

aiming to augment the professional motivation of computer science teachers. The Education–Teaching-Based 

factor encapsulates teachers’ intrinsic motivation within Self-Determination Theory (SDT), encompassing 

aspects such as professional significance, acknowledgment from parents and the community, and classroom-

level resources that fulfil the demands for relatedness and competence. The Management-Based factor relates to 

job resources in the JD-R model, including organizational trust, administrative assistance, and the sufficiency of 

equipment and infrastructure. This theoretical congruence offers additional evidence for the construct validity of 

the scale and contextualizes the findings within the wider field of motivation research.  

 

Although motivation studies for educators in other disciplines exist at the national level, the lack of study 

focused on the motivation of computer science teachers is due to the absence of a measurement scale for 

evaluating their motivation. This situation underscores the imperative of creating a framework in the field. The 

development of the Computer Science Education Professional Motivation Perception Scale would significantly 

enrich the current literature. This scale will serve as the first national tool to evaluate the professional 

motivations of computer science educators, providing valuable data for scholars and educational institutions. The 

application of the scale may augment the breadth of quantitative and qualitative study into the factors influencing 

computer science teachers' motivation. Research examining the relationships between teachers' personality 

variations, work conditions, and motivations in educational settings can yield new insights on educational 

sciences. Globally, there is a dearth of research concerning the motivations of computer science educators, and 

the limited studies utilize scales that exhibit recognized validity and reliability. The recent international study 

presented the 18-item Motivation to Teach Computer Science (MTCS) scale, encompassing four dimensions: 

external pressures, external advantages, student benefits, and personal enjoyment (Martin, Baker, Haynes, & 
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Warner, 2023). Positioning with relation to MTCS. While MTCS categorizes motives into four teaching-centric 

domains (external pressures/benefits, student benefits, personal enjoyment), our two-factor framework 

encompasses a wider ecological perspective of professional motivation, incorporating organizational factors 

(management, resources, recognition) in addition to teaching-related influences. This differentiation is beneficial 

for governance and leadership: MTCS may provide greater diagnostic insights for pedagogical support, whereas 

our scale also highlights systemic levers—such as administrative trust, equity, and infrastructure—that school 

leaders may influence. While MTCS emphasizes instructors' motivation to instruct in computer science, our 

instrument concentrates on the professional incentive drivers within the Turkish educational setting, resulting in 

two factors: Education–Teaching-Based and Management-Based. Consequently, our research enhances MTCS 

by offering a verified, nationally normed instrument and empirical results pertinent to Turkey, encompassing 

subgroup analyses applicable to local administrative frameworks. However, the development of the Computer 

Science Education Professional Motivation Perception Scale will provide a foundation for international 

comparative study. An examination of the motivation levels of computer science instructors in different 

countries and the factors affecting this motivation could guide the formulation of global educational strategies. 

Moreover, examining the influence of cultural differences on motivation should assist in developing both 

universal and specific measures for enhancing teacher motivation. The study concluded with an examination of 

data from 186 computer science educators who completed the Computer Science Education Professional 

Motivation Perception Scale. The results demonstrated that the factors affecting the motivations of computer 

science professors were uniform across genders. This study indicates that gender does not substantially affect 

teachers' motivations. This outcome suggests that the motivating factors in our framework—autonomous 

motivation (SDT) and job resources (JD-R)—are seen similarly by male and female instructors. This indicates 

that motivational resources and requirements, as defined by SDT and JD-R, are independent of institutional 

background. Therefore, efforts to enhance motivation should use a gender-neutral and inclusive approach. 

International literature indicates some studies identifying gender disparities (Duursma, 2016), while others claim 

no substantial differences (Kippers et al., 2018). These findings indicate that educational institutions should 

cultivate cultures that enhance teacher motivation free from gender bias. No differences in motivating factors 

have been seen based on the university attended. This scenario indicates that the university does not affect the 
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motivation of computer science instructors. This discovery raises questions about the impact of graduation on 

motivation and suggests that the quality of education is predominantly consistent among universities. Selvitopu 

& Taş (2020) found that motivation levels significantly varied according to undergraduate degree status. The 

motivational factors were consistent regardless of teachers' educational qualifications, focusing instead on 

managerial elements. No notable disparities were detected according to the city of assignment. A notable 

disparity was observed in the Management factor based on the educational level of the teachers (primary, 

secondary, or high school). This study utilized convenience sampling, potentially constraining the sample's 

representativeness and, therefore, the generalizability of the scale features and Phase 3 subgroup comparisons. 

The imbalance in group sizes for some demographics diminished the statistical power to identify minor effects 

and heightened the likelihood of Type I and Type II errors. All measurements were self-reported and cross-

sectional, hence precluding causal inference. Subsequent research ought to replicate these findings utilizing 

probability samples (e.g., stratified sampling across areas and school types), gather longitudinal data to assess 

stability over time, and evaluate measurement invariance across significant subgroups. Educational caveat. The 

survey link was disseminated to both public and private schools; however, the questionnaire lacked a question to 

identify the type of school, preventing us from assessing any potential variations between the two types of 

institutions. Future applications must specifically document school type and utilize a stratified sample by sector 

to facilitate comparisons and improve external validity. Considerations for measurement. Prior to comparing 

subgroup means in subsequent investigations, multi-group confirmatory factor analysis (CFA) should be 

employed to ascertain configural, metric, and scalar invariance of the two-factor model across significant groups 

(e.g., gender, educational attainment). Furthermore, to alleviate common-method variance associated with 

single-source, self-report methodologies, subsequent research could integrate survey responses with 

observational or administrative metrics or implement temporal separation of measures. The study utilized 

convenience sampling; hence, the results from demographic subgroup analyses (e.g., gender, years in the 

profession, school type [public vs. private]) should be evaluated cautiously, since they may not be representative 

of the wider community of computer science educators. Nonetheless, a weakness of this study is the employment 

of convenience sampling, which constrains the generalizability of the results. By analysing the components via 

Self-Determination Theory (SDT) and the Job Demands-Resources (JD-R) model, our research broadens the 
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relevance of these frameworks to computer science education, emphasizing the dual significance of personal 

meaning and institutional resources. Future research should utilize more representative sample techniques to 

improve external validity and offer a comprehensive understanding of the motivation of computer science 

educators.  

 

Consequences for implementation and regulation. Based on our findings, school leaders and policymakers 

should prioritize (a) transparent and equitable administrative processes that acknowledge the contributions of 

computer science teachers, (b) dependable provision and upkeep of computer science-specific equipment and 

software, (c) organized parent-school engagement to enhance community recognition, and (d) professional 

development aligned with autonomy-supportive pedagogy. Resource allocation models at the system level must 

align with the unique management requirements of various educational stages, especially in vocational high 

schools where management-related motivation is notably elevated, thereby ensuring that organizational support 

is customized to the specific needs of stage-specific computer science curricula and infrastructure. 
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Abstract  

An objective evaluation and assessment of individual student-designed projects are challenging. Appropriate 

tools are currently lagging and have to be developed. Block-based programming languages, such as Snap! are 

often used for teaching programming basics and the subsequent development of student-designed programming 

projects. The current research qualitatively developed a rating rubric for Snap! projects to investigate how 

novices’ programming skills can be evaluated and assessed in a criterion-guided manner. For this purpose, an 

evaluation was conducted on a baseline dataset of 36 student projects created over three school years after a 

programming course for novices. Based on this database we designed an assessment rubric. A team of experts 

reviewed and evaluated the assessment rubric. Following expert evaluation, the rubric was improved and 

expanded. Finally, prospective teachers conducted a comparative evaluation of a test data set consisting of ten 

Snap! projects of varying complexity, with and without the resulting rubric. The results show that the rating 

rubric significantly improves the comparability of assessments. In addition, a clear differentiation of the projects 

by level is achieved for the test data set. Furthermore, the assessment rubric enables a more precise achieved 

result evaluation in particular rubric category. 
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1. Introduction 

Global challenges and technological progress have brought about a heightened emphasis on information 

technology skills over the last two decades. The demand for e-learning offers is constantly growing, especially 

for IT skills (mmb Institut, 2021). Digitization at all levels and global crises, such as the Covid-19 pandemic, are 

intensifying discussions across Europe about which skills and abilities will be needed in the future to be able to 

participate in social life (European Commission. Directorate General for Communication., 2020). Regarding 

digital competences in particular, competence requirements and necessary action steps for the next decades are 

being formulated nationally and internationally at various political levels (European Commission. Directorate 

General for Education, Youth, Sport and Culture., 2023). The Council of the European Union highlights digital 

literacy as one of the eight key competences for lifelong learning in the 21st century (Publications Office of the 

European Union, 2019). The current framework on European Union digital citizenship competence DigComp 

2.2 lists programming competence as one of the key competences (European Commission. Joint Research 

Centre., 2022). The current approach to facing the challenges in Germany, for example, is to expand computer 

science lessons across all grades from fifth grade onwards. For the required strengthening of programming skills, 

the current educational plan for computer science recommends block-based programming for the acquisition of 

basic knowledge and skills in programming, especially for beginners (Ministerium für Kultus, Jugend und Sport 

Baden-Württemberg, 2016a, 2016b). The use of block-based programming languages often goes hand in hand 

with the development of individual creative projects (Krugel & Ruf, 2020; Resnick, Silverman, et al., 2009; 

Resnick, 2014). To successfully implement block-based programming languages in the classroom, a systematic 

approach is needed to evaluate such creative student projects. There are already some approaches to evaluating 

block-based programmes as will be discussed in section 2.2. However, most approaches deal with automated 

evaluation of the generated code. This involves solving pre-designed test tasks and evaluating them 

automatically. Such systems do not allow for the evaluation of individual projects on open topics. This paper 

therefore investigates whether a competency grid can be used to evaluate open-ended Snap! projects and how 

such a grid must be structured to ensure valid and consistent evaluation. To address this question, a multi-phase 

research design was applied, including the development of the rubric, expert validation, and empirical testing 
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with student projects. The results demonstrate that the rubric improves the comparability of evaluations and 

provides a practical, criterion-based tool for assessing creative, block-based programming projects. 

2. Background 

2.1 Block-based programming for novices 

Block-based programming languages are visual programming languages that use blocks to represent code, rather 

than traditional text-based code. This allows users to create programs by dragging and dropping these blocks 

together, without having to write lines of code. A program code is put together like a puzzle by assembling the 

already available instruction blocks. These environments operationalize Papert’s constructionist principles by 

providing concrete, manipulable elements that support self-directed creation, experimentation, and reflection 

(Papert, 1993). Learners actively construct knowledge, explore multiple solution paths, and iteratively refine 

their projects, fostering discovery-based learning and reducing the abstraction barriers typical of traditional 

coding   (Brennan & Resnick, 2012; Resnick et al., 2009).  Platforms such as Snap! enable students to design 

interactive projects-games, stories, or animations - promoting cognitive engagement, problem-solving, and 

creativity. The visual, block-based interface simplifies syntax, while project sharing, remixing, and collaborative 

exploration enhance social learning and knowledge co-construction, key aspects of constructivist and 

constructionist pedagogy (Papavlasopoulou et al., 2019). Compared to common programming languages that use 

textual syntax, block-based languages allow easier interaction with the programming environment and learners 

can focus more on programming logic instead of dealing with syntactical errors (Balouktsis, 2016). Block-based 

languages provide a low barrier to entry and a flexible, expressive environment. This allows learners to focus on 

creative and meaningful projects, fostering computational thinking, systematic reasoning and digital literacy 

(Resnick, Maloney, et al., 2009). 

 

Block-based programming languages are characterised by their ability to eliminate syntax errors, reduce 

cognitive load and shift the focus from memory recall to visual recognition through structured, visual program 

construction. They are particularly valuable in lowering the entry barrier for novices and enabling intuitive, 

interactive learning that fosters engagement and a deeper understanding of core programming concepts (Bau et 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 39 

al., 2017). In particular, beginners are able to concentrate more on understanding programming concepts rather 

than memorising text syntax due to the reduction in cognitive load (Weintrop & Wilensky, 2018)  

Block-based programming languages, such as Snap! show significant advantages for introducing programming 

to novices. These languages are  considered "easier" than text-based programming languages (Weintrop & 

Wilensky, 2015) and enable an introduction to programming for learners without any prior knowledge (Maloney 

et al., 2010). For example, the use of block-based programming languages can provide a better understanding of 

basic programming concepts, like loops (Mladenović et al., 2020). In addition, block-based programming 

languages offer a more visual interface that can make programming concepts more accessible. Features such as 

execution visibility, language extensibility and liveness in block-based languages create a positive attitude 

towards learning and using them (Perera et al., 2021). The use of block-based languages also increases student 

motivation in introductory programming courses by promoting positive emotions about performance, which in 

turn improves learning performance and engagement  (Tsai, 2019; Wen et al., 2023). With block-based 

programming languages, learners grasp the task more quickly and achieve significantly more learning goals in 

the same amount of time compared to those using text-based languages (Price & Barnes, 2015). Interest in 

further programming activities is also rated higher after a learning sequence with a block-based programming 

language (Weintrop & Wilensky, 2017). The integration of block-based programming activities significantly 

improves pupils' computational thinking skills and their self-efficacy in problem solving. Such activities actively 

engage learners, promote their independence and strengthen their confidence in applying programming concepts  

(Koray & Bilgin, 2023).  

 

Snap! is a further development of the Scratch programming environment, already established in many schools. 

Snap! offers some advantages and additional functions compared to Scratch; for example, Snap! enables 

comprehensive prototype-based programming by creating objects (Modrow, 2018). In addition, new blocks can 

be created as subroutines with control structures, also called the Build Your Own Block principle. The 

programming toolbox for object-oriented programming is comprehensive, so that Snap!, in contrast to Scratch, is 

a "fully developed programming language" (Modrow, 2018) and is thus in principle also suitable for advanced 

computer science teaching. This is also reflected in the fact that Snap! is now sometimes offered as an 
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introductory programming language for first semesters of computer science (Garcia et al., 2012). In summary, 

learning programming using block-based programming languages such as Snap! offers an accessible and visual 

approach to learning basic concepts, enabling students to develop essential programming skills while fostering 

their creativity, problem-solving abilities, and logical reasoning. Block-based programming languages are 

moreover based on the vision of enabling programming beginners to implement learning-by-doing or learning-

by-making, where they are free to experiment with their own ideas, such as creating, sharing, playing, and 

learning with computers (Harel et al., 1993). Therefore, to promote programming skills for beginners in a school 

context, the use of block-based programming languages can be beneficial, especially for creation of student-

designed projects. 

 

2.2 Assessment of block-based programmed student projects 

When working in the context of student-designed projects, it is crucial to establish suitable evaluation concepts 

that offer clear and transparent assessment measures for both teachers and students. By doing so, educators can 

review the quality of learning materials and provide valuable feedback to support student learning and growth. 

Assessment of student performance and feedback is an essential part of the learning process (Hattie, 2009). 

Nevertheless, the assessment process is one of the most complex activities in a teacher's job (Jürgens & 

Lissmann, 2015). Effective feedback should focus on the task and process, provide clear guidance on how to 

improve, link specifically to goals and performance (Shute, 2008). Additionally, research suggests that feedback 

should be specific and focused on the most important aspects of student work (Wiliam, 2011). The challenge of 

assessing student-designed projects lies in their open-ended nature, as they are characterized by diverse 

approaches, ideas, and implementations, making direct comparisons difficult. 

 

To address this challenge, various concepts and tools for assessing block-based programming projects have been 

proposed. In most assessment concepts, however, there is a lack of consensus regarding the concrete 

establishment and weighting of assessment criteria (Da Cruz Alves et al., 2019). This is probably because there 

is currently no standardized competence framework derived from an empirically validated model (Gesellschaft 

für Informatik, 2016). Moreover, most existing systems were not designed for the evaluation of authentic, open-

ended projects, but rather for standardized, task-based learning contexts. Most authors concerned with 
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assessment, either through the development of tools or the investigation of evaluation processes, regard their 

approaches as supplementary to teaching and as a means of supporting learning (Boe et al., 2013; Denner et al., 

2012; Funke & Geldreich, 2017; Koh et al., 2014; Moreno-León et al., 2017; Seiter & Foreman, 2013; Werner et 

al., 2012; Zhang & Biswas, 2019).  

 

Table 1 provides an overview of prominent approaches and tools for assessing block-based programming 

projects, highlighting their aims, methods, strengths, and limitations. 

Study (Author, 

Year) 

Aim / Context Assessment Method Strengths Limitations 

Boe et al., 2013 

– Hairball 

Evaluate Scratch 

projects to 

identify 

problematic or 

missing 

constructs 

Static analysis with 

customizable plugins 

(e.g., initialization, 

synchronization, 

loops) 

Objective, scalable 

detection of code 

patterns; high 

accuracy (≈99%) 

Limited to 

predefined patterns; 

cannot assess 

creativity or design; 

manual review still 

needed 

Denner et al., 

2012 

Middle school 

girls’ game 

projects 

(Stagecast 

Creator) 

Research study 

analysing 108 games 

using coding 

categories 

(complexity, usability, 

documentation) 

Authentic insight 

into conceptual 

understanding; 

large dataset 

Not a standardized 

tool; rule-based, not 

block-based; limited 

transferability 

Koh et al., 2014 

– REACT 

Middle school 

STEM / Scalable 

Game Design 

classes 

Real-time formative 

assessment of 

computational 

thinking patterns 

Timely feedback 

for teachers; 

identifies 

misconceptions 

during coding 

Limited to 

predefined CT 

patterns; misses 

qualitative and 

creative aspects 

Werner et al., 

2012 – Fairy 

Performance 

Assessment 

Game 

programming 

elective using 

Alice 

Performance-based 

tasks measuring CT 

(abstraction, 

modelling, problem-

solving) 

Authentic, multi-

dimensional CT 

measurement; 

supports 

collaboration 

studies 

Specific to Alice; 

high implementation 

effort; limited 

creativity assessment 

Ball & Garcia, University Snap! Automated grading Scalable grading; Limited to closed-
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Study (Author, 

Year) 

Aim / Context Assessment Method Strengths Limitations 

2016 – 

Autograder λ 

courses and feedback 

integrated into Snap! 

immediate 

feedback; simple 

setup 

ended tasks; no 

assessment of 

creativity or design 

Wang et al., 

2021 – 

SnapCheck 

Snap! courses 

with interactive 

projects 

Automated testing 

using predefined 

templates and 

simulated user actions 

High accuracy 

(≈98%); scalable; 

integrated into 

Snap! 

Only for testable 

behaviours; setup 

time-intensive; 

cannot assess open-

ended creativity 

Moreno-León 

et al., 2017 – 

Dr. Scratch 

Scratch 

programming 

contest projects 

Automated static 

analysis compared to 

human expert ratings 

Strong correlation 

with experts; 

consistent and 

scalable 

Ignores creativity 

and design; focused 

on technical aspects 

only 

As the table (Table 1) shows, automated tools such as Hairball (Boe et al., 2013), Dr. Scratch (Moreno-León et 

al., 2017), or SnapCheck (Wang et al., 2021) offer highly scalable solutions and produce consistent results but 

are primarily limited to predefined technical patterns and cannot capture creativity or the quality of open-ended 

designs. In addition, some systems face technical barriers such as installation issues and a constant need for 

updates to remain functional, which affects their acceptance among teachers (e.g., Ball & Garcia, 2016). Even 

when functioning well, these systems often provide only structural feedback about the code and lack the ability 

to evaluate whether a problem was solved in a meaningful way (Moreno-León et al., 2017; Wang et al., 2021). 

These limitations explain why most authors explicitly recommend using automated systems as a complement to 

traditional, teacher-driven assessments rather than as a replacement. 

 

For example, Hairball and Dr. Scratch are powerful tools for detecting certain constructs, but they do not assess 

design aspects, while SnapCheck provides highly accurate testing of interactive behaviours yet requires 

significant preparation of templates and is unsuitable for authentic, free-topic projects. 

Thus, there is still a clear need for research and development to create evaluation instruments that can provide 

rich, individualized feedback for authentic student work. 
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One effective approach to evaluating student-designed projects is using rubrics. Andrade H. defines a rubric as a 

one– or two–page document that describes varying levels of quality, from excellent to poor, for a specific 

assignment (Andrade, 2000). Rubrics provide a clear and consistent framework for evaluating authentic student-

designed projects. By making expectations explicit and providing qualitative, criterion-based feedback, rubrics 

help students understand how to improve their work and promote deeper learning (Wolf & Stevens, 2007). The 

rubric presented in this study was developed specifically for Snap! projects and aims to qualitatively capture and 

objectively assess the outcomes of open-ended, autonomous student projects. It was developed as part of the 

evaluation of an interdisciplinary self-learning course, "Smart City" (Svedkijs et al., 2022) for learning the basics 

of programming with Snap! to be able to qualitatively record and objectively assess the student projects created. 

3. Method 

3.1 Development procedure 

We opted for a qualitative and exploratory approach to developing the assessment rubric because the research 

question is open and the aim is to generate a practical, field-tested assessment instrument (Döring & Bortz, 2016; 

Gummels, 2020).  

3.2 Teaching sequence 

To this purpose, 183 students (the majority with no prior knowledge) in grades 9-11 were taught the basics of 

programming with the block-based language Snap! in an approx. 20-hour teaching sequence in the school years 

2018/19, 2019/20 and 2020/21. No one had any previous knowledge of block-based programming. Following the 

lesson sequence, the pupils created their own projects in small groups on a free topic. Forty pupil projects 

resulted from this and after data cleansing, 36 projects were available. The rubric was developed using 

anonymized student project data, collected with informed consent and without any personal identifiers, 

complemented by published projects from the Snap! platform. 

3.3 Analysis and Drafting 

Available projects could be used as a baseline data set for the development of the rubric (Fig.1). The 

development of the rubric involved a comprehensive process, starting with the analysis of baseline data from 

student projects and expert evaluation. 
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Figure 1:Development process of the assessment rubric 

 

To begin, a thorough analysis of the given dataset was conducted, examining each project's structure and content 

to gain a deep understanding of its programming constructs, such as loops and object designs. This allowed for 

systematization and categorization of used programming constructs. The resulting summaries enabled definition 

of three different levels (I, II, III) within the dataset. Based on these findings, a draft of the rubric was created 

with twelve thematic categories and three levels. 

 

3.4 Expert Review and Iterative Exchange 

We reviewed the initial rubric version together with four educational experts (2 female, 2 male) in the field of 

programming for qualitative assessment. We defined experts as individuals with several years of experience 

using block-based languages, particularly Snap!, in teaching contexts or those who had published academically 

on block-based programming languages. Experts’ review led to refinement through an iterative exchange 

process. The final version featured seventeen categories and four   levels. In addition, according to the expert 

advice the rubric was supplemented with source code examples, and categories were edited and put in a different 

order. Beyond that, a general “project characteristics” category with a keyword-like description of the project 

characteristics in the respective level was added as an orientation framework. Furthermore, a “creativity 

impression” category was introduced. Here, a subjective estimate of project creativity in the sense of technical 

originality and inventiveness is to be given. 
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4. Evaluation Process and Testing 

To test the developed rubric, we prepared a dataset by selecting ten publicly available Snap! projects that reflect 

typical student work after their first exposure to programming. These projects varied in complexity, subject 

matter, and interactivity, ensuring a representative range of examples. This dataset illustrates the possible range 

of projects and serves as a reference for evaluation. 

Finally, nine prospective teachers (male: 4, female: 5) majoring in computer science, technology, mathematics or 

natural sciences participated in the evaluation process. They had prior knowledge of Snap! or other block-based 

programming languages and possessed existing teaching experience. Initially, they rated the randomly sorted 

projects without any predetermined criteria using a school mark scale (1 = very good, A; 6 = insufficient, F). 

Afterward, they received the developed rubric and evaluated the same projects again based on the specified 

criteria. The evaluation of the competence grid was performed in German language.  

 

4.1 Current version of the rubric 

The current version of the rubrici comprises seventeen categories and four levels (0, 1, 2, and 3). For each 

category, a level can be awarded in one of the four levels. The overall level is determined as the sum of all points 

awarded within all categories.  

 

The respective categories cover aspects of object-oriented development (e.g. objects or object communication), 

algorithmic design (use of loops, branches, reporters), handling of data (variables, lists), Snap! specific design 

options (graphic effects), handling of multithreading (header blocks and multithreading), and code outsourcing 

(BYOB). In addition, the "project characteristics" category describes a general implementation in relation to the 

corresponding level. The "creativity impression" category attempts to capture a subjective impression of the 

project that cannot be measured by the other categories. All categories and levels are listed below in descriptive 

statements translated into the English language. 
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1. Category “objects” 

Level 0:  Create an unstructured instruction sequence in a sprite. 

Level 1:  Create instruction sequences in an existing sprite to implement a specific function, e.g. object draws, 

object moves. 

Level 2:  Create and name another object(s) using a parallel statement sequence. 

Level 3:  Independently create several other objects with a communication or interaction for modelling a 

complex system. 

2. Category “stage as an object” 

Level 0: Cannot recognize stage as an object. No stage backgrounds/functions. 

Level 1: Embed the stage in the system: set one or more backgrounds for the stage. 

Level 2: Perceive the stage as an object: create a program for designing the stage, for example, by automatically 

changing the background images, using the graphic effects, time lapses. 

Level 3: Perceive the stage as an object: create a program for the stage with object interaction. 

3. Category “communication with a user AND/OR with other objects” 

Level 0: Cannot use communication instructions. 

Level 1: Use condition block to evaluate keyboard or mouse input or colour coding. 

Level 2: Create simple communication between objects or with the environment. 

Level 3: Create advanced communication between objects/with the user, for example via variables. 

4. Category “Use of reporter blocks or predicates” 

Level 0: Cannot demonstrate implementation of the reporter and predictor blocks. 

Level 1: Use simple reporter blocks, such as random number or x-position. 

Level 2: Use reporter/predicator blocks as parameter AND/OR in conditions. 

Level 3: Use complex/composite reporter/predicator blocks. 

5. Category “Graphical effects, sound effects, draw effects” 
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Level 0: Cannot demonstrate implementation of effects, etc. 

Level 1: Use simple sound/speech/drawing instructions/graphical effects. 

Level 2: Control the graphic effects AND/OR use combinations of different properties and sounds. 

Level 3: Use graphical effects (effect combinations) meaningfully, for example to visualize a complex plot or to 

design the program interface. 

6. Category “Hat blocks and multithreading” 

Level 0: Always start instruction sequence without a hat block. 

Level 1: Use a hat block to start the script, the script runs linearly. 

Level 2: Create several scripts within a project, but without targeted use of the multithreading concept: scripts 

work independently of each other. 

Level 3: Use several different hat blocks for a multithreading processing of the programs AND/OR use a hat 

block for sending the messages AND/OR "When I start as a clone”. 

7. Category “Object actions” 

Level 0: Present a loose collection of instructions, no meaningful structure of a program. 

Level 1: Create a sequence of instructions with fixed numerical values, e.g. with concrete size specifications 

AND/OR create a sequence of instructions for a sprite movement or figure geometry with waypoints. 

Level 2: Use control flows with fixed values. 

Level 3: Parameterize the statement sequence AND/OR use variables in control flows. 

8. Category “Creating variables” 

Level 0: Treat data as fixed values, with no variables present. 

Level 1: Create and name a variable. 

Level 2: Create several variables. 

Level 3: Create (a) variable(s) for data exchange between objects (global variables) or within an object (local 

variables). Demonstrate meaningful use of local and global variables. 
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9. Category “Using variables” 

Level 0: Use only numbers or words as constants. 

Level 1: Change variables as numbers or strings in the course of the program. 

Level 2: Change the value of a variable depending on a condition, for example, set false to true. 

Level 3: Use variables as data containers for various data such as lists, objects. 

10. Category “Using operators” 

Level 0: Cannot show use of operators. 

Level 1: Use simple mathematical operations, such as plus, minus, etc. in the function as a reporter. 

Level 2: Use nested operators with variables AND/OR simple operators within a one-way branch/loop. 

Level 3: Demonstrate meaningful use of complex operators, e.g. in conditions. 

11. Category “Use of predicates in control flows” 

Level 0: Cannot show existing termination condition (except for endless loop) AND/OR incorrect termination 

condition. 

Level 1: Formulate a non-parameterized termination condition for a control flow. 

Level 2: Formulate a parameterized termination condition for a control flow. 

Level 3: Use operators (e.g. and, or, not) for a termination condition in a condition/loop AND/OR complex 

conditions (referring to other objects). 

12. Category “Use of conditions” 

Level 0: Cannot demonstrate implementation of conditions. 

Level 1: Use an if-condition or an if-else condition. 

Level 2: Use a nested branch AND/OR use a one-way branch for multiple cases. 

Level 3: Show sensible use of complex nesting (but no unnecessary nesting, clear source code). 

13. Category “Use of loops” 

Level 0: Cannot demonstrate loops implementation. 
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Level 1: Use a loop. 

Level 2: Use a combination of two loops (e.g. nesting them). 

Level 3: Use multiple loops and complex loop structures, e.g. For loop. 

14. Category “Use of lists” 

Level 0: Cannot demonstrate list implementation. 

Level 1: Create a simple list AND/OR output the list AND/OR prompt input for a list. 

Level 2: Use list elements according to the respective index. 

Level 3: Create lists with objects AND/OR further lists AND/OR use complex structures and commands. 

15. Category “Build Your Own Block” 

Level 0: Cannot demonstrate own block implementation. 

Level 1: Combine several commands in their own blocks (outsource code). 

Level 2: Create a block with a return value or with (a) parameter(s). Create reporter. 

Level 3: Create a block with complex parameters AND/OR return values, such as lists and objects. 

16. Category “Project characteristics” 

(Selected examples; full description in the online version) 

Level 0:  A simple project with partly correct approaches but overall is inadequate or contains errors. No 

concept/no idea available. Loose collection of objects and functions. 

Level 1: A project is manageable. 1-2 stage backgrounds are used. The plot is implemented with 2 to 3 objects. 

Simple control flows, instructions, operators are used. 

Level 2: The project has a comprehensive structure. Several stage sets with effects are used. Control structures, 

instructions, links are used. Code is outsourced. 

Level 3: The project has a complex structure. The plot is complex, exciting. Complex control structures, 

instructions, links, lists are used. Custom blocks are used with parameters and return values. 

17. Category “Creativity impression” 
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Level 0: "The task has not been solved." 

Level 1: "The task is solved, but not very creatively". 

Level 2: "I understand the concept, it's exciting!" 

Level 3: "Wow, that's a cool idea; a successful concept!" 

Each level is described with a statement and, if useful, supplemented with a source code example (see example 

Tab. 1 "Using reporters and predicates"): 

 

Table 1: Excerpt of a category from the rubric with four descriptions at each level and corresponding 

source code examples. 

Category Level 0 Level 1 Level 2 Level 3 

Using 

predicates 

in control 

flows 

Cannot show 

existing 

termination 

condition (except 

for endless loop) 

AND/OR use 

incorrect 

termination 

condition 

Formulate a non-

parameterized 

termination 

condition for a 

control flow 

Formulate a non-

parameterized 

termination 

condition for a 

control flow 

Use operators (e.g. and, or, 

not) for a termination 

condition in a condition/loop 

AND/OR complex conditions 

(referring to other objects). 

Code 

example 

  

 

 

 

 

 

 

 

 
4.2 Description of the test data set 

The dataset used for the testing of the   rubric consists of ten exemplary projects taken from the virtual Snap! 

library. All of these projects can be found in the Snap! collection” at: The link has been hidden for the review 

process for anonymity reasons.  
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The following criteria were formulated for the dataset: 

• The projects should, as far as possible, have different levels of complexity in source code, 

presentation, and plot. 

• The projects can be interpreted as an average student performance after a teaching sequence in 

programming for novices. 

The following projects were selected. For reasons of clarity, the projects are presented in ascending order of 

complexity - Note: the test persons, however, received the projects in random order. 

 

Project 1. Row row - Movement of an object along predefined waypoints. 

The source code exhibits a linear, redundant structure. The object moves from one 

coordinate point to another, and the route is not automated. The outputs are 

implemented using a concurrently running script. The functionality and 

presentation are rudimentary. Overall, it is a simple project with some 

recognizable multi-threading usage. 

 

Project 2: Rainbow Ball – Movement of an object along a random route with colour change. 

The source code includes a loop and instructions from various categories such as 

movement, appearance, etc. The action is limited to visualization on the stage, and 

the representation is animated. Overall, it is an interesting project with an idea that 

was not further developed or implemented in a context. 

 

Project 3: Exclusive Complexity – Calculating the average of 10 number inputs. 

The source code has a linear structure, not parameterized, and lacks code 

modularization. 

The program flow is linear, with a single thread of execution. The presentation 

includes a background image and an object. Overall, it is a simple project involving 

mathematical calculations. 
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Project 4: Avocado gif – An animated postcard featuring an avocado mother plant and its seed. 

 The source code implements multiple objects. Various control structures are 

used, and the code is modularized. The action runs concurrently. The action 

involves visualization without user interaction, and the representation is 

animated. Overall, it is a small but visually appealing project with a concept. The 

narrative flow could be further developed. 

 

Project 5: Human body scanner – With a lens, various systems of the body can be observed. 

The source code is concise. Instructions from different categories are utilized. 

There is no code modularization or user communication. Overall, it is a small, 

visually appealing project with potential for further enhancements. 

 

 

Project 6: Guessing Game – The user is required to guess a number within a specific range. 

The source code includes control structures and instructions for user 

communication. Code is modularized. There are no stage animations, only one 

object. Overall, it is a simple project related to a classic task. 

 

 

Project 7: eCard Challenge – A game and an animated Halloween postcard combined into one. The user is 

required to answer quiz questions. 

The source code incorporates various types of instructions. Object interaction and 

communication are present. The action and presentation are cohesive. However, 

the source code lacks modularization, resulting in redundant code segments. 

Overall, it is a good project with room for improvement. 

 

 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 53 

Project 8: Fashion game – The user can dress and style a model. 

 An extensive project utilizing instructions from various categories, with code 

modularization. It has a complex structure, and the action and visualization 

complement each other. Overall, it is a comprehensive project with a clear 

concept. 

 

Project 9: Dogder – A reaction game where the square object needs to avoid black dots. 

 The source code utilizes a comprehensive range of instructions and control 

structures. It involves complex interactions, a well-defined narrative flow, and 

efficient visualization. However, the code lacks modularization, resulting in 

some code redundancy and reduced readability. Overall, it is a complex project 

that showcases a wide range of functionalities. Project 10: Shooter Arcade Game 

– A shooting game with different levels of complexity. 

An extensive project utilizing instructions from various categories, with efficient visualization. It has a complex 

structure, and the action and visualization complement each other. Overall, it is a comprehensive project with a 

clear concept, but the source code may be somewhat challenging to navigate due to its complexity 

5. Results 

Each project was first assessed with a school grade using German grading system from 1(A = very good) to 6 (F 

= insufficient). In the second part of the evaluation the test dataset was assessed with the described rubric.  

The rubric consists of 17 categories, each of which can be rated on four performance levels (0–3 points). This 

results in a maximum attainable score of 51 points (17 categories × 3 points). To ensure comparability 

between the two evaluation phases, the total rubric score was converted into the German grading system using a 

linear transformation formula: 

 

 

RS: reached score; MS: maximum score 
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The following graph (Fig.2) illustrates the comparisons of the mean values of the ten assessments. The blue cross 

represents the average ratings of the projects using grades without the rubric, while the orange cross represents 

the mean rubric scores converted using the formula mentioned above. 

 

Figure 2: The average grades for test dataset. Blue crosses mark average results for grading without a   

rubric. Orange crosses mark the average results for grading using the   rubric. For better comparison 

the score was converted in German school grades from 1(A) to 6(F) 

 

It is noticeable that the projects assessed with the rubric receive significantly lower ratings. Even the best project, 

on average, achieves only a good grade (B) compared to grading without the   rubric. Four projects do not meet 

the minimum requirements (grade D). In the open evaluation without a rubric, most projects achieve good to 

excellent grades. Both grading systems show in general the tendency from weak projects to good projects. 

Nevertheless, there are some outliers in the evaluation without a rubric, for example regarding projects 2 and 3 

or projects 5 and 6. The difference in evaluation is indeed significant, with certain projects showing an average 

difference of two grades (e.g., Project 4).  
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The following diagram (Fig. 3) shows the individual results of the assessment without a   rubric. 

Figure 3: Dispersion of the results after assessing with a school grade with no predetermined criteria. 

Average is marked with a cross. 

 

In the first part of subjective grade assessment of the projects, the spread of the grades for the respective projects 

is particularly striking. Project 2, for example, is assessed by the experts in a range of grades between 2 (good) 

and 4 (sufficient). The dispersion is strikingly high for all projects. Only project 10 is rated as a very good by all 

evaluators. Furthermore, it is striking that most projects tend to be assessed in the upper third of the rating range.  

The assessment of projects shows wide variation within each individual evaluation. For example, one participant 

rates project 2 as well as projects 8 and 9 with a good grade, although in the direct comparison it remains 

questionable whether these three projects achieve the same level. At the same time, this participant rates projects 

6 and 7 as significantly worse, with a satisfactory grade. Another participant also evaluates project 2 as good, but 

again evaluates projects 6,7,8 and 9 with an almost very good grade. In this evaluation model, it is thus not 

obvious according to which criteria the evaluations are made and a comparison of the evaluations among each 

other becomes almost impossible. Thus, this evaluation method does not appear to be transparent and cannot be 

used for the evaluation of the student projects. 

 

When using the rubric, a higher consistency of the distribution of points can be observed (Fig. 4) and the results 

of the assessment show usually much lower dispersion.  
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Figure 4: Dispersion of the results after assessing with a rubric. Maximum score result is 51 points for the 

best grade. Round dots mark the evaluation of German experts. Average is marked with a cross.  

 

Clear outliers can be observed in projects 6 and 8. In project 6, code outsourcing (Category 15: Build Your Own 

Block) in own blocks was sometimes overlooked during the assessment, resulting in an incorrect assessment. 

Project 8 was partially classified as having a too high level of mastery. Presumably, differences between the 

second and third levels of the rubric can be recognized less easily by inexperienced raters. For example, for this 

project, the third level is awarded in the categories on loops and branches, even though the source code has a 

level of only two. Despite the observed inconsistencies, the most projects can be assessed more homogeneously 

in each case. All ratings are mostly within one grade. This means that projects can be better assigned to the 

different levels. Thus, the projects are evenly distributed among the lower, middle, and high score ranges. The 

following graph (Fig. 5) shows the average deviation in grade points from the mean assessment grades for the 

respective projects with and without rubric. The overall mean deviation is 0.41 without the rubric. Without the 

ceiling effect, the deviation would probably be significantly higher, especially for good projects (8-10 

comparable with projects 1-7). The overall mean deviation is 0.24 with the rubric, demonstrating a substantial 

decrease in rating variability and improved assessment consistency. 
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Figure 5: Average deviation from mean grade, blue colour for grading without   rubric and orange 

colour for grading with the rubric.  

The dispersion of values around the mean is significantly smaller by using the rubric. The highest average 

deviation is 0.48 grade points. In contrast, without the rubric, the maximum average deviation from the mean is 

0.75 grade points. However, particularly as project complexity increases, the dispersion in evaluations with the 

rubric also tends to increase. There could be two reasons for this. First, evaluating complex structures requires 

more knowledge in assessment, making it more challenging for inexperienced evaluators. It may indicate 

inexperienced assessors´ inability to differentially assess complexity, as well as their tendency to uniformly 

assign a good grade. Second, a smaller evaluation dispersion without the rubric does not necessarily indicate a 

better quality of assessment. Rather, as the note scale stops, a ceiling effect occurs. The assessment results show 

a ceiling effect, where many projects are concentrated at the higher end of the score range, making it difficult to 

distinguish between them. It seems, project 10 is assessed as attaining the highest level by almost all evaluators 

without a rubric. Obviously, this project works as a standard in comparison to other projects because it is the 

most complicated example. That is the probable explanation for the highest score on the open grading. But if the 

projects are mapped to a rubric standard, project 10 does not achieve the best possible grade because it does not 

fulfil all the requirements. This project, like project 8, has a complicated structure, so evaluators probably have 

difficulties scoring it, even with a rubric. Therefore, this could explain higher dispersion in the evaluation of 



International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3 
ISSN 2513-8359 

 

 58 

complicated projects. The second reason could be that at higher levels; the   rubric allows for more room for 

interpretation and evaluative freedom. Overall, it can be still said that in most projects (except projects 8 and 10), 

the average deviation from the group mean is significantly smaller when using the framework, as Fig. 5 clearly 

shows. 

 

An individual comparison of the ratings by example person (light grey dot) is shown in the following diagram 

(Fig. 6). This is a participant who awards a very different rating, both with and without the rubric. The 

participant's ratings without the rubric revealed a ceiling effect, as most projects were scored highly, often 

receiving A grades. In contrast, when using the rubric, their evaluations became more nuanced and 

differentiated, indicating a more refined assessment of the projects.  

 

Figure 6: The results for a single example participant. Orange dots mark the evaluation with a rubric; 

blue dots mark the evaluation without a rubric. Corresponding group average is marked with crosses. 

The example data set shows the effects of the rubric. Originally, this participant rated projects significantly 

higher than the average. For example, project 4 deteriorates from a very good (1, A) grade to a "fail" (5, E). 

Projects 1, 3, 5, 6, 8 also experience a significant deterioration. This is an interesting phenomenon that could not 

be clarified within the framework of this evaluation. There was a tendency for all evaluators to be significantly 

higher at open grading. Furthermore, when the results of example person are compared with the mean values, it 

is noticeable that, with the rubric, the assessment is closer to the general mean values. The individual mean 
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deviation is 0.04 grading points (2.12 of 51 points). Except for one project (7), the results of open grading by 

example person are far from the average grading. The mean deviation with open grading is 0.86 grading points. 

The rubric allows each rater to evaluate using the same scale as all other raters. 

To examine the consistency of the evaluations and to determine whether the rubric improved the objectivity of 

grading, the interrater reliability (IRR) was calculated for both evaluation phases. For the free grading phase 

without predetermined criteria, Kendall’s coefficient of concordance (W) was applied, as this method is 

appropriate for ordinal data such as school grades (Gibbons, 1993; Olson et al., 2003; Venugopal et al., 2024). 

For the rubric-based evaluation, the raw scores were first converted into the German grading system with 

increments of 0.25 (e.g., 5.81 → 5.75) to ensure a direct comparison with the free grading phase. A higher 

Kendall’s W indicates greater agreement among raters, with values ranging from 0 (no agreement) to 1 (perfect 

agreement) (Olson et al., 2003). 

Figure 6: Comparison of results for individual projects by category. Selection of three projects. The 

picture shows an average of all graders. 
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This quantitative analysis provides an objective measure of the reliability of the evaluation process and 

demonstrates whether the rubric successfully reduced subjective variation in grading. The following section first 

presents the Kendall’s W values for both evaluation phases and compares the level of agreement among raters. 

The interrater reliability analysis revealed a clear difference between the two evaluation phases. Without the 

rubric, the agreement among the nine raters was moderate to good, with a Kendall’s W of 0.634 (p < .001). 

When using the developed rubric, the level of agreement increased substantially to W = 0.940 (p < .001), 

indicating very high to almost perfect concordance between raters. 

 

This result demonstrates that the rubric not only provides a structured framework for evaluation but also 

significantly reduces subjective variation in grading. The substantial increase in Kendall’s W suggests that the 

competence grid helped the raters to apply more consistent and comparable evaluation criteria, thus improving 

the reliability of the assessment process. 

 

Moreover, the designed rubric enables a more refined analysis of project quality at the individual level, providing 

a detailed breakdown of each project's strengths and weaknesses. Fig. 7 illustrates this capability, presenting a 

comparative analysis of three exemplary projects, highlighting their distinct characteristics and achievements. This 

nuanced evaluation allows educators to provide targeted feedback, fostering growth and improvement in each 

student's programming skills. 

 

This representation method can help to break down each assessment individually into strengths and weaknesses 

as needed. Using the evaluation results, it is possible to explicate single components and compare them. 

Specifically in this example, the selected sample dataset could be reviewed in terms of existing concepts and the 

level of proficiency achieved on average. For example, in the category Use of conditions, the “shooter arcade 

game”- project achieves a high level of mastery, “guessing game” project shows moderate expertise, and the 

“row row” project lacks understanding in this area. On the base of this analysis method, it is possible to evaluate 

learning goals and correlated results and to give more detailed feedback on each project. 
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6. Discussion and Conclusion 

The results of this study demonstrate that the rubric, with its 17 categories, is a comprehensive tool for 

evaluating programming projects. The primary aim of creating a structured description for creative block-based 

programming projects was successfully addressed with this rubric, providing a clear and systematic framework 

for assessment. Statistical analysis confirmed the reliability of the rubric. Kendall's W showed a high degree of 

agreement between assessors, demonstrating that the rubric supports consistent assessments by different 

assessors. At the same time, the distribution of scores indicated a possible ceiling effect, as particularly good 

projects achieved the highest possible score in several categories. This result shows that future iterations of the 

rubric could benefit from the addition of more advanced descriptions in order to better distinguish particularly 

high-performing projects. The lack of correlation between categories suggests that each category provides 

unique insights into the project's quality. As a result, the number of categories cannot be reduced without 

compromising the effectiveness of the evaluation when the rubric is used to derive a grade. However, for purely 

qualitative evaluations, certain categories may be excluded, particularly when specific aspects have not been 

covered during instruction. 

 

The comparison of the two assessment forms clearly demonstrated that using a rubric led to criterion-led 

assessment, significantly reducing the average deviation of grades and thereby improving comparability between 

evaluators. Qualitative feedback from the raters confirmed their satisfaction with the tool, highlighting its clarity, 

perceived objectivity, and the sense of “clear conscience” when grading. The included source code examples 

were particularly valued, especially by less experienced assessors.  

 

In terms of feasibility, evaluating programming projects with the rubric proved manageable. Assessing a single 

project required about nine minutes, totalling roughly 270 minutes for a class of 30 students. While no empirical 

data exist for grading times in computer science, this workload is comparable to grading a standard mathematics 

test, which typically takes around 360 minutes (Frank et al., 2023) . Thus, the rubric is not only reliable and 

comprehensive but also practical for classroom use, even in larger cohorts. 
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Nevertheless, the rubric has limitations. Its construction is based on student projects and qualitative expert 

assessment. As a result, not all possible Snap! categories are currently covered in the rubric, indicating a need for 

ongoing research and refinement. There is room for further differentiation of category descriptions, and higher 

proficiency levels would benefit from additional examples to support the application of the rubric. 

 

Implementing the rubric in diverse educational contexts may pose challenges, particularly when teachers have 

limited experience with programming and assessment. The results of this study indicate that the rubric can be 

especially useful in such cases, as it helps to harmonize evaluations and align them with the mean value, as 

illustrated in Figure 6. These findings highlight the potential of the rubric to support less experienced teachers 

and suggest that future research should explore strategies to further facilitate its effective use. 

 

Currently, there is no standardized, empirically validated framework for the evaluation of block-based 

programming projects. Existing approaches vary widely and are often designed for standardized, task-based 

contexts rather than authentic, open-ended projects. This study contributes to filling this gap by providing a 

structured, qualitative instrument for assessing Snap! projects, while also laying the groundwork for future 

comparative studies and broader validation efforts. 

 

The developed rubric may also be applicable to other block-based programming languages such as Scratch. 

However, this potential transferability was not examined within the scope of the present study. Future research 

should therefore investigate its suitability across different programming environments to validate and possibly 

extend its applicability. From the students’ perspective, the rubric can also serve as a reference framework to 

understand expectations and support self-assessment. Finally, by providing clear, criterion-based guidance, the 

rubric helps to overcome common challenges in evaluating problem-solving skills within the computational 

thinking process, particularly in the areas of algorithmic design, parallelization, iteration, and automation. 
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Abstract 

In our increasingly technological and advanced times, demand for K-12 education in computer science and 

information technology (CS/IT) is growing. Current data offer insight into student access to computer science 

education and course-taking. In addition to the expansion of individual course offerings, there is also a growing 

number of specialized CS/IT programs in high schools. However, there has been no systematic attempt to 

document the landscape of those programs. This study is part of a larger landscape study of secondary CS/IT 

programs in Virginia and uses a consensus-based approach to identify the common elements that expert and 

practitioner panelists believe should be included in such a program. The results reveal strong consensus on a 

wide range of program goals, activities, and curricular elements, suggesting that there are many opportunities to 

create purposeful and coherent CS/IT programs in high schools. 

 Keywords: computer science, information technology, high school, programs 
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1. Introduction 

1.1 Understanding the landscape of computer science/information technology (CS/IT) programs in high schools 

Educators and other stakeholders are keenly aware of the need for high-quality computing education at the 

secondary level – on the one hand, to enhance the diversity and thus the vibrancy and sustainability of the 

computing workforce, and on the other, to prepare citizens for a world increasingly reliant on computing. The 

need for computing education exists at multiple levels of schooling, but high school may be a critical juncture, 

when contexts and experiences influence students’ engagement, self-efficacy, and belonging in ways that affect 

their interest and post-secondary persistence, with respect to both STEM (e.g., Bottia et al., 2015, 2018; Legewie 

& DiPrete, 2014) and computing specifically (Eisenhart & Allen, 2020; Master et al., 2016; NASEM, 2021).  

On a state level, Virginia’s status as a technology hub lends particular urgency to issues of STEM education 

generally and computing education in particular. Over the past two decades, the Commonwealth of Virginia has 

invested considerable resources into STEM education programs at the high school level – in part through the 

establishment of schools and programs focusing on computing, computer science, and information technology. 

Virginia was also one of the first states to develop Computer Science Standards of Learning (Virginia 

Department of Education [VDOE], 2022a), and the first state to adopt a K-12 computer science framework 

(Crowder et al., 2020). A number of Virginia’s STEM-focused high schools and programs offer computing and 

information technology-oriented education, and many of these schools and programs appear to share common 

elements, including emphasis on advanced mathematics and computer science coursework, authentic and hands-

on learning, projects and internships, career exposure, development of workplace skills, and opportunities to earn 

college credits.  

This article reports on one part of a more comprehensive environmental scan of specialized high school 

computer science/information technology (CS/IT) programs in Virginia. In partnership with the Virginia 

Department of Education (VDOE), we have conducted a detailed census of schools and programs designed to 

support secondary students in pursuing computing education. One part of the project involves web- and survey-

based research to gather information about the programs in terms of characteristics such as 
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selectivity/inclusivity, program length, cohesiveness of program community, location, and student 

demographics. That is, the goal of that part of the project is to be able to describe what is offered by programs. 

The part of the research project reported herein is an attempt to understand what experts believe should be 

offered by specialized high school CS/IT programs.  

1.2 Research Question and Significance 

To understand beliefs about what specialized high school CS/IT programs should offer students, we used the 

Delphi Method among a panel of CS education experts whose professional backgrounds ranged from classroom 

teacher to university professor. Through three rounds of questions posed to our panel, areas of consensus and 

dissensus emerged that allowed us to surface understanding of what specialized CS/IT programs should offer.  

Specifically, the study was guided by the following research question: what common educational and 

experiential elements (e.g., advanced courses, degrees/college credits, credentials, hands-on/authentic 

experiences, internships, workplace skill development) do educators believe are important for specialized 

secondary CS/IT programs/schools to provide? 

This study is significant because while a number of Virginia’s STEM-focused high schools and programs offer 

CS/IT-oriented education, and many of them appear to share common elements, at present we have no 

systematic understanding of the prevalence of these elements across schools/programs. Nor do we have a 

conceptual map of the outcomes to which they are intended to lead. This study involves critical first steps that 

lay the groundwork for understanding similarities and differences among CS/IT-focused programs and schools 

and will help us develop appropriate measures for evaluating their effectiveness. 

2. Literature Review 

2.1 Defining CS Education 

Computer science as a discipline has long struggled to define itself as distinct from other disciplines, including 

mathematics and engineering. Today, with the growth of fields like artificial intelligence, data science, 
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cybersecurity, and human-computer interaction, new questions of the disciplinary boundaries of computer 

science as a discipline have emerged.   

These disciplinary and definitional struggles are evident in computer science education. Those charged with 

teaching within the discipline, from elementary school to postsecondary education, have had to figure out what 

their students need to know and what skills they need within a rapidly changing society. In K-12 education, 

many states, including Virginia, have adopted a definition of computer science drawn from Tucker et al. (2006). 

According to this definition, computer science is “the study of computers and algorithmic processes, including 

their principles, their hardware and software designs, their applications, and their impact on society” (p. 

2).  Virginia describes computer literacy (the general use of computers and programs), educational technology 

(applying computer literacy to school subjects), and digital citizenship (the appropriate and responsible use of 

technology) as the building blocks of computer science (Commonwealth of Virginia Board of Education, 2017). 

Furthermore, information technology shares key principles with computer science but is largely focused on 

applications of computer science, such as software installation as opposed to software development.  

These definitional and disciplinary overlaps present challenges to educators and policymakers in charge of 

developing courses and programs of study. They also present challenges to policymakers and researchers 

attempting to understand and report on computer science offerings in schools. As an example, for the purposes of 

our study, we settled on the “CS/IT” nomenclature to ensure that the research addressed the full range of 

programs that might include CS-related education.  

2.2. The Demand for CS Education 

Definitional challenges notwithstanding, there is clear demand for and growth in computer science education in 

K-12 education. According to a report from Code.org (Code.org et al., 2023), in 2023, 57.5% of U.S. public high 

schools offered at least one foundational computer science course. This percentage is up from 53% in 2022 and 

represents the largest year-to-year growth documented by Code.org. Furthermore, across the 35 states that 

provided relevant data, 5.8% of high school students were enrolled in one of those foundational computer 
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science courses. Finally, states allocated more than $120 million for computer science education, the most ever 

allocated in one year. 

This growth in CS education comes from a few different directions. From a federal policy perspective, while CS 

education had been discussed for decades, CS education was specifically mentioned in federal education policy 

for the first time in the 2015 Every Student Succeeds Act (ESSA) which reauthorized the Elementary and 

Secondary Education Act (ESEA). Specifically, computer science was included in the definition of a “well-

rounded” education in section 8102 of ESEA of 1965. However, CS education got a major boost from the federal 

government when, in 2016, the Computer Science for All initiative was launched. That initiative offered $4 

billion for states and $100 million for school districts that agreed to expand computer science education over ten 

years (Marshall & Grooms, 2022).  

Undoubtedly, this demand is also fueled by societal changes and the changing workforce. That is, to the extent 

that K-12 education is aimed at preparing students for the workforce, schools must help students explore 

information technology and computer science (Muraski & Iversen, 2022). And, as Marshall & Grooms (2022) 

document, industry and private sector actors have been significantly involved in advocacy of CS education, 

though such influence networks are often focused on private interests and not on broader policy goals including 

equity or equality of opportunity.  

2.3. The Effects of CS Education 

Alongside the growing demand for CS education, there has been no shortage of research on pedagogical 

techniques within CS education. However, there is less research on its overall impacts. It may be a bit early to 

assess the effect of this new policy emphasis, but there has been some research on the relationship between CS 

education and the development of skills such as computational thinking as well as the relationship between CS 

course-taking in K-12 education and the selection of STEM majors in college. 

Outcomes that have been examined include interest in CS (Clarke-Midura et al., 2020; Sabin et al., 2017; Starrett 

et al., 2015; Webb & Rosson, 2011) and CS self-efficacy (Aivaloglou & Hermans, 2019; Aritajati et al., 2015; 
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Elizabeth Casey et al., 2017). The research on the development of computational thinking skills via CS education 

is quite robust. Lee et al. (2022) conducted a systematic review of the research on CS education and K-12 

students’ computational thinking (CT) skills and found “strong evidence that CS education promotes the 

development of students’ CT in the K-12 setting while improving students’ creative and critical thinking skills” 

(p. 10). Considering longer term outcomes, computer science course-taking in high school has been associated 

with the selection of STEM majors in both two-year and four-year institutions (Lee, 2015; Giani, 2022; Armoni 

& Gal-Ezar, 2023).  

2.4. The Challenges for CS Education 

Nearly a decade into the “CS for All” era, one of the most significant challenges CS education faces is that CS 

education has not been for all. The most recent State of Computer Science Education report from Code.org 

shows that schools in rural and urban areas, as well as smaller schools, are less likely to offer a foundational CS 

course. Also, “Black/African American students, Hispanic/Latino/Latina/Latinx students, and Native 

American/Alaskan students are less likely to attend a school that offers foundational computer science” (p. 5). 

CS-related outcomes are inequitable as well. Based on data from the International Computer and Information 

Literacy Study (ICILS) in 2018, Karpiński et al. (2021) found that “...regardless of what proxy for 

socioeconomic status is employed, and in line with expectations, students from more advantaged backgrounds 

perform better in both [Computer and Information Literacy] CIL and [Computational Thinking] CT tests, 

compared with their peers from less advantaged backgrounds” (Karpiński et al., 2021, p. 3).   

The availability of well-qualified CS education teachers is an additional equity challenge for the field. “In order 

to fully realize the promise of computing education, we need to ensure that students have highly qualified 

teachers with knowledge of computing, and that teachers are implementing pedagogical approaches that center 

students’ lived experiences” (Shah and Yadav, 2023. P. 469). For both CTE and general education CS courses in 

K-12 education, the challenge is finding teachers who have both the pedagogical and content knowledge needed 

to best facilitate learning in computer science.  
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Finally, a real challenge in the K-12 CS education space is figuring out what students need to know and be able 

to do as a result of taking CS courses and enrolling in CS/IT programs in order to….??. In an increasingly 

technological society, those choices are important but difficult. Therefore, this study aims to inform those 

curricular conversations. 

3. Research Design 

3.1 Delphi method study 

Our research employed the Delphi method to elicit beliefs from a panel of experts on computer science education 

to see where there is consensus (or dissensus) on the goals and characteristics of specialized secondary CS/IT 

programs. In the Delphi method, “[T]he aim is to reach agreement or a convergence of opinion, and the 

structured process allows for the effective amalgamation of information” (Drumm et al., 2022, p. 3). There are 

variations across studies in how the Delphi Method is carried out, but, generally, a panel of experts is asked to 

complete multiple rounds of questionnaires. The first-round questionnaire includes mostly open-ended questions; 

data from that questionnaire are used to generate a second questionnaire consisting of five-point, agree-disagree 

scale questions. In most cases, a third questionnaire is used to seek consensus and/or prioritization in areas where 

there was consensus.  

3.2 Study Sample 

Our study included three rounds of questionnaires (described below) administered to a panel of individuals with 

experience in CS education and likely to be informed about specialized computer science and information 

technology programs for Virginia high school students. We cast a wide net to identify potential participants, 

drawing on sources including known CS/IT program directors, professional contacts, individuals recommended 

by our partner, VDOE, etc. We chose not to include representatives from business or industry. At this point in 

our research, we were primarily concerned with understanding the needs of students and families and the 

capacities of teachers, schools, and programs – not with workforce or employer demand or pipelines, though of 

course the different realms are interconnected. In addition, some schools and programs actively work with 
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industry partners to better understand their needs through curriculum, credentials offered, etc., so business 

interests are to some extent already reflected. 

With these goals in mind, we developed a list of 56 potential participants. We then selected 39 to contact, with a 

view to including individuals in a range of roles at different types of institutions and organizations, in different 

regions of Virginia, who might represent a spectrum of perspectives on specialized CS/IT programs. We 

contacted potential participants by email, inviting them to participate, explaining the purpose of the study and 

providing details, and offering them a $25 gift card incentive for completing all three rounds.  Of those we 

contacted, 23 agreed to participate, and 17, or 44%, completed all three question rounds. Five were not willing to 

participate (13%), and 11 never responded (28%). Three referred us to other individuals within their institution 

who were better positioned to respond to our request; one of the three referrals agreed to participate, and we 

replaced the three original invited participants with the three referrals for the purpose of these calculations. 

3.3 Study Questionnaires 

The Round 1 questionnaire consisted of nine open-ended questions (some in multiple parts). Panelists were 

asked about their perceptions of specialized high school CS/IT programs, including their intended goals, skills 

they should foster, what sorts of experiences they should offer; panelists were also asked about their views on 

admissions approaches and program recruitment. Round 2 was designed to ascertain the degree of consensus 

about program goals and other elements. The themes and language used by participants in Round 1 formed the 

basis for seven sets of closed-ended questions and three further open-ended questions in Round 2. Questions 

again asked about program goals, skills taught/learned, experiences offered, and approaches to admissions – all 

in closed-ended format. Foth et al. (2016) reviewed studies using the Delphi method in nursing and found that 

the studies that predefined consensus described it as a percentage of agreement for an item, “...usually 60% 

agreement or higher (median = 75%)” (p. 118). Diamond et al. (2014) found a similar median consensus level in 

their review of Delphi studies. We defined “consensus” as 70% agreement or higher.  

The purpose of Round 3 was twofold. First, we wanted to encourage participants to consider their own 

perspectives in light of others’ responses before responding to a final set of questions, so we provided 
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participants with a summary report of the Round 2 findings. Second, since there was so much consensus 

generated in Round 2, in the final round we chose to ask participants which of the consensus elements they 

would prioritize in specialized high school CS/IT programs. For example, there was strong consensus on a large 

number of goals for such programs, so we asked the panelists to tell us which three goals should be emphasized. 

Participants received both the Round 2 summary and the Round 3 questionnaire at the same time.  

4. Findings 

The findings about common elements of specialized HS CS/IT programs are described below, and are organized 

into three categories: program goals, program activities, and program skills/competencies.  

4.1 Program Goals 

Using the data from Round 1, we identified nine possible goals for specialized high school CS/IT programs. The 

goals clustered around two broad themes: specialized CS/IT education as a means to pursue learning about 

CS/IT (e.g., the item “allowing students explore in interest in CS/IT”), and specialized CS/IT education as 

preparation for post-secondary activities (e.g., “providing students with a foundation for post-secondary 

education in CS/IT.”  

On eight of the nine goals, Round 2 consensus was nearly complete, with over 90% of the panelists agreeing or 

strongly agreeing with each, as shown by the orange bars in Figure 1. Even the goal endorsed by the smallest 

percentage – helping students obtain a job in CS/IT after HS graduation – was supported by nearly 80%. More 

than 70% of panelists strongly agreed with six of the nine listed goals. The three that did not reach consensus 

based on strong agreement were promoting access to CS/IT for students historically marginalized in CS/IT 

education (67% strongly agreed), providing students with a strong foundation for post-secondary education in 

CS/IT (61% strongly agreed), and helping students obtain a job in CS/IT after HS graduation (17% strongly 

agreed).  

In Round 3, panelists were asked to choose the three of the nine goals from Round 2 that they saw as most 

important for programs to emphasize. The blue bars in Figure 1 show the percentage of participants who selected 
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each goal as one of the three most important, with priority goals falling into three broad groups. The first group, 

selected by more than 40%, included equipping students with widely applicable CS/IT skills, helping students 

prepare for a career in CS/IT, allowing students to explore an interest in CS/IT, and promoting access to CS/IT 

for students historically marginalized in CS/IT fields. Only the first of these was selected by more than half the 

panelists. The second group of prioritized goals included those selected by one third of panelists or slightly 

fewer, including: supporting students in developing transferable CS/IT skills for college or the workplace, 

making students aware of CS/IT career possibilities, and providing a sequenced opportunity to allow students to 

go deeper in their learning of CS/IT. Finally, two goals were selected by the lowest percentages of respondents: 

providing students with a foundation for post-secondary education in CS/IT and helping students get a job in 

CS/IT after high school graduation. Even though some programs espouse these goals, our panelists may have 

assigned them lower priority because each addresses the needs of only a subset of high schoolers. 

Panelists also responded to an open-ended question on the Round 2 questionnaire inviting them to comment on 

their agree–disagree ratings, providing further insight into their thinking about program goals. Three themes 

emerged from those data. The first theme reflected a belief that specialized CS/IT programs should provide a 

wide range of experiences to students. These experiences included specific elements such as “multiple offerings 

for juniors and seniors, depending on what they want to do post-high school,” and more general 

recommendations such as “Opportunity and exploration. Life skills and knowledge, not necessarily career 

specific.” A second theme was the importance of CS/IT programs offering work-based learning and career 

readiness elements that prepare students for the workplace. The third theme involved the need for CS/IT 

programs to teach the technical skills necessary to be knowledgeable about and successful in computer science 

and information technology. Specific skills included cybersecurity, software development, programming, Unix, 

Python, Microsoft, and Google.  

4.2 Program Activities 

Using the data from Round 1 as our starting point, we identified 10 possible activities that participants thought 

specialized high school CS/IT programs should offer, and asked about each in a closed-ended, agree–disagree 

format in Round 2. Figure 2 below shows the activities, along with the percentage of panelists who agreed or 
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strongly agreed that they should be offered (the yellow bars) in the Round 2 questionnaire. Figure 2 also shows 

the percentage of panelists who chose each activity as one of the three most important to emphasize (in blue) in 

Round 3.  

 

Consensus that programs should include the 10 activities was almost complete: approximately 90% of the 

panelists agreed or strongly agreed that each activity should be included in programs. The only activities that did 

not receive 90% support were “visiting CS/IT professionals at their place of work,” and “connecting or 

networking with professionals and others in the community.” Percentages strongly agreeing were the highest for 

hands-on learning activities (94%), solving real-world problems (89%), and participating on teams (78%).  

Again, on the Round 3 questionnaire, respondents were asked to select the three activities that they thought were 

most important for specialized CS/IT programs to emphasize. Consensus was identified for only one of the ten 
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activities, “engaging in hands-on learning activities,” with 71% of participants selecting the activity for 

emphasis. Considering the highest priority activities, there is an emerging consensus around constructivist-

oriented pedagogy. That is, at least the first two highest priority activities reflect a possible consensus about the 

value of constructivist-oriented pedagogy. For example, one participant shared that they 

…believe teachers need to be intentional about creating opportunities and projects where students have to 

work together. The curriculum for a lot of these programs really lends itself to students working 

independently and at their own pace. The more students can communicate and collaborate in the 

classroom, the better because that is reflective of how they will function, at least some of the time, in the 

workforce. 

Despite the CTE focus of many CS/IT programs in Virginia, none of the six specific work-based learning 

elements was universally seen as important for programs to emphasize. Just over and just under one third felt 

that experiences such as participating in internships (35%) and earning industry credentials (29%) were among 
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the most important experiences to emphasize, while much smaller percentages prioritized working with an 

advisor, career counselor, or teacher to plan steps toward a career (18%), hearing about CS/IT careers or industry 

from practicing professionals (18%), connecting or networking with professionals (12%), or visiting CS/IT 

professionals at their place of work (6%). However, a total of 71% of panelists prioritized at least one of the six 

work- or career-oriented experiences, suggesting that panelists agreed on the value of work-based learning, just 

not the specific experiences.  

4.3 Program Skills/Competencies 

To identify potential skills or competencies that participants believed were important to include in specialized 

CS/IT programs, we analyzed responses to the Round 1 questionnaire. Our analysis generated nine potential 

CS/IT-related skills or competencies. In round 2, as Figure 3 shows, over 80% of panelists agreed or strongly 

agreed that program curricula should address each skill. Considering strong agreement only, 72% strongly 

agreed that specialized programs should help students learn to ensure the safety and security of private 

information on computing systems and networks, 67% strongly agreed that students should learn to troubleshoot 

non-coding-related problems, and 61% strongly agreed that students should learn to debug code.  

In contrast to our approach for program goals and activities, we did not use the third-round questionnaire to ask 

the panelists to pick the three skills or competencies that programs should emphasize. Furthermore, skills and 

competencies are likely to vary across programs with different foci (e.g. a program within a programming 

pathway would have a different curriculum than a pathway focused on, say information security).  In an open-

ended question in Round 2, panelists had the opportunity to explain in their own words what they thought 

students should learn in a specialized high school CS/IT program. From these responses, one theme linked 

learning to the purpose of the program and the ostensible focus of the curriculum. As one participant put it, “I 

think it depends on what the purpose of the programs are: prep for job out of high school, prep for certification 

programs, prep for college courses, or prep for almost any career in STEM.”  
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This purpose-dependent theme was echoed by another participant, who stated “I think that some topics should be 

emphasized more or less by students, depending upon the student’s focus more on CS or more on IT.” Another 

noted the importance of program and curriculum responsiveness to diverse student interests and career plans: 

“we want to provide [sic] them with a variety of concepts so they can make informed choices about programs 

[sic] options after high school.” 

4.4 Summary of Common Program Elements 

Table 1 lists the goals, activities, and skills/competencies that the panel of experts indicated should be the 

elements of a specialized high school CS/IT program. There was consensus (>70% agreed or strongly agreed) 

around each of the listed elements, which are sorted in order of level of consensus. The darkest shading reflects 

100% consensus; the second darkest shade reflects a minimum of 89% consensus for activities and skills; the 

lightest gray represents 84% consensus; and white represents consensus between 70% and 83%. For goals and 
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activities, the three elements with highlighted borders were chosen by the highest number of panelists as key 

elements programs should emphasize.  

Table 1. Common program elements as identified by the panel of experts 

GOALS ACTIVITIES SKILLS/COMPETENCIES 

Allow students to explore an 

interest in CS/IT 

Engaging in hands-on learning 

activities 

Ensuring the safety and security of private 

information on computing systems and 

networks 

Support students in developing 

transferable skills for college or 

the workplace 

Solving real-world problems Troubleshooting non-coding kinds of 

computing problems 

Make students aware of CS/IT 

career possibilities 

Working on projects that 

address issues of concern to 

students or their communities

  

Debugging 

Provide a sequenced opportunity 

to allow students to go deeper in 

their learning of CS/IT  

Hearing about CS/IT careers 

or industry from practicing 

professionals  

Understanding the basic elements of a 

computer network 

Equip students with widely 

applicable CS/IT skills  

Participating on teams Examining the societal impact of 

technology 

 

Help students prepare for a career 

in CS/IT 

Participating in a CS/IT-

related internship or other 

immersive work experience 

Practicing responsible digital citizenship 

Provide students with a 

foundation  for post-secondary 

education in CS/IT 

Earning industry credentials Programming 
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Promote access to CS/IT for 

students historically marginalized 

in CS/IT  

Working with an advisor, 

career counselor, or teacher to 

plan steps toward a career  

Identifying different programming 

languages 

 

Help students get a job in CS/IT 

after HS graduation 

Visiting CS/IT professionals 

at their place of work  

Understanding the software development 

lifecycle 

 Connecting or networking 

with professionals and others 

in the community  

  

 

4. Discussion 

At the end of the final questionnaire, we offered the following prompt to the panelists:  Having now completed 

three rounds of questionnaires, how has the process made you think about specialized CS/IT programs or CS 

education in a new or different way? For example, one participant wrote, “I’ve thought about things I haven’t 

considered before,” and “it brought into focus that programs really are so limited and there are tough choices to 

be made. We cannot be everything to everyone.” Similarly, one panelist offered a very good summary of the 

findings of this study by writing that the process had led them to have more respect for “building the program 

better. There are lots of moving parts.” 

The many moving parts are visible in the many different possible goals, activities, and curriculum elements 

identified in Round 1. Then, in Round 2, there was consensus that CS programs should reflect nearly all the nine 

possible goals and ten possible activities. Furthermore, when asked in Round 3 which three of the nine consensus 

goals they would emphasize, the goal that panelists picked most frequently was equipping students with widely 

applicable CS/IT skills. Panelists appeared to believe that specialized high school CS/IT programs should be 

broad enough such that students could either pursue postsecondary education in CS or be prepared for entry into 

the modern workforce. That belief informs as well as reflects the design of CS/IT programs. A significant 

proportion of the existing programs are under the CTE umbrella, and CTE tends to be organized around “career 

clusters” and pathways. Yet a number of those programs also include a dual enrollment option through which 

students can earn college credit, suggesting that students who study CS in high school have a range of future 
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options. As one participant noted, “I think we need to be conscious of not making HS programs only career 

oriented – it also needs to be a time for exploration and discovery.” Balancing the workforce development 

orientation of many specialized high school CS/IT programs with opportunities for exploration and discovery 

may be a real challenge. 

From a curriculum and pedagogical perspective, the participants favored more constructivist-oriented programs. 

That is, the participants prioritized hands-on, project-based learning that addressed real-world problems of 

practice in computer science. There was wide consensus on the inclusion of high-quality work-based learning 

opportunities in specialized CS/IT programs, but those sorts of activities were prioritized at a lower level than 

other activities. These findings, too, present opportunities as well as challenges. That is, there are plenty of 

technologies and tools available for teachers to engage in CS activities that are oriented toward constructivism 

or, better, constructionism (CITE). That there are so many possibilities, though, is what presents a challenge. The 

curricular and pedagogical possibilities can be overwhelming.   

Ultimately, we contend that the degree and breadth of consensus is reflective of the demand for CS education in 

the K-12 context. There is so much that we can be doing to help young people to be productive citizens in a 

society increasingly mediated by computing technologies. As of the end of 2024, 11 states have computer 

science graduation standards (Code.org, 2024). And, while requiring that students take at least one CS class 

improves access to CS education, this study suggests that a single course is unlikely to sufficiently educate 

students. Specialized CS/IT programs in secondary schools offer opportunities for students to go beyond what 

they can learn through a single course required for graduation.  

The significance of the study reported herein lies in its unique focus on specialized CS education programs rather 

than on pedagogy or course enrollments. There is a growing number of landscape reports about CS education, 

and the Expanding Computing Education Pathways (ECEP) Alliance provides access to a number of those state-

level reports (ECEP, 2022a) as well as state-level data dashboards (ECEP, 2022b). Those reports and dashboards 

are all focused on CS access in terms of course-taking; we are not aware of efforts to systematically document 

beliefs about common elements secondary CS/IT programs should provide. Our other investigation explores the 

elements secondary CS/IT programs are currently offering. Though not yet complete, that study has already 
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documented dozens of CS/IT programs for high school students just in Virginia.  The findings from this 

common elements study provide us with a conceptual framework for understanding the educational opportunities 

provided by the programs identified in the other part of the larger study. Our intent is to use that framework to 

advance a research agenda aimed at understanding the outcomes of secondary CS/IT programs. The current 

study makes clear that the framework is necessarily comprehensive with lots of moving parts.  
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