Volume 7, No: 3
February 2026

ISSN 2513-8359

International Journal of
Computer Science Education
in Schools

Editors
Dr Filiz Kalelioglu

Dr Yasemin Allsop

WWW.1jcses.org

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

International Journal of Computer
Science Education in Schools

Nov 2026, Vol 7, No 3
DOI: 10.21585/ijcses.v713

Table of Contents

Page

Ozcan Toy, Serhat Bahadir Kert
Teaching Computer Science: Analysing the Key Factors Affecting Educators' Professional | 3-35

Motivation

Nicole Marmé, Jens-Peter Knemeyer, Alexandra Svedkijs

Rubric for the qualitative assessment of student-designed Snap! Projects 36-67

Jonathan D. Becker, Amy D. Corning, Jon S. Graham, James T. Carrigan
Towards a consensus on program elements of specialized computer science / 68-91

information technology (CS/IT) programs in high schools: A Delphi study

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Teaching Computer Science: Analysing the Key Factors Affecting

Educators' Professional Motivation!

Ozcan TOY!

Serhat Bahadir KERT?

'Yildiz Technical University, Tiirkiye, ozcantoy@gmail.com

2Y1ldiz Technical University, Tiirkiye, sbkert@yildiz.edu.tr

DOI: 10.21585/ijcses.v7i3.243

Abstract

Computer science education is essential and presents both pedagogical and technological problems. Computer
science educators must possess a passion for computing and education. This study investigated the professional
motivation of computer science educators. A robust and reliable scale has been developed to evaluate the
elements influencing the professional motivation of computer science instructors. The study used a quantitative
correlational survey model. The scale was created utilizing data from 798 computer science scholars across
Turkey's provinces. Data was gathered in three stages. The Exploratory Factor Analysis (EFA) involved 246
instructors, the Confirmatory Factor Analysis (CFA) included 366 teachers, and the final application
encompassed 186 teachers. The data analysis software utilized was SPSS version 25.0 and AMOS version 24.0.
The findings indicate that CFA was employed to examine a structure comprising 18 elements and two factors.
The results indicated that instructors' motivation did not significantly vary based on gender, alma mater, years of
experience, or location of assignment. A notable disparity was detected in the management factor based on the
educational level of the teachers (primary, secondary, or high school). Independent samples t-tests revealed no
significant difference in motivation scores based on gender (t[184]=.102; p>0.05). ANOVA results indicated no
significant differences based on years of professional experience (p=0.068; p<0.05) or city of assignment
(p=0.199; p<0.05). ANOVA indicated a significant impact of educational level (p=0.058; p<0.05) on the
management-based factor. Post hoc comparisons (Tukey HSD) revealed that high school teachers exhibited

considerably greater management-related motivation than their counterparts at the primary and secondary levels.

Keywords: Computer science, teacher, motivation, professional motivation, exploratory factor analysis (EFA),

confirmatory factor analysis (CFA), ANOVA.

! This research has been derived from the first author's master thesis

mailto:ozcantoy@gmail.com
mailto:sbkert@yildiz.edu.tr

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

1. Introduction

In the last thirty years, computer science has become an essential discipline in technology and education (Popovich
et al., 2008). The widespread use of computers is increasingly viewed as a vital skill in the digital age, requiring
the integration of computer science courses into educational programs. This integration has amplified the
importance of computer science educators' motivation. The motivation of educators profoundly impacts the
quality of computer science training. Teacher motivation is a vital factor impacting educational quality, as it
influences lesson design, student engagement, and overall educational efficacy (Yavuz & Karadeniz, 2009).
Teacher motivation is a determinant that directly impacts students' achievement in academic pursuits. Motivated
educators execute their classes with more efficiency, while those lacking motivation view lessons mostly as a
burden (Mabula, 2013). Teacher motivation is seen as an essential factor for success in education. Modern
motivation research employs more sophisticated frameworks than merely distinguishing between intrinsic and
extrinsic motivation; notably, Self-Determination Theory differentiates between autonomous motivation (such as
intrinsic interest and alignment with professional values) and controlled motivation (such as external pressures),
providing a more comprehensive foundation for scale development and interpretation (Ryan & Deci, 2000).
Previous studies frequently differentiated between intrinsic motivation (internal fulfilment) and extrinsic
motivation (external rewards). Contemporary frameworks, such as Self-Determination Theory (SDT), construct
motivation on a continuum ranging from autonomous to controlled forms, offering a more complex understanding
(Ryan & Deci, 2013). Nonetheless, in the rapidly evolving and continuously changing field of computer science
education, the matter of teacher motivation has not been sufficiently investigated. The framework of computer
science education requires enhanced technical proficiency and continual updates compared to other disciplines (Ni
et al., 2023). Therefore, computer science educators must have a compelling motivation to engage in continuous
professional development and to provide their students with the most current material (Ni et al., 2023; Yadav et
al., 2017). The motivation of computer science educators is essential for enhancing educational quality and
promoting student success in this field. An examination of national and international literature regarding teacher
motivation in computer science education highlights the importance and shortcomings of the subject. Although
there is no targeted research on teacher motivation in computer science education within the national literature,

there exist extensive studies regarding teacher motivation in general. The research highlights various factors

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

affecting teacher motivation, such as the leadership styles of school administrators and the personal expectations

of teachers (Coskun, 2009; Duman, 2014; Elibol, 2013; Ertugrul, 2021; isgériir, 2020; Kulpcu, 2008).

Nonetheless, there exists a paucity of studies in the global literature regarding the motivation of computer science
educators. The "Motivation to Teach Computer Science (MTCS)" scale, developed by Martin et al. (2023), is a
significant and thorough evaluation of the motivations of computer science instructors. This measure evaluates
instructors' motivations according to self-determination theory across four interconnected criteria. The study
emphasized that teachers display a spectrum of motivation, ranging from external pressures to intrinsic drive. It
has been established that efforts to enhance teacher motivation in computer science education must correspond
with the instructors' requirements (Martin et al., 2023). These studies highlight the impact of teacher motivation
on educational quality and emphasize the need to develop strategies to enhance teacher motivation in computer
science education. The results, apparent in both national and international literature, highlight the necessity for

comprehensive research on teacher motivation in computer science education in this study.

Presently, computer science education has been integrated into the curriculum at both the university level and from
elementary school forward. Coding classes have been taught from an early age in the USA, Europe, and Far Eastern
countries (Balanskat & Engelhardt, 2014). This situation constitutes substantial evidence of the swift global
expansion of interest in computer science education. A primary justification for providing computer science
education at a young age is the increasing demand for computer skills in the future workforce (Chen et al., 2017).
In this context, it is essential for students to be introduced to computer science at a young age, allowing them to
function as both consumers and creators in the technical domain (Grout & Houlden, 2014). Computer science
education equips students with technical expertise while cultivating vital skills such as problem-solving, critical
thinking, and creativity (Wing, 2006). While this study was executed inside the national framework of Tiirkiye,
its contributions possess international significance. Motivation serves as a universal catalyst for teacher
effectiveness, and the validated instrument created herein provides a framework that may be customized or

evaluated in various nations.

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

This study is grounded in Self-Determination Theory (SDT), which conceptualizes motivation along a continuum
from autonomous to controlled forms and emphasizes basic psychological needs (autonomy, competence,
relatedness) as drivers of sustained professional engagement (Ryan & Deci, 2000). To account for organizational
and management-related influences observed in our factor structure, we complement SDT with the Job Demands—
Resources (JD-R) model, which highlights how job resources (e.g., administrative support, equipment, workload
management) can foster motivation and buffer job demands (Bakker & Demerouti, 2007). Mapping our instrument
and findings to these frameworks allows a more nuanced interpretation than a simple intrinsic—extrinsic
dichotomy. The two-factor structure—encompassing both purpose-driven (SDT) and management-related (JD-R)
elements—represents constructs that surpass national boundaries. This work offers a psychometrically robust
instrument and empirical evidence from the burgeoning field of school computers, contributing to worldwide
dialogues on teacher motivation and facilitating comparative research across many educational systems. This
research aims to rectify a significant gap in the field by examining teacher motivation in computer science

education. This study aims to address the following two principal research topics to accomplish its objective:

RQI. Is the Perception Scale for Professional Motivation in Computer Science Education a valid and reliable
instrument for measuring teachers’ professional motivation?

RQ2. What are the underlying factors that shape the professional motivation of computer science teachers?
RQ3. To what extent do these motivational factors differ according to demographic and professional
characteristics (e.g., gender, university of graduation, educational level, years of professional experience, and

city of assignment)?

2. Method

This research utilized a quantitative methodology to examine teacher motivation in computer science education.
The fundamental characteristic of quantitative research is that the data may be represented and analysed
numerically (Karasar, 1994). The study aims to identify several factors affecting teacher motivation through
quantitative analysis and to draw implications from the findings. The relational screening model was preferred in

the study as one of the survey methodologies. This model's correlation type enables a more sophisticated analysis

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

of the relationship between variables. This study utilized the relational screening paradigm to evaluate the
established scale and examine variations in teachers' professional motivation based on demographic factors like

gender, educational background, years of experience, and location of assignment.

¢ Decision-Making Regarding the Development of
Measurement Instruments

* Analysis of National and International Research
Pertaining to the Topic

+ Creation of the 94-Item Pool

« Evaluation of the Substance Pool by Experts

* Modification of the Scale Following Expert Feedback

« Execution of the Initial Application with the Developed
Scale and Data Collection from 246 Participants

« EFA Implementation

+ Conducting the Second Application and Gathering Data
from 366 Individuals

* Implementing the CFA

* Finalizing the Computer Science Education Professional

Motivation Perception Scale

Figure 1. Operations Executed in Phases 1 and 2

This model enables the analysis of the relationship between teacher motivation and recognized effective elements,
while predicting the prospective effects of these interactions on educational processes. Karasar (2003) contends
that the relational screening model is an effective method for statistically evaluating the relationship between many

variables. This study aims to clarify the factors affecting the motivations of computer science educators.

2.1 Participants

In study, data from extensive cohorts is employed to obtain critical information (Biyiikoztiirk, et. al., 2017). The
study population consists of computer educators working throughout Turkey. This research utilized a sampling
approach to obtain more accurate information about a specific demographic instead of including the entire
population. A sample is defined as a subset that represents a certain part of the population, forming the foundation

for the researcher’s inquiry (Biiytikoztiirk et al., 2017). This study utilized a convenience sampling method, a

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

variant of purposive sampling. This method entails choosing easily accessible individuals to facilitate and optimize
the data collection process for the researcher (Yildirim & Simsek, 2003). As a result, readily accessible computer
instructors in Turkey have formed the study group for the project. This technique has enabled the formation of a
sample suitable for the research objectives, taking into account practical limitations such as study duration and
accessibility. The scale was administered online through a survey link distributed to computer science educators
in both public and private institutions throughout Tiirkiye. Nonetheless, the predominant portion of respondents
originated from public schools, while private school educators were inadequately represented in the sample. The
study utilized convenience sampling of easily accessible teachers; hence the findings cannot be confidently applied
to all computer science educators in Tiirkiye. The sample may not accurately reflect the diversity of geographies,
educational institutions, and available resources nationwide. Among the final scale participants, Sakarya exhibited
the highest representation at 15.1% (f=28), whereas only one participant (0.5%) was sourced from various
provinces including Adiyaman, Afyonkarahisar, Bingdl, Bitlis, Burdur, Edirne, Elazig, Erzincan, Giresun,
Karaman, Kirikkale, Kirgehir, Konya, Mersin, Mugla, Mus, Rize, Tekirdag, Trabzon, and Yalova. This
disproportionate distribution further constrains the generalizability of the findings. Furthermore, despite the survey
being disseminated to educators in both public and private institutions, the questionnaire lacked a question
specifying the kind of institution, rendering it impossible to ascertain the precise representation of private school
teachers in the sample. A scale development study was conducted during the project's initial phase. Subsequent to
the scale's creation, the final application was implemented utilizing the acquired scale. Data were gathered from a
total of 186 computer educators for the final application. Table 1 below displays the statistics regarding the gender

variable of the individuals that participated in the final application.

Table 1. Data Regarding the Gender Variable of Participants in the Final Application

Gender Frequency (f) Percentage
(%)

Male 115 61.8

Female 71 382

Total 186 100.0

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

2.2. Data Collection Tools

This study utilizes a Likert-type scale, designated as the "Perception of Professional Motivation in Computer
Science Education Scale," developed by the researcher, as the instrument for data collection to achieve the research
objective. Likert-type scales are tools commonly utilized in social sciences to evaluate individuals' attitudes
regarding a specific subject. Tezbasaran (1997) contends that Likert-type scales are often preferred for their
capacity to measure equal intervals. The scale utilized in this study was deemed appropriate for this reason. The
developed scale consists of two main dimensions: 'Factors Arising from Education - Teaching' and 'Factors Arising
from Management.' These two dimensions aim to comprehensively evaluate instructors' views on professional
motivation. A comprehensive content validation approach was undertaken to guarantee that the scale accurately
represented the constructs delineated in our theoretical framework (SDT and JD-R). The scale's development
entailed a multi-phase process: (1) an initial pool of 94 items was created via literature review; (2) items were
refined following evaluation by a language expert; (3) three experts in computer science education assessed the
items for clarity, representativeness, and content validity; (4) a pilot version comprising 31 items was administered;
(5) Exploratory Factor Analysis (EFA) condensed the instrument to 26 items across two factors; and (6)
Confirmatory Factor Analysis (CFA) further refined the scale to its final structure of 18 items. This systematic
procedure offers substantial evidence for the construct validity and reliability of the scale. An initial item pool of
94 statements was developed based on this method. The pool underwent an initial evaluation by a linguistic expert
for clarity, followed by requisite changes. The modified pool was subsequently appraised by three specialists in
computer science education, who evaluated the items for relevance, comprehensiveness, and intelligibility. In
response to their suggestions, the items were improved and condensed to 31, which were included in the pilot
study. Experts evaluated each item based on clarity, relevance, and representativeness, and their written comment
was integrated into the modifications. The expert review process demonstrated the content validity of the scale.
The construction of items and the structure of the scale were guided by Self-Determination Theory (SDT) and the
Job Demands-Resources (JD-R) model. Items included under the ‘Education/Teaching-Based’ factor
predominantly represent educators’ perception of professional significance, acknowledgment from parents and the
community, and support at the classroom level—elements consistent with Self-Determination Theory’s

autonomous motivation and the needs for relatedness and competence. The components of the 'Management-

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Based' factor encompass administrative support, equipment, and workload concerns, so aligning with JD-R job

resources. Table 2 presents a comprehensive mapping of each item to its respective theoretical concept.

Table 2. Mapping of Scale Items to Theoretical Constructs

Item Item (short description) Factor Theoretical Construct
Code (SDT / JD-R)
m27 Lack of peer praise reduces my motivation =~ Management JD-R: Social support as job
resource
m30 Adequacy of software affects motivation Management JD-R: Material/technical
resources
m21 Admin not sensitive to my work reduces Management JD-R: Organizational support
motivation
m24 Gaining trust of school administration Management JD-R: Organizational
increases motivation trust/support
m29 Adequacy of equipment affects motivation =~ Management JD-R: Material resources
m28 Knowing I will retire in this profession Management JD-R: Perceived Job
affects motivation security / long-term prospects
m22 Admin praise increases motivation Management JD-R: Recognition as job
resource
m31 Supervisors’ fair treatment affects Management JD-R: Fairness / justice as job
motivation resource
m26 Peer praise increases motivation Management JD-R: Collegial support
m23 Admin not praising my work reduces Management JD-R: Recognition deficit /
motivation lack of resources
ml9 Transportation between home—school affects Management JD-R: Physical/structural
motivation resources (workload strain)
ml6 Living in an urban area affects motivation Management JD-R: Contextual
resources/constraints
m25 Lack of admin trust reduces motivation Management JD-R: Organizational trust
deficit
m20 Admin sensitivity affects motivation Management JD-R: Organizational support
ml7 Distance home—school affects motivation Management JD-R: Physical strain /
resource constraint
m5 Social media’s negative attitude affects Education/Teaching SDT: Controlled motivation
motivation (external pressures, social
image)
m7 Parents’ trust increases my motivation Education/Teaching SDT: Relatedness /

10

autonomous motivation

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

m3 Praise from society increases my motivation Education/Teaching SDT: External recognition
integrated as autonomous

motivation

The items on the scale are assessed utilizing a five-point Likert-type rating system. Participants received five
response options for each item: "Strongly Agree," "Agree," "Neutral," "Somewhat Agree," and "Disagree," so
obtaining quantitative data on teachers' motivation levels. This grading method allows participants to express their
ideas with increased flexibility and breadth (Tezbasaran, 1997). This scale was created to evaluate the professional
motivations of computer science educators and has become a crucial data source in achieving the study's primary

goal by analysing various factors that affect instructors' motivations.

2.3 Data Analysis

The data obtained during the scale development process was subjected to exploratory and confirmatory factor
analysis. The exploratory factor analysis was conducted using SPSS version 25.0 software. Subsequently,
confirmatory factor analysis was conducted using AMOS 24.0 software. Following these methods, the data
obtained from the developed scale were analysed using SPSS 25.0 software. Exploratory factor analysis (EFA)
was performed utilizing Principal Axis Factoring on the Pearson correlation matrix with an oblique rotation (Direct
Oblimin, 6 = 0), based on the anticipation of correlated factors. Items were maintained if their principal pattern
loading was > .40 and the difference between the primary and secondary loading was > .10; items with
communalities < .30 were deemed for removal. Factor retention was determined by eigenvalues exceeding 1 and

the examination of the scree plot.

3. Results
The study methodology is structured into three phases: Phase 1 (item generation and content validation), Phase 2
(exploratory and confirmatory factor analyses for scale construction), and Phase 3 (final application of the
validated scale). The findings are delineated into two primary sections: the initial phase (integrating Phases 1 and

2 for scale development) and the final phase (Phase 3 application)

11

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

3.1Results of Exploratory Factor Analysis (Initial Phase)

The research technique has three phases: Phase 1 (item generation and content validation), Phase 2 (exploratory
and confirmatory factor analyses for scale development), and Phase 3 (final implementation of the approved scale).
The results are categorized into two main sections: the starting phase (combining Phases 1 and 2 for scale

development) and the concluding phase (Phase 3 application).

Table 2. Results of the Kaiser-Meyer-Olkin (KMO) Measure and Bartlett's Test for the EFA Data Set

KMO Coefficient 0,968
Bartlett Test x2 6251,976
sd 325
p 0,000

Tabachnick and Fidell (2013) assert that the KMO test value should be at least 0.6. The KMO test value for the
dataset (KMO= 0.968), beyond the threshold, indicates a highly significant and normal distribution (Tavsancil,
2018). After verifying that the KMO test values satisfied the necessary criteria, exploratory factor analysis (EFA)
was conducted. Subsequent to the exploratory factor analysis, the factor loadings table indicated that specific scale
components demonstrated cross-loading. Akgiin et al. (2017) defines items that load on multiple factors as cross-
loading items, stating that the difference in values between the factors must surpass 0.10. He emphasizes the
importance of removing items that do not meet this criterion from the scale. Subsequent to the EFA, some
alterations were executed on the "Computer Science Education Professional Motivation Perception Scale" to
enhance its effectiveness. The overlapping entries m12, m14, m15, and m18 were subsequently removed from the
scale. Items were maintained if their primary loading was > .40 and cross-loadings on other factors were < .30,
with a minimum difference of .10 between primary and secondary loadings to ensure discriminant validity
(Tabachnick & Fidell, 2013). The tables proposed for examination in the factor analysis study were methodically
reviewed, indicating that m1 demonstrated no substantial correlation with three items in the correlation matrix. As
a result, the m1 item was omitted from the scale. Items were preserved according to established EFA criteria: (a)
primary factor loading of at least .40, (b) cross-loading of less than .30 on any non-primary factor, and (c)
conceptual alignment with the factor theme. Items that did not meet these criteria were eliminated progressively.

According to these regulations, five items (m1, m12, m14, m15, m18) were discarded. Table 4 illustrates that items

12

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

distinctly loaded onto two connected variables. A Heywood case for item m27 (loading = 1.022) was observed but

is allowable under oblique rotation (see to Table 4 comment). Item m11 was cross loaded but kept under Factor 2

due to its superior loading of .50. Factor 1 was designated as Management-Based Motivation, whereas Factor 2

was designated as Education/Teaching-Based Motivation, according to the conceptual consistency of the items.

Following these processes, it was determined that the scale comprises 26 items and exhibits a two-factor structure.

The table of total variance produced by these operations is displayed below. Factor retention was determined by

the Kaiser criterion (eigenvalues > 1.0) and corroborated by visual analysis of the scree plot, both suggesting a

two-factor solution.

Table 3. Aggregate Variance Table Subsequent to EFA

Initial Core Values Sum of Squares of Loadings
Factor Total Variance Cumulative Total Variance Cumulative
% % %
1 16,421 63,158 63,158 16,421 63,158 63,158
2 1,181 4,541 67,700 1,181 4,541 67,700
3 0,930 3,576 71,275

The cumulative total variance must be at least 60% for social sciences. Thus, the overall variance of the dataset

following the EFA (67.700) surpasses this ratio. Subsequent to the exploratory factor analysis, it is important to

examine the factor loading table.

Table 4. Pattern Matrix of Factor Loadings (Principal Axis Factoring, Direct Oblimin Rotation)

Item Item Factor
No 1 2
m27 The fact that other teachers at school do not praise my work affects my 1,022
teaching motivation.
m30 The adequacy of the software I will use in the course affects my course 0,883
motivation.
m21 The fact that the school administration is not sensitive to my work 0,878
affects my course motivation.
m24 Gaining the trust of the school administration affects my motivation. 0,877

13

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

m29

m28

m22

m31

m26

ml9

mlé6

ml7

ml0

m5

m7

m3

mb6

m4

m9

The adequacy of the equipment I will use in the lesson affects my
motivation.

Knowing that I will retire in this profession affects my teaching
motivation.

The fact that the school administration praises my work affects my
course motivation.

Administrative supervisors' fair treatment of the staff affects my course
motivation.

The fact that other teachers at school praise my work affects my teaching
motivation.

The school administration not praising my work

The mode of transportation between school and home affects my
motivation for studying.

Living in an urban area affects my motivation to study.

Not having earned the trust of the school administration affects my
motivation to study.
The school administration's sensitivity to my work affects my

motivation in class.

The distance between school and home affects my motivation to study.

Negative parent-teacher cooperation affects my motivation in class.

Social media's negative attitude and stance towards the teaching

profession affects my motivation in class.

Parents' trust in me affects my motivation to teach.

People in society praising me for my profession affects my motivation
to teach.

In situations involving students, parental support affects my motivation
to teach.

Social media's positive attitude and stance towards the teaching

profession affects my motivation in class.

Good parent-teacher cooperation affects my motivation in class.

14

0,844

0,824

0,778

0,772

0,768

0,735

0,710

0,656

0,656

0,641

0,576

0,341

0,95

0,92

0,84

0,77

0,75

0,75

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Parents' belief that I perform my job well affects my motivation to 0,67
ms teach. 9
The negative perception of the teaching profession among people in 0,62
m? society affects my motivation to study. 6
The fact that the place where I live meets my personal needs affects my 0,56
mi3 motivation to study. 0
0,50
mll The small size of the place where I live affects my motivation to study. 0,330

Extraction is equivalent to Principal Axis Factoring. Rotation equals Direct Oblimin (3 = 0). The values reported
are coefficients of the pattern. Standardized regression weights, as opposed to correlations, can yield values
marginally exceeding 1.00 (e.g., m27 = 1.022) in oblique solutions (Tabachnick & Fidell, 2013). Item ml1
exhibited cross-loadings of .33 on Factor 1 and .50 on Factor 2. The item was retained under Factor 2 due to its
larger loading, which surpassed the .40 criterion. The Cronbach Alpha coefficient for the initial factor of the

developed scale was 0.965, whilst the coefficient for the succeeding factor was 0.946.

Table 5. Cronbach's Alpha Values for the Factors Derived from Exploratory Factor Analysis

Factor Article Cronbach's Alpha Value
Number

1 16 0.965

2 10 0.946

The results indicate that the scale possesses high dependability (Alpar, 2016). A study of the top group, which was

27% lower, was subsequently conducted on the dataset to evaluate the scale's discriminative capabilities.

Table 6. Reliability of Sub-Group and Super-Group Following Exploratory Factor Analysis

Factors N Average Average P
difference
Top group 66 67,7576 40,37879 0,000
Subgroup 66 27,3788 40,37879 0,000

15

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The t-test results revealed that the mean for the upper group was 67.7576, while the mean for the lower group was
27.3788. The difference between the means indicates that the developed scale is significantly discriminative
(p<0.05). The initial factor is classified as Educational — Instructional Factors, whereas the subsequent element is
referred to as Management-Related Factors, according to the items identified in the investigation. The two
extracted factors exhibited a moderate correlation, suggesting that although they are conceptually separate, they

share shared variance in line with theoretical assumptions.

3.2 Results for Confirmatory Factor Analysis (Initial Phase)

Following the adjustments, the Perception of Professional Motivation Scale in Computer Science Education was
redistributed online and completed by 366 computer educators. Confirmatory Factor Analysis (CFA) is essential
in the research of scale development (Akgiin et al., 2017). Therefore, to assess the feasibility of doing a
Confirmatory Factor Analysis (CFA) on the obtained dataset, the correlation between the individual items of the

scale and the total scale score was examined. The analysis utilized Pearson correlation coefficients.

Table 7. Confirmatory Factor Analysis Table 7. Impact on Mean, Variance, and Item-Total Correlation Table

Upon the Deletion of an Item from the CFA Data Set

Article No Effect on the Average when the Effect on Variance Item-Total Score
item is deleted When Item Deleted Correlation
m2 43,20 115,966 0,319
m3 42,98 114,268 0,402
m4 42,81 112,058 0,448
m5 42,86 112,310 0,454
moé 42,84 111,230 0,488
m7 42,63 111,117 0,426
m38 42,80 112,171 0,457
m9 42,81 112,418 0,439
ml10 42,71 111,242 0,446
mll 42,67 109,903 0,517
ml3 42,63 111,824 0,337

16

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

mlé6 42,61 113,406 0,284
ml7 42,80 112,963 0,434
ml19 42,75 110,185 0,512
m20 4281 110,511 0,533
m21 42,79 111,702 0,440
m22 43,06 115,325 0,347
m23 42,92 113,445 0,405
m24 4291 113,389 0,433
m25 42,80 112,105 0,440
m26 42,80 112,533 0,433
m27 42,76 111,201 0,481
m28 42,87 110,314 0,512
m29 42,73 111,476 0,417

The item-total score correlation values of the scale ranged from 0.284 to 0.533, and these correlations were
statistically significant. Subsequently, the KMO (Kaiser-Meyer-Olkin) test was re-administered to assess the

adequacy of the dataset for confirmatory factor analysis.

Table 8. Results of the Kaiser-Meyer-Olkin (KMO) and Bartlett's Test for the CFA Data Set

KMO Coefficient 0,886
Bartlett Test x2 2228,704
sd 325
p 0,000

The Bartlett test findings indicate a significant chi-square value (x>=2228.704; sd=325; p<0.05), suggesting that
the dataset demonstrates a multivariate normal distribution. The acceptable fit indices obtained from the

confirmatory factor analysis significantly influence the scale's acceptability.

17

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Table 9. Fit Index Benchmarks Adopted (Schreiber et al., 2006)

Index Value
GFI >0,90
AGFI >0,90
NFI >0,90
CFI >0,90
RMSEA <0,08

Furthermore, Cokluk et al. (2018) assert that an RMSEA value below 0.08 signifies acceptable fit, a CFI value
above 0.90 denotes acceptable fit, and an NFI value surpassing 0.90 suggests good fit. Alongside these values,
other critical factors must be considered during confirmatory factor analysis, particularly prior to item removal or
model enhancement. The Standardized Regression Coefficient is paramount among these. The standardized
regression coefficient indicates the capacity of observed variables to forecast latent variables, with a preference
for these values to exceed 0.60 (Karagoz, 2021). Consequently, to enhance the scale, the Standardized Regression
Coefficient is considered while eliminating items, and the item with the lowest value is discarded from the scale.
Another element to contemplate in enhancing the Confirmatory Factor Analysis (CFA) model is the modification
indices. The modification index signifies the anticipated decrease in the Chi-Square value when a parameter is
altered or a new parameter is incorporated into the model (Siimer, 2000). Consequently, Confirmatory Factor
Analysis (CFA) was utilized on the dataset. The fit index values derived from the CFA without any alterations are
presented below. As shown in Table 10, the initial CFA model did not reach acceptable fit indices, indicating that

the proposed two-factor structure required further refinement.

Table 10. Preliminary Fit Indices and Values for the Confirmatory Factor Analysis Model

Index Value
GFI ,874
AGFI ,852
NFI ,720
CFI ,825
RMSEA ,056

18

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

As shown in Table 10, the initial CFA model did not reach acceptable fit indices. Consequently, some
modifications were implemented to improve model fit. Based on low standardized loadings and modification
indices, items m16, m13, m22, m2, m29, m10, m7, and m21 were sequentially removed from the scale,
beginning with the lowest loading values. At each step, fit indices were re-assessed. In addition, three error
covariances suggested by the modification indices were incorporated into the model. After these revisions, the fit

indices reached acceptable levels, as reported in Table 11.

Table 11. Fit Indices and Values of the Final CFA Model

Index Value
GF1 ,945
AGFI ,929
NFI ,870
CFI ,954
RMSEA ,036

As shown in Table 11, the final CFA model demonstrated good fit. The RMSEA value (.036) indicates excellent
fit, while the AGFI (.929), NFI (.870), and CFI (.954) reflect acceptable to good levels of fit (Schreiber et al.,
2006). The GFI value (.945) is also considered satisfactory (Hooper et al., 2008). These results confirm that the
revised two-factor model provided a valid representation of the data. Note. GFI = Goodness of Fit Index; AGFI =
Adjusted Goodness of Fit Index; NFI = Normed Fit Index; CFI = Comparative Fit Index; RMSEA = Root Mean

Square Error of Approximation.

19

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

A7
(e15)—=[m23]
41 m3
@Y .
m
- 51 1,00 A
41 125 m5S
14
71 '1;1 /. 61 m6

m38

=3

m9

($2]
-

®EE
31[3
ﬁ

3

-

m11

3
)
=]

AGFI:,929; GFI:,945; NF1:,870; CFI:,954; RMSEA:,036

Figure 2. Conclusive Version of the Confirmatory Factor Analysis Model

Following the Confirmatory Factor Analysis (CFA), a 27% lower group - upper group analysis was performed on

the dataset to assess the scale's discriminative power, and Cronbach's Alpha was utilized to evaluate its reliability.

Table 12. Reliability of Sub-Group and Upper-Group Post-CFA

Factors N Average Average P
difference
Top group 99 41,2121 18,45455 0,000
Subgroup 99 22,7576 18,45455 0,000

The established Computer Science Education Professional Motivation Perception Scale significantly differentiates

between the lower and upper groups (p<0.05) due to the enhancements implemented.

20

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Table 13. Cronbach's Alpha Values for Factors Established Post-CFA

Factor Article Cronbach's Alpha Value
Number

1 11 0.803

2 7 0,713

The Cronbach Alpha values indicate that the scale is at an appropriate level. Upon completion of all phases, the

scale comprising 2 factors and 18 elements is prepared for final implementation.

3.3 Conclusive Findings of Application Results (Phase Two)

In the conclusive application of the Computer Science Education Professional Motivation Perception Scale, 186
computer science educators participated, with the distribution completed digitally. To choose the analytical
methods for evaluating the final scale data, it is crucial to first examine the normal distribution of the dataset.
Literature evaluations show that parametric tests are used for data with a normal distribution, while non-parametric
tests are applied to data that diverges from normality. Subsequently, after analysing the descriptive statistics of the

final scale, normality tests were conducted by computing the mean of the items that constitute the scale.

Table 14. Statistical Data for the Normality Test of the Final Scale

Statistics Standard Error
Average 1,7572
Median 1,6667
Variance ,229
Standard Deviation , 47898
Skewness Coefficient ,731 ,178
Kurtosis Coefficient ,028 ,355

According to Tabachnick & Fidell (2013), a scale demonstrates a normal distribution if the skewness and kurtosis
values range from -1.5 to +1.5. Upon analysing the skewness and kurtosis values of the final scale, it was concluded
that the scale exhibits a normal distribution. Consequently, parametric tests, including the t-Test and One-Way
ANOVA, were performed on the final scale data. The histogram and Q-Q Plot of the final scale's data set,

indicating a normal distribution, are presented below.

21

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Histogram

1,00 1.50 2,00 2,50 3,00

Figure 3. Histogram of the Normality Assessment for the Final Measurement

Normal Q-Q Plot of ort

05 10 15 20 25 30 35

Figure 4. Q-Q Plot illustrating the normality assessment for the final measurement

Subsequent to these phases, the data acquired about the research's sub-problems were examined.

In the development process of the Computer Science Education Professional Motivation Perception Scale,
reliability analyses were conducted, including EFA and CFA, followed by Cronbach's alpha coefficient and 27%
lower and upper group comparisons. Based on the findings obtained from these analyses, it can be stated that the

scale in question is a reliable measurement tool. The evaluation of construct validity, guided by EFA and CFA

22

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

findings, demonstrates that the Computer Science Education Professional Motivation Perception Scale is a
legitimate tool. The t-test results for the Computer Science Education Professional Motivation Perception Scale

scores, classified by gender, are displayed in the table below.

Table 15. T-Test Outcomes of the Perception of Professional Motivation Scale in Computer Science Education

by Gender Variable

Factor Groups N X ss t sd p
Factors related to Male 115 1,7715 ,53436
Education ,102 184 919
and Female 71 1,7631 ,56092
Training
Management Male 115 1,7143 ,53251 ,407 184 ,684
Factors

The T-Test results indicate no significant difference between male and female computer science instructors for
Education — Teaching Source variables (t[184]=0.102; p>0.05). Nonetheless, it has been established that there is
no substantial difference between male and female computer science educators about Management-Related Factors
(t[184]=,407;p>0,05). Consequently, it has been determined that the factors influencing the motivation of
computer science educators remain consistent across genders for each sub-dimension. Prior to conducting the
analysis of the Computer Science Education Professional Motivation Perception Scale scores based on the
university attended, the assumption of homogeneity of variances was assessed using the Levene Test to ascertain

the uniform distribution of the groups.

Table 16. Levene's Test Results for the University Graduated from Variable of the Perception of Professional

Motivation Scale in Computer Science Education

Factor Type of Statistics Levene's p
Statistic

Factors related to Education and Based on the average

Training 1,409 ,108

Management Factors Based on the 1,604 ,105

23

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The findings of the Levene Test indicate that the factors are homogeneously distributed (p>0.05). A One-Way

ANOVA test was conducted based on this result.

Table 17. Results of the One-Way ANOVA Test on the Perception of Professional Motivation Scale in Computer

Science Education by University Graduates

Factor Sum of sd Squares F P
Squares Mean.
Factors related to Between 9,170 35 ,262 ,865 , 684
Education and Groups
Training In 45,410 150 ,303
Group
Total 54,579 185
Between Groups 8,593 35 ,246 877 , 667

Management Factors

In 41,991 150 ,280
Group
Total 50,584 185

The findings of the ANOVA test indicated no significant difference between Education — Teaching-Related factors
and Management-Related factors concerning the university attended (p<0.05). Prior to analysing the scores of the
Computer Science Education Professional Motivation Perception Scale based on educational levels through the
One-Way ANOVA test, the assumption of homogeneity of variances was assessed using the Levene Test to

ascertain the uniform distribution of the groups.

Table 18. Levene's Test Results for the Educational Level Variable in the Perception of Professional Motivation

Scale for Computer Science Education

Factor Type of Statistics Levene's p
Statistic
Factors related to Based on the average ,244 ,865

Education and
Training

Management Factors Based on the 1,423 ,238

24

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The Levene Test results indicate that the distributions of Education-Teaching Related Factors and Management
Related Factors are homogeneous (p > 0.05). Following the confirmation of homogeneity of variances, the One-

Way ANOVA test analysis was performed.

Table 19. Outcomes of the One-Way ANOVA Test for the Variable of Educational Level in the Perception of the

Professional Motivation Scale in Computer Science Education

Factor Sum of sd Squares F P
Squares Mean.
Factors Between 2,192 3 ,731 2,539 ,058
related to Groups
Education and In 52,387 182 ,288
Training Group
Total 54,579 185
Between 2,927 3 ,976 3,725 ,012
Groups
Management
Factors In 47,658 182 ,262
Group
Total 50,584 185

The analysis of the One-Way ANOVA test revealed no significant difference between the education levels
examined and the Education-Teaching Source components (p=0.058; p<0.05). Furthermore, a statistically
significant difference has been identified between the sub-dimension of Management-Related Factors and the
educational level examined (p=0.012; p<0.05). An LSD test was conducted to identify the subgroups exhibiting
significant differences. The exam results indicate a substantial difference (p<0.05) in Management-Related Factors
between middle school and vocational high school levels, although no such difference exists among the other
levels. Prior to conducting the analysis of the Computer Science Education Professional Motivation Perception
Scale scores based on years of professional experience through a One-Way ANOVA test, the assumption of

homogeneity of variances was assessed by examining the groups for a uniform distribution via the Levene Test.

25

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Table 20. Levene's Test Results for the Variable of Years of Professional Experience in the Perception of

Professional Motivation Scale for Computer Science Education

Factor Type of Levene's Statistic p
Statistics

Factors related to Based on the 273

Education and Training average

Management Factors Based on the ,0628

Upon analysing the outcomes of the Levene Test, it was concluded that the variances of Education-Teaching

Related Factors and Management Related Factors were homogeneously distributed (p>0.05). Upon establishing

the homogeneity of variances, the One-Way ANOVA test analysis was performed.

Table 21. Outcomes of the One-Way ANOVA Test for the Variable of Years of Professional Experience in

Relation to the Perception of the Professional Motivation Scale for Computer Science Education

Factor Sum of sd Squares F P
Squares Mean.
Factors related Between 2,103 4 ,526 1,813 ,128
to Education Groups
and In 52,476 181 ,290
Training Group
Total 54,579 185
Between 2,369 4 ,592 2,223 ,068
Management Groups
Factors In Group 48,216 181 ,266
Total 50,584 185

The research revealed no significant difference between Education-Training-Related variables and years of

professional experience (p=0.128; p<0.05). It has been established that there is no substantial difference between

Management-Related variables and years of professional experience (p=0.068; p<0.05). Prior to conducting the

study of the Computer Science Education Professional Motivation Perception Scale scores by city through a One-

Way ANOVA test, the assumption of homogeneity of variance was assessed using the Levene Test to ascertain

whether the groups exhibit a homogeneous distribution.

26

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Table 22. Levene's Test Results for the City Variable in the Perception of Professional Motivation Scale within

Computer Science Education

Factor Type of Levene's Statistic p
Statistics

Factors related to Based on the

Education and Training average 1,219 ,221

Management Factors Based on the 1,233 210

The findings of the Levene Test indicate that the Education-Training Related Factors and Management Related
Factors have a homogenous distribution (p>0.05). Following the confirmation of homogeneity of variances, the

One-Way ANOVA test analysis was performed.

Table 23. Results of One-Way ANOVA for the City of Employment Variable in the Perception of Professional

Motivation Scale for Computer Science Education

Factor Sum of sd Squares F p
Squares Mean.

Factors Between 17,902 50 ,358 1,318 ,108
related to Groups
Education and In 36,677 135 272
Training Group

Total 54,579 185

Between 15,622 50 312 1,206 ,199
Management Groups
Factors In 34,962 135 ,259

Group
Total 50,584 185

The ANOVA test findings indicated no significant difference between Education-Training Related variables and
the city of duty performance (p=0.108; p<0.05). No substantial difference was seen between the city of duty and

Management-Related Factors (p=0.199; p<0.05).

27

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

4. Discussion And Conclusion
The Computer Science Education Professional Motivation Perception Scale aims to discover the factors affecting
the motivation of computer science educators. The scale's content validity was first evaluated, subsequently leading
to the development of a critical item pool through an extensive review of national and international literature. A
total of 94 items were assessed by a language expert and subsequently submitted to three field specialists.
Following the integration of expert feedback, revisions were made to the questionnaire, resulting in a 31-item tool
named "Computer Science Education Professional Motivation Perception Scale." Exploratory Factor Analysis
(EFA) and Confirmatory Factor Analysis (CFA) were employed to evaluate the construct validity of the
instrument. Exploratory Factor Analysis (EFA) was conducted on data from 246 participants, resulting in the
elimination of items m1, m12, m14, m15, and m18 from the scale, so yielding a two-factor structure of 26 items.
These elements are classified as Education — Teaching-Oriented and Management-Oriented. To assess the scale's
reliability, Cronbach's Alpha values and 27% upper-lower group comparisons were conducted, indicating that the
scale exhibits robust dependability. Confirmatory Factor Analysis (CFA) was utilized to assess the structure
obtained from Exploratory Factor Analysis (EFA) based on data gathered from 366 individuals. Subsequent to the
CFA, some items (m2, m7, m10, m13, m16, m21, m22, m29) were discarded until the fit indices reached an
acceptable threshold, culminating in a modified scale comprising 18 items. The model fit was assessed using many
indices: GFI, AGFI, NFI, CFI, and RMSEA. The final 18-item, two-factor model demonstrated a satisfactory fit
(GFI=0.945, AGFI= 0.929, NFI= 0.870, CFI= 0.954, RMSEA= 0.036), conforming to established thresholds (Hu
and Bentler, 1999). These indices validate that the two-factor model sufficiently encapsulates the data. The
dependability was re-evaluated by Cronbach's Alpha values, determining that the scale is adequately reliable.
Cronbach’s Alpha values were .96 for the Management-Based factor and .94 for the Education/Teaching-Based
component. The total scale produced an Alpha of .97, above the .70 benchmark suggested for internal consistency
(Kalyar, Ahmad, & Kalyar, 2018). The composite reliability values surpassed .70, hence reinforcing reliability.
This scale, consisting of two components and eighteen elements, is considered a reliable, valid, and useful
measurement tool. The two-factor structure is consistent with the theoretical frameworks underpinning this
investigation. Pragmatic elucidation of the two-factor model. The Education—Teaching-Based aspect underscores

the significance of autonomy-supportive classroom practices, such as providing meaningful choices and

28

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

prioritizing mastery feedback, while also enhancing connections with families and the community to reinforce
teachers’ autonomous motivation. The Management-Based element underscores employment resources
identified by the JD-R model—transparent and equitable administrative procedures, prompt acknowledgment,
and sufficient equipment/software—which can mitigate demands and maintain motivation. Explicitly framing
interventions using Self-Determination Theory (needs for autonomy, competence, relatedness) and the Job
Demands-Resources model (organizational resources) offers a theoretically informed framework for schools
aiming to augment the professional motivation of computer science teachers. The Education—Teaching-Based
factor encapsulates teachers’ intrinsic motivation within Self-Determination Theory (SDT), encompassing
aspects such as professional significance, acknowledgment from parents and the community, and classroom-
level resources that fulfil the demands for relatedness and competence. The Management-Based factor relates to
job resources in the JD-R model, including organizational trust, administrative assistance, and the sufficiency of
equipment and infrastructure. This theoretical congruence offers additional evidence for the construct validity of

the scale and contextualizes the findings within the wider field of motivation research.

Although motivation studies for educators in other disciplines exist at the national level, the lack of study
focused on the motivation of computer science teachers is due to the absence of a measurement scale for
evaluating their motivation. This situation underscores the imperative of creating a framework in the field. The
development of the Computer Science Education Professional Motivation Perception Scale would significantly
enrich the current literature. This scale will serve as the first national tool to evaluate the professional
motivations of computer science educators, providing valuable data for scholars and educational institutions. The
application of the scale may augment the breadth of quantitative and qualitative study into the factors influencing
computer science teachers' motivation. Research examining the relationships between teachers' personality
variations, work conditions, and motivations in educational settings can yield new insights on educational
sciences. Globally, there is a dearth of research concerning the motivations of computer science educators, and
the limited studies utilize scales that exhibit recognized validity and reliability. The recent international study
presented the 18-item Motivation to Teach Computer Science (MTCS) scale, encompassing four dimensions:

external pressures, external advantages, student benefits, and personal enjoyment (Martin, Baker, Haynes, &

29

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Warner, 2023). Positioning with relation to MTCS. While MTCS categorizes motives into four teaching-centric
domains (external pressures/benefits, student benefits, personal enjoyment), our two-factor framework
encompasses a wider ecological perspective of professional motivation, incorporating organizational factors
(management, resources, recognition) in addition to teaching-related influences. This differentiation is beneficial
for governance and leadership: MTCS may provide greater diagnostic insights for pedagogical support, whereas
our scale also highlights systemic levers—such as administrative trust, equity, and infrastructure—that school
leaders may influence. While MTCS emphasizes instructors' motivation to instruct in computer science, our
instrument concentrates on the professional incentive drivers within the Turkish educational setting, resulting in
two factors: Education—Teaching-Based and Management-Based. Consequently, our research enhances MTCS
by offering a verified, nationally normed instrument and empirical results pertinent to Turkey, encompassing
subgroup analyses applicable to local administrative frameworks. However, the development of the Computer
Science Education Professional Motivation Perception Scale will provide a foundation for international
comparative study. An examination of the motivation levels of computer science instructors in different
countries and the factors affecting this motivation could guide the formulation of global educational strategies.
Moreover, examining the influence of cultural differences on motivation should assist in developing both
universal and specific measures for enhancing teacher motivation. The study concluded with an examination of
data from 186 computer science educators who completed the Computer Science Education Professional
Motivation Perception Scale. The results demonstrated that the factors affecting the motivations of computer
science professors were uniform across genders. This study indicates that gender does not substantially affect
teachers' motivations. This outcome suggests that the motivating factors in our framework—autonomous
motivation (SDT) and job resources (JD-R)—are seen similarly by male and female instructors. This indicates
that motivational resources and requirements, as defined by SDT and JD-R, are independent of institutional
background. Therefore, efforts to enhance motivation should use a gender-neutral and inclusive approach.
International literature indicates some studies identifying gender disparities (Duursma, 2016), while others claim
no substantial differences (Kippers et al., 2018). These findings indicate that educational institutions should
cultivate cultures that enhance teacher motivation free from gender bias. No differences in motivating factors

have been seen based on the university attended. This scenario indicates that the university does not affect the

30

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

motivation of computer science instructors. This discovery raises questions about the impact of graduation on
motivation and suggests that the quality of education is predominantly consistent among universities. Selvitopu
& Tas (2020) found that motivation levels significantly varied according to undergraduate degree status. The
motivational factors were consistent regardless of teachers' educational qualifications, focusing instead on
managerial elements. No notable disparities were detected according to the city of assignment. A notable
disparity was observed in the Management factor based on the educational level of the teachers (primary,
secondary, or high school). This study utilized convenience sampling, potentially constraining the sample's
representativeness and, therefore, the generalizability of the scale features and Phase 3 subgroup comparisons.
The imbalance in group sizes for some demographics diminished the statistical power to identify minor effects
and heightened the likelihood of Type I and Type II errors. All measurements were self-reported and cross-
sectional, hence precluding causal inference. Subsequent research ought to replicate these findings utilizing
probability samples (e.g., stratified sampling across areas and school types), gather longitudinal data to assess
stability over time, and evaluate measurement invariance across significant subgroups. Educational caveat. The
survey link was disseminated to both public and private schools; however, the questionnaire lacked a question to
identify the type of school, preventing us from assessing any potential variations between the two types of
institutions. Future applications must specifically document school type and utilize a stratified sample by sector
to facilitate comparisons and improve external validity. Considerations for measurement. Prior to comparing
subgroup means in subsequent investigations, multi-group confirmatory factor analysis (CFA) should be
employed to ascertain configural, metric, and scalar invariance of the two-factor model across significant groups
(e.g., gender, educational attainment). Furthermore, to alleviate common-method variance associated with
single-source, self-report methodologies, subsequent research could integrate survey responses with
observational or administrative metrics or implement temporal separation of measures. The study utilized
convenience sampling; hence, the results from demographic subgroup analyses (e.g., gender, years in the
profession, school type [public vs. private]) should be evaluated cautiously, since they may not be representative
of the wider community of computer science educators. Nonetheless, a weakness of this study is the employment
of convenience sampling, which constrains the generalizability of the results. By analysing the components via

Self-Determination Theory (SDT) and the Job Demands-Resources (JD-R) model, our research broadens the

31

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

relevance of these frameworks to computer science education, emphasizing the dual significance of personal
meaning and institutional resources. Future research should utilize more representative sample techniques to
improve external validity and offer a comprehensive understanding of the motivation of computer science

educators.

Consequences for implementation and regulation. Based on our findings, school leaders and policymakers
should prioritize (a) transparent and equitable administrative processes that acknowledge the contributions of
computer science teachers, (b) dependable provision and upkeep of computer science-specific equipment and
software, (c) organized parent-school engagement to enhance community recognition, and (d) professional
development aligned with autonomy-supportive pedagogy. Resource allocation models at the system level must
align with the unique management requirements of various educational stages, especially in vocational high
schools where management-related motivation is notably elevated, thereby ensuring that organizational support

is customized to the specific needs of stage-specific computer science curricula and infrastructure.

REFERENCES

Akgiin, E., Karadeniz, S., Demirel, F., Kilig, E., & Biiytikoztiirk, S. (2017). Bilimsel arastirma yontemleri.
Pegem Akademi Yaymecilik.

Alpar, C. R. (2016). Spor Saglik ve Egitim Bilimlerinden Orneklerle Uygulamali Istatistik ve Gegerlik
Giivenirlik. Detay Yayincilik.

Bakker, A. B., & Demerouti, E. (2007). The Job Demands-Resources model: state of the art. Journal of
Managerial Psychology, 22(3), 309-328. https://doi.org/10.1108/02683940710733115

Balanskat, A., & Engelhardt, K. (2014). Computing our future Computer programming and coding - Priorities,
school curricula and initiatives across Europe. European Schoolnet (EUN Partnership AISBL).

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary
students’ computational thinking in everyday reasoning and robotics programming. Computers &

Education, 109, 162—175. https://doi.org/10.1016/j.compedu.2017.03.001

32

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Cokluk, O., Sekercioglu, G., & Biiyiikoztiirk, S. (2018). Sosyal Bilimler I¢in Cok Degiskenli Istatistik SPSS ve
Lisrel Uygulamalar:. Pegem Akademi.

Coskun, M. (2009). flkogretim Okullarinda Motivasyon Araclart Hakkinda Ogretmen Gériisleri Ve Doyum
Diizeyleri Uzerine Bir Alan Arastirmasi [Yiiksek Lisans Tezi, Beykent Universitesi]. https://tez.yok.gov.tr

Duman, N. (2014). Okul Yéneticilerinin Kullandiklar: Motivasyon Faktorleri Ve Ogretmen Goriisleri [Yiiksek
Lisans Tezi, Yeditepe Universitesi]. https:/tez.yok.gov.tr/

Duursma, E. (2016). Who does the reading, who the talking? Low-income fathers and mothers in the US
interacting with their young children around a picture book. First Language, 36(5), 465-484.
https://doi.org/10.1177/0142723716648849

Elibol, S. (2013). Ortadgretim Okullarinda Motivasyon Araglar Hakkinda Ogretmen Gériisleri Ve Doyum
Diizeyleri Uzerine Bir Alan Arastirmasi [Yiiksek Lisansn Tezi, Yeditepe Universitesi].
https://tez.yok.gov.tr/

Ertugrul, S. (2021). Ogretmen Algilarina Gére Okul Miidiirlerinin Toksik Liderlik Davranislar Ile
Ogretmenlerin Motivasyon Ve Is Tatmin Diizeyleri Arasindaki Iliski [Yiiksek Lisans Tezi, Istanbul
Sabahattin Zaim Universitesi]. https://tez.yok.gov.tr/

Grout, V., & Houlden, N. (2014). Taking Computer Science and Programming into Schools: The Glyndwr/BCS
Turing Project. Procedia - Social and Behavioral Sciences, 141, 680—685.
https://doi.org/10.1016/j.sbspro.2014.05.119

Hooper, D., Coughlan, J., & Mullen, M. (2008). Evaluating model fit: a synthesis of the structural equation
modelling literature. In 7th European Conference on Research Methodology for Business and
Management Studies, 195-200.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional
criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
https://doi.org/10.1080/10705519909540118

Isgoriir, N. (2020). Okul Yoneticilerinin Ogretmen Motivasyonunu Artirmaya Yonelik Yararlandigi Motivasyon

Araglar: [Yiiksek Lisans Tezi, Bahgesehir Universitesi]. https://tez.yok.gov.tr/

33

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Kalyar, M., Ahmad, B., & Kalyar, H. (2018). Does Teacher Motivation Lead to Student Motivation? The
Mediating Role of Teaching Behavior. Voprosy Obrazovaniya / Educational Studies Moscow, 3, 91-119.
https://doi.org/10.17323/1814-9545-2018-3-91-119

Karagéz, Y. (2021). Bilimsel Arastirma Yontemleri. Nobel Akademik Yayincilik.

Karasar, N. (1994). Bilimsel Arastirma Yontemi. Nobel Akademik Yaymeilik.

Karasar, N. (2003). Bilimsel Arastirma Yontemi. Nobel Akademik Yaymcilik.

Kippers, W. B., Wolterinck, C. H. D., Schildkamp, K., Poortman, C. L., & Visscher, A. J. (2018). Teachers’
views on the use of assessment for learning and data-based decision making in classroom practice.
Teaching and Teacher Education, 75, 199-213. https://doi.org/10.1016/j.tate.2018.06.015

Kulpcu, O. (2008). [lkégretim Okullarinda Gorev Yapan Ogretmen Ve Yoneticileri Motive Etmede
Kullanilabilecek Motivasyon Araglart Uzerine Bir Inceleme [Yiiksek Lisans Tezi, Gaziantep Universitesi].
https://tez.yok.gov.tr/

Mabula, J. S. (2013). Impact of motivation on commitment of teachers for public secondary schools in dar es
salaam: a case of kinondoni district. Master’s Thesis, In Human Resource Management (Mhrm) of The
Open Unwersity of Tanzania.

Martin, N. D., Baker, S. N., Haynes, M., & Warner, J. R. (2023). The Motivation to Teach Computer Science
(MTCS) scale: development, validation, and implications for use. Computer Science Education, 1-18.
https://doi.org/10.1080/08993408.2023.2182561

Ni, L., Bausch, G., & Benjamin, R. (2023). Computer science teacher professional development and professional
learning communities: a review of the research literature. Computer Science Education, 33(1), 29-60.
https://doi.org/10.1080/08993408.2021.1993666

Popovich, P. M., Gullekson, N., Morris, S., & Morse, B. (2008). Comparing attitudes towards computer usage
by undergraduates from 1986 to 2005. Computers in Human Behavior, 24(3), 986-992.
https://doi.org/10.1016/j.chb.2007.03.002

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social
development, and well-being. American Psychologist, 55(1), 68—78. https://doi.org/10.1037/0003-

066X.55.1.68

34

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Ryan, R. M., & Deci, E. L. (2013). Intrinsic motivation and self-determination in human behavior. Springer
Science & Business Media.

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting Structural Equation
Modeling and Confirmatory Factor Analysis Results: A Review. The Journal of Educational Research,
99(6), 323-338. https://doi.org/10.3200/JOER.99.6.323-338

Selvitopu, A., & Tas, A. (2020). Lise Ogretmenlerinin Is Doyumu ve Mesleki Motivasyon Diizeylerinin
Incelenmesi. Bayburt Egitim Fakiiltesi Dergisi, 15(29), 23—42. https://doi.org/10.35675/befdergi.426989

Siimer, N. (2000). Yapisal Esitlik Modelleri: Temel Kavramlar ve Ornek Uygulamalar. Tiirk Psikoloji Yazilari.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th edn). Pearson Education.

Tavsancil, E. (2018). Tutumlarin 6l¢iilmesi ve spss ile veri analizi (6. Baski). Nobel Yayin Dagitim.

Tezbasaran, A. (1997). Validity issues of a likert type scale (a case study). Hacettepe Universitesi Egitim
Fakiiltesi Dergisi, 13, 41-45.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational thinking for teacher education. Communications
of the ACM, 60(4), 55-62. https://doi.org/10.1145/2994591

Yavuz, C., & Karadeniz, C. B. (2009). Smif gretmenlerinin motivasyonunun is tatmini iizerine etkisi.
Uluslararasi Sosyal Aragtirmalar Dergisi, 2(9), 507-519.

Yildirim, A., & Simsek, H. (2003). Sosyal Bilimlerde Nitel Arastirma Yontemleri. Seckin Yayincilik.

35

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Rubric for the qualitative assessment of student-designed

Snap! Projects

Nicole Marmé', Jens-Peter Knemeyer!, Alexandra Svedkijs'

"University of Education Heidelberg

DOI: 10.21585/ijcses.v7i3.226

Abstract

An objective evaluation and assessment of individual student-designed projects are challenging. Appropriate
tools are currently lagging and have to be developed. Block-based programming languages, such as Snap! are
often used for teaching programming basics and the subsequent development of student-designed programming
projects. The current research qualitatively developed a rating rubric for Snap! projects to investigate how
novices’ programming skills can be evaluated and assessed in a criterion-guided manner. For this purpose, an
evaluation was conducted on a baseline dataset of 36 student projects created over three school years after a
programming course for novices. Based on this database we designed an assessment rubric. A team of experts
reviewed and evaluated the assessment rubric. Following expert evaluation, the rubric was improved and
expanded. Finally, prospective teachers conducted a comparative evaluation of a test data set consisting of ten
Snap! projects of varying complexity, with and without the resulting rubric. The results show that the rating
rubric significantly improves the comparability of assessments. In addition, a clear differentiation of the projects
by level is achieved for the test data set. Furthermore, the assessment rubric enables a more precise achieved

result evaluation in particular rubric category.

Keywords: Computer science, rubric, qualitative assessment, learning outcomes, teaching materials, coding,

programming languages, Snap!

36

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

1. Introduction

Global challenges and technological progress have brought about a heightened emphasis on information
technology skills over the last two decades. The demand for e-learning offers is constantly growing, especially
for IT skills (mmb Institut, 2021). Digitization at all levels and global crises, such as the Covid-19 pandemic, are
intensifying discussions across Europe about which skills and abilities will be needed in the future to be able to
participate in social life (European Commission. Directorate General for Communication., 2020). Regarding
digital competences in particular, competence requirements and necessary action steps for the next decades are
being formulated nationally and internationally at various political levels (European Commission. Directorate
General for Education, Youth, Sport and Culture., 2023). The Council of the European Union highlights digital
literacy as one of the eight key competences for lifelong learning in the 21st century (Publications Office of the
European Union, 2019). The current framework on European Union digital citizenship competence DigComp
2.2 lists programming competence as one of the key competences (European Commission. Joint Research
Centre., 2022). The current approach to facing the challenges in Germany, for example, is to expand computer
science lessons across all grades from fifth grade onwards. For the required strengthening of programming skills,
the current educational plan for computer science recommends block-based programming for the acquisition of
basic knowledge and skills in programming, especially for beginners (Ministerium fiir Kultus, Jugend und Sport
Baden-Wiirttemberg, 2016a, 2016b). The use of block-based programming languages often goes hand in hand
with the development of individual creative projects (Krugel & Ruf, 2020; Resnick, Silverman, et al., 2009;
Resnick, 2014). To successfully implement block-based programming languages in the classroom, a systematic
approach is needed to evaluate such creative student projects. There are already some approaches to evaluating
block-based programmes as will be discussed in section 2.2. However, most approaches deal with automated
evaluation of the generated code. This involves solving pre-designed test tasks and evaluating them
automatically. Such systems do not allow for the evaluation of individual projects on open topics. This paper
therefore investigates whether a competency grid can be used to evaluate open-ended Snap! projects and how
such a grid must be structured to ensure valid and consistent evaluation. To address this question, a multi-phase

research design was applied, including the development of the rubric, expert validation, and empirical testing

37

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

with student projects. The results demonstrate that the rubric improves the comparability of evaluations and

provides a practical, criterion-based tool for assessing creative, block-based programming projects.

2. Background

2.1 Block-based programming for novices

Block-based programming languages are visual programming languages that use blocks to represent code, rather
than traditional text-based code. This allows users to create programs by dragging and dropping these blocks
together, without having to write lines of code. A program code is put together like a puzzle by assembling the
already available instruction blocks. These environments operationalize Papert’s constructionist principles by
providing concrete, manipulable elements that support self-directed creation, experimentation, and reflection
(Papert, 1993). Learners actively construct knowledge, explore multiple solution paths, and iteratively refine
their projects, fostering discovery-based learning and reducing the abstraction barriers typical of traditional
coding (Brennan & Resnick, 2012; Resnick et al., 2009). Platforms such as Snap! enable students to design
interactive projects-games, stories, or animations - promoting cognitive engagement, problem-solving, and
creativity. The visual, block-based interface simplifies syntax, while project sharing, remixing, and collaborative
exploration enhance social learning and knowledge co-construction, key aspects of constructivist and
constructionist pedagogy (Papavlasopoulou et al., 2019). Compared to common programming languages that use
textual syntax, block-based languages allow easier interaction with the programming environment and learners
can focus more on programming logic instead of dealing with syntactical errors (Balouktsis, 2016). Block-based
languages provide a low barrier to entry and a flexible, expressive environment. This allows learners to focus on
creative and meaningful projects, fostering computational thinking, systematic reasoning and digital literacy

(Resnick, Maloney, et al., 2009).

Block-based programming languages are characterised by their ability to eliminate syntax errors, reduce
cognitive load and shift the focus from memory recall to visual recognition through structured, visual program
construction. They are particularly valuable in lowering the entry barrier for novices and enabling intuitive,

interactive learning that fosters engagement and a deeper understanding of core programming concepts (Bau et

38

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

al., 2017). In particular, beginners are able to concentrate more on understanding programming concepts rather
than memorising text syntax due to the reduction in cognitive load (Weintrop & Wilensky, 2018)

Block-based programming languages, such as Snap! show significant advantages for introducing programming
to novices. These languages are considered "easier" than text-based programming languages (Weintrop &
Wilensky, 2015) and enable an introduction to programming for learners without any prior knowledge (Maloney
et al., 2010). For example, the use of block-based programming languages can provide a better understanding of
basic programming concepts, like loops (Mladenovi¢ et al., 2020). In addition, block-based programming
languages offer a more visual interface that can make programming concepts more accessible. Features such as
execution visibility, language extensibility and liveness in block-based languages create a positive attitude
towards learning and using them (Perera et al., 2021). The use of block-based languages also increases student
motivation in introductory programming courses by promoting positive emotions about performance, which in
turn improves learning performance and engagement (Tsai, 2019; Wen et al., 2023). With block-based
programming languages, learners grasp the task more quickly and achieve significantly more learning goals in
the same amount of time compared to those using text-based languages (Price & Barnes, 2015). Interest in
further programming activities is also rated higher after a learning sequence with a block-based programming
language (Weintrop & Wilensky, 2017). The integration of block-based programming activities significantly
improves pupils' computational thinking skills and their self-efficacy in problem solving. Such activities actively
engage learners, promote their independence and strengthen their confidence in applying programming concepts

(Koray & Bilgin, 2023).

Snap! is a further development of the Scratch programming environment, already established in many schools.
Snap! offers some advantages and additional functions compared to Scratch; for example, Snap! enables
comprehensive prototype-based programming by creating objects (Modrow, 2018). In addition, new blocks can
be created as subroutines with control structures, also called the Build Your Own Block principle. The
programming toolbox for object-oriented programming is comprehensive, so that Snap!, in contrast to Scratch, is
a "fully developed programming language" (Modrow, 2018) and is thus in principle also suitable for advanced

computer science teaching. This is also reflected in the fact that Snap! is now sometimes offered as an

39

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

introductory programming language for first semesters of computer science (Garcia et al., 2012). In summary,
learning programming using block-based programming languages such as Snap! offers an accessible and visual
approach to learning basic concepts, enabling students to develop essential programming skills while fostering
their creativity, problem-solving abilities, and logical reasoning. Block-based programming languages are
moreover based on the vision of enabling programming beginners to implement learning-by-doing or learning-
by-making, where they are free to experiment with their own ideas, such as creating, sharing, playing, and
learning with computers (Harel et al., 1993). Therefore, to promote programming skills for beginners in a school
context, the use of block-based programming languages can be beneficial, especially for creation of student-

designed projects.

2.2 Assessment of block-based programmed student projects

When working in the context of student-designed projects, it is crucial to establish suitable evaluation concepts
that offer clear and transparent assessment measures for both teachers and students. By doing so, educators can
review the quality of learning materials and provide valuable feedback to support student learning and growth.
Assessment of student performance and feedback is an essential part of the learning process (Hattie, 2009).
Nevertheless, the assessment process is one of the most complex activities in a teacher's job (Jiirgens &
Lissmann, 2015). Effective feedback should focus on the task and process, provide clear guidance on how to
improve, link specifically to goals and performance (Shute, 2008). Additionally, research suggests that feedback
should be specific and focused on the most important aspects of student work (Wiliam, 2011). The challenge of
assessing student-designed projects lies in their open-ended nature, as they are characterized by diverse

approaches, ideas, and implementations, making direct comparisons difficult.

To address this challenge, various concepts and tools for assessing block-based programming projects have been
proposed. In most assessment concepts, however, there is a lack of consensus regarding the concrete
establishment and weighting of assessment criteria (Da Cruz Alves et al., 2019). This is probably because there
is currently no standardized competence framework derived from an empirically validated model (Gesellschaft
fiir Informatik, 2016). Moreover, most existing systems were not designed for the evaluation of authentic, open-

ended projects, but rather for standardized, task-based learning contexts. Most authors concerned with

40

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

assessment, either through the development of tools or the investigation of evaluation processes, regard their

approaches as supplementary to teaching and as a means of supporting learning (Boe et al., 2013; Denner et al.,

2012; Funke & Geldreich, 2017; Koh et al., 2014; Moreno-Leodn et al., 2017; Seiter & Foreman, 2013; Werner et

al., 2012; Zhang & Biswas, 2019).

Table 1 provides an overview of prominent approaches and tools for assessing block-based programming

projects, highlighting their aims, methods, strengths, and limitations.

Study (Author, | Aim / Context Assessment Method Strengths Limitations

Year)

Boe et al., 2013 | Evaluate Scratch | Static analysis with Objective, scalable | Limited to

— Hairball projects to customizable plugins | detection of code predefined patterns;
identify (e.g., initialization, patterns; high cannot assess
problematic or synchronization, accuracy (=<99%) creativity or design;
missing loops) manual review still
constructs needed

Denner et al., Middle school Research study Authentic insight Not a standardized

2012 girls’ game analysing 108 games into conceptual tool; rule-based, not
projects using coding understanding; block-based; limited
(Stagecast categories large dataset transferability
Creator) (complexity, usability,

documentation)
Koh et al., 2014 | Middle school Real-time formative Timely feedback Limited to
— REACT STEM / Scalable | assessment of for teachers; predefined CT

Game Design computational identifies patterns; misses
classes thinking patterns misconceptions qualitative and
during coding creative aspects
Werner et al., Game Performance-based Authentic, multi- Specific to Alice;
2012 - Fairy programming tasks measuring CT dimensional CT high implementation
Performance elective using (abstraction, measurement; effort; limited
Assessment Alice modelling, problem- supports creativity assessment
solving) collaboration
studies
Ball & Garcia, | University Snap! | Automated grading Scalable grading; Limited to closed-

41

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

Study (Author, | Aim / Context Assessment Method Strengths Limitations
Year)
2016 — courses and feedback immediate ended tasks; no
Autograder A integrated into Snap! feedback; simple assessment of
setup creativity or design
Wang et al., Snap! courses Automated testing High accuracy Only for testable
2021 - with interactive using predefined (=98%); scalable; behaviours; setup
SnapCheck projects templates and integrated into time-intensive;
simulated user actions | Snap! cannot assess open-
ended creativity
Moreno-Leén Scratch Automated static Strong correlation Ignores creativity
etal., 2017 — programming analysis compared to | with experts; and design; focused
Dr. Scratch contest projects human expert ratings consistent and on technical aspects

scalable

only

As the table (Table 1) shows, automated tools such as Hairball (Boe et al., 2013), Dr. Scratch (Moreno-Ledn et

al., 2017), or SnapCheck (Wang et al., 2021) offer highly scalable solutions and produce consistent results but

are primarily limited to predefined technical patterns and cannot capture creativity or the quality of open-ended

designs. In addition, some systems face technical barriers such as installation issues and a constant need for

updates to remain functional, which affects their acceptance among teachers (e.g., Ball & Garcia, 2016). Even

when functioning well, these systems often provide only structural feedback about the code and lack the ability

to evaluate whether a problem was solved in a meaningful way (Moreno-Leon et al., 2017; Wang et al., 2021).

These limitations explain why most authors explicitly recommend using automated systems as a complement to

traditional, teacher-driven assessments rather than as a replacement.

For example, Hairball and Dr. Scratch are powerful tools for detecting certain constructs, but they do not assess

design aspects, while SnapCheck provides highly accurate testing of interactive behaviours yet requires

significant preparation of templates and is unsuitable for authentic, free-topic projects.

Thus, there is still a clear need for research and development to create evaluation instruments that can provide

rich, individualized feedback for authentic student work.

42

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

One effective approach to evaluating student-designed projects is using rubrics. Andrade H. defines a rubric as a
one— or two—page document that describes varying levels of quality, from excellent to poor, for a specific
assignment (Andrade, 2000). Rubrics provide a clear and consistent framework for evaluating authentic student-
designed projects. By making expectations explicit and providing qualitative, criterion-based feedback, rubrics
help students understand how to improve their work and promote deeper learning (Wolf & Stevens, 2007). The
rubric presented in this study was developed specifically for Snap! projects and aims to qualitatively capture and
objectively assess the outcomes of open-ended, autonomous student projects. It was developed as part of the
evaluation of an interdisciplinary self-learning course, "Smart City" (Svedkijs et al., 2022) for learning the basics

of programming with Snap! to be able to qualitatively record and objectively assess the student projects created.

3. Method

3.1 Development procedure

We opted for a qualitative and exploratory approach to developing the assessment rubric because the research
question is open and the aim is to generate a practical, field-tested assessment instrument (Ddring & Bortz, 2016;

Gummels, 2020).

3.2 Teaching sequence

To this purpose, 183 students (the majority with no prior knowledge) in grades 9-11 were taught the basics of
programming with the block-based language Snap! in an approx. 20-hour teaching sequence in the school years
2018/19, 2019/20 and 2020/21. No one had any previous knowledge of block-based programming. Following the
lesson sequence, the pupils created their own projects in small groups on a free topic. Forty pupil projects
resulted from this and after data cleansing, 36 projects were available. The rubric was developed using
anonymized student project data, collected with informed consent and without any personal identifiers,

complemented by published projects from the Snap! platform.
3.3 Analysis and Drafting

Available projects could be used as a baseline data set for the development of the rubric (Fig.1). The
development of the rubric involved a comprehensive process, starting with the analysis of baseline data from

student projects and expert evaluation.

43

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Baseline data: === Project analysis and exploration and i ive design of the —_— Testing the grid with test data
30 student corresponding grid
projects using Several iterations Test data preparation
block-based "~
language Snap! ‘ Experience-based compilation of 10 different test projects
Level: Novices to &I) that are publicly available in the Snap! library.
zrtoegal;al,:?nzmg after Step-by-step analysis of the data Expert review and discussion of the o N
set and design of the grid draft draft Qualitative testing
sequence (approx.
20 teaching hours) Developers, researchers, teachers, prospective teachers
on programming. 1. Review of the projects 1. Addition of a further level assess the test data set:
2. Recording and segmentation 2. Addition of categories
of existing programming 3. Addition of code examples 1. Afree assessment of the 10 sample projects with a
constructs (loops, object 4. Adjustment of the order of the school grade A to F
design, etc.) categories 2. Assessment of the projects using the grid
3. Summary in suitable 5. Improvement of the wording 3. Comparison and evaluation of the results
categories
* 17 categories
* 4levels

Figure 1:Development process of the assessment rubric

To begin, a thorough analysis of the given dataset was conducted, examining each project's structure and content
to gain a deep understanding of its programming constructs, such as loops and object designs. This allowed for
systematization and categorization of used programming constructs. The resulting summaries enabled definition
of three different levels (I, II, III) within the dataset. Based on these findings, a draft of the rubric was created

with twelve thematic categories and three levels.

3.4 Expert Review and Iterative Exchange

We reviewed the initial rubric version together with four educational experts (2 female, 2 male) in the field of
programming for qualitative assessment. We defined experts as individuals with several years of experience
using block-based languages, particularly Snap!, in teaching contexts or those who had published academically
on block-based programming languages. Experts’ review led to refinement through an iterative exchange
process. The final version featured seventeen categories and four levels. In addition, according to the expert
advice the rubric was supplemented with source code examples, and categories were edited and put in a different
order. Beyond that, a general “project characteristics” category with a keyword-like description of the project
characteristics in the respective level was added as an orientation framework. Furthermore, a “creativity
impression” category was introduced. Here, a subjective estimate of project creativity in the sense of technical

originality and inventiveness is to be given.

44

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

4. Evaluation Process and Testing

To test the developed rubric, we prepared a dataset by selecting ten publicly available Snap! projects that reflect
typical student work after their first exposure to programming. These projects varied in complexity, subject
matter, and interactivity, ensuring a representative range of examples. This dataset illustrates the possible range
of projects and serves as a reference for evaluation.

Finally, nine prospective teachers (male: 4, female: 5) majoring in computer science, technology, mathematics or
natural sciences participated in the evaluation process. They had prior knowledge of Snap! or other block-based
programming languages and possessed existing teaching experience. Initially, they rated the randomly sorted
projects without any predetermined criteria using a school mark scale (1 = very good, A; 6 = insufficient, F).
Afterward, they received the developed rubric and evaluated the same projects again based on the specified

criteria. The evaluation of the competence grid was performed in German language.

4.1 Current version of the rubric

The current version of the rubric' comprises seventeen categories and four levels (0, 1, 2, and 3). For each
category, a level can be awarded in one of the four levels. The overall level is determined as the sum of all points

awarded within all categories.

The respective categories cover aspects of object-oriented development (e.g. objects or object communication),
algorithmic design (use of loops, branches, reporters), handling of data (variables, lists), Snap! specific design
options (graphic effects), handling of multithreading (header blocks and multithreading), and code outsourcing
(BYOB). In addition, the "project characteristics" category describes a general implementation in relation to the
corresponding level. The "creativity impression" category attempts to capture a subjective impression of the
project that cannot be measured by the other categories. All categories and levels are listed below in descriptive

statements translated into the English language.

45

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

1. Category “objects”

Level 0: Create an unstructured instruction sequence in a sprite.

Level 1: Create instruction sequences in an existing sprite to implement a specific function, e.g. object draws,
object moves.

Level 2: Create and name another object(s) using a parallel statement sequence.

Level 3: Independently create several other objects with a communication or interaction for modelling a

complex system.

2. Category “stage as an object”

Level 0: Cannot recognize stage as an object. No stage backgrounds/functions.

Level 1: Embed the stage in the system: set one or more backgrounds for the stage.

Level 2: Perceive the stage as an object: create a program for designing the stage, for example, by automatically
changing the background images, using the graphic effects, time lapses.

Level 3: Perceive the stage as an object: create a program for the stage with object interaction.

3. Category “communication with a user AND/OR with other objects”

Level 0: Cannot use communication instructions.
Level 1: Use condition block to evaluate keyboard or mouse input or colour coding.
Level 2: Create simple communication between objects or with the environment.

Level 3: Create advanced communication between objects/with the user, for example via variables.

4. Category “Use of reporter blocks or predicates”

Level 0: Cannot demonstrate implementation of the reporter and predictor blocks.
Level 1: Use simple reporter blocks, such as random number or x-position.
Level 2: Use reporter/predicator blocks as parameter AND/OR in conditions.

Level 3: Use complex/composite reporter/predicator blocks.

5. Category “Graphical effects, sound effects, draw effects”

46

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Level 0: Cannot demonstrate implementation of effects, etc.

Level 1: Use simple sound/speech/drawing instructions/graphical effects.

Level 2: Control the graphic effects AND/OR use combinations of different properties and sounds.

Level 3: Use graphical effects (effect combinations) meaningfully, for example to visualize a complex plot or to

design the program interface.

6. Category “Hat blocks and multithreading”

Level 0: Always start instruction sequence without a hat block.

Level 1: Use a hat block to start the script, the script runs linearly.

Level 2: Create several scripts within a project, but without targeted use of the multithreading concept: scripts
work independently of each other.

Level 3: Use several different hat blocks for a multithreading processing of the programs AND/OR use a hat

block for sending the messages AND/OR "When I start as a clone”.

7. Category “Object actions”

Level 0: Present a loose collection of instructions, no meaningful structure of a program.

Level I: Create a sequence of instructions with fixed numerical values, e.g. with concrete size specifications
AND/OR create a sequence of instructions for a sprite movement or figure geometry with waypoints.

Level 2: Use control flows with fixed values.

Level 3: Parameterize the statement sequence AND/OR use variables in control flows.

8. Category “Creating variables”

Level 0: Treat data as fixed values, with no variables present.

Level 1: Create and name a variable.

Level 2: Create several variables.

Level 3: Create (a) variable(s) for data exchange between objects (global variables) or within an object (local

variables). Demonstrate meaningful use of local and global variables.

47

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

9. Category “Using variables”

Level 0: Use only numbers or words as constants.
Level 1: Change variables as numbers or strings in the course of the program.
Level 2: Change the value of a variable depending on a condition, for example, set false to true.

Level 3: Use variables as data containers for various data such as lists, objects.

10. Category “Using operators”

Level 0: Cannot show use of operators.
Level 1: Use simple mathematical operations, such as plus, minus, etc. in the function as a reporter.
Level 2: Use nested operators with variables AND/OR simple operators within a one-way branch/loop.

Level 3: Demonstrate meaningful use of complex operators, e.g. in conditions.

11. Category “Use of predicates in control flows”

Level 0: Cannot show existing termination condition (except for endless loop) AND/OR incorrect termination
condition.

Level 1: Formulate a non-parameterized termination condition for a control flow.

Level 2: Formulate a parameterized termination condition for a control flow.

Level 3: Use operators (e.g. and, or, not) for a termination condition in a condition/loop AND/OR complex

conditions (referring to other objects).

12. Category “Use of conditions”

Level 0: Cannot demonstrate implementation of conditions.
Level 1: Use an if-condition or an if-else condition.
Level 2: Use a nested branch AND/OR use a one-way branch for multiple cases.

Level 3: Show sensible use of complex nesting (but no unnecessary nesting, clear source code).

13. Category “Use of loops”

Level 0: Cannot demonstrate loops implementation.

48

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Level 1: Use a loop.
Level 2: Use a combination of two loops (e.g. nesting them).

Level 3: Use multiple loops and complex loop structures, e.g. For loop.

14. Category “Use of lists”

Level 0: Cannot demonstrate list implementation.
Level I: Create a simple list AND/OR output the list AND/OR prompt input for a list.
Level 2: Use list elements according to the respective index.

Level 3: Create lists with objects AND/OR further lists AND/OR use complex structures and commands.

15. Category “Build Your Own Block”

Level 0: Cannot demonstrate own block implementation.
Level 1: Combine several commands in their own blocks (outsource code).
Level 2: Create a block with a return value or with (a) parameter(s). Create reporter.

Level 3: Create a block with complex parameters AND/OR return values, such as lists and objects.

16. Category “Project characteristics”

(Selected examples; full description in the online version)

Level 0: A simple project with partly correct approaches but overall is inadequate or contains errors. No
concept/no idea available. Loose collection of objects and functions.

Level 1: A project is manageable. 1-2 stage backgrounds are used. The plot is implemented with 2 to 3 objects.
Simple control flows, instructions, operators are used.

Level 2: The project has a comprehensive structure. Several stage sets with effects are used. Control structures,
instructions, links are used. Code is outsourced.

Level 3: The project has a complex structure. The plot is complex, exciting. Complex control structures,

instructions, links, lists are used. Custom blocks are used with parameters and return values.

17. Category “Creativity impression”

49

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Level 0: "The task has not been solved."

Level 1: "The task is solved, but not very creatively".

Level 2: "I understand the concept, it's exciting!"

Level 3: "Wow, that's a cool idea; a successful concept!"

Each level is described with a statement and, if useful, supplemented with a source code example (see example

Tab. 1 "Using reporters and predicates"):

Table 1: Excerpt of a category from the rubric with four descriptions at each level and corresponding

source code examples.

Category Level 0 Level 1 Level 2 Level 3

Using Cannot show | Formulate a non- | Formulate a non- | Use operators (e.g. and, or,

predicates | existing parameterized parameterized not) for a termination

in control | termination termination termination condition in a condition/loop

flows condition (except | condition for a |condition for a| AND/OR complex conditions
for endless loop) | control flow control flow (referring to other objects).

AND/OR use

incorrect
termination
condition
Code
example M)
| 2et number_Jeolf]

set number | to [

turn § @B degrees
b R
move @D steps
|
change x by

a (number =
[turn 6 €@ degrees
I rEwe & steps
' change x by €1
change number | by &

4.2 Description of the test data set

The dataset used for the testing of the rubric consists of ten exemplary projects taken from the virtual Snap!
library. All of these projects can be found in the Snap! collection” at: The link has been hidden for the review

process for anonymity reasons.

50

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The following criteria were formulated for the dataset:

. The projects should, as far as possible, have different levels of complexity in source code,
presentation, and plot.
. The projects can be interpreted as an average student performance after a teaching sequence in

programming for novices.

The following projects were selected. For reasons of clarity, the projects are presented in ascending order of

complexity - Note: the test persons, however, received the projects in random order.

Project 1. Row row - Movement of an object along predefined waypoints.

ROWROWROW

N The source code exhibits a linear, redundant structure. The object moves from one
coordinate point to another, and the route is not automated. The outputs are
implemented using a concurrently running script. The functionality and

presentation are rudimentary. Overall, it is a simple project with some

recognizable multi-threading usage.

Project 2: Rainbow Ball — Movement of an object along a random route with colour change.

~ The source code includes a loop and instructions from various categories such as

\
% movement, appearance, etc. The action is limited to visualization on the stage, and
- V
=
-~

the representation is animated. Overall, it is an interesting project with an idea that

was not further developed or implemented in a context.

Project 3: Exclusive Complexity — Calculating the average of 10 number inputs.
The source code has a linear structure, not parameterized, and lacks code
modularization.

The program flow is linear, with a single thread of execution. The presentation

includes a background image and an object. Overall, it is a simple project involving

mathematical calculations.

51

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Project 4: Avocado gif — An animated postcard featuring an avocado mother plant and its seed.
The source code implements multiple objects. Various control structures are
used, and the code is modularized. The action runs concurrently. The action

involves visualization without user interaction, and the representation is

animated. Overall, it is a small but visually appealing project with a concept. The

narrative flow could be further developed.

Project 5: Human body scanner — With a lens, various systems of the body can be observed.
The source code is concise. Instructions from different categories are utilized.
There is no code modularization or user communication. Overall, it is a small,

visually appealing project with potential for further enhancements.

Project 6: Guessing Game — The user is required to guess a number within a specific range.

userGuess (777 . . .
Tries SN The source code includes control structures and instructions for user

Guess the mystery
number. It is

communication. Code is modularized. There are no stage animations, only one

object. Overall, it is a simple project related to a classic task.

Project 7: eCard Challenge — A game and an animated Halloween postcard combined into one. The user is
required to answer quiz questions.

The source code incorporates various types of instructions. Object interaction and
communication are present. The action and presentation are cohesive. However,

the source code lacks modularization, resulting in redundant code segments.

Overall, it is a good project with room for improvement.

52

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Project 8: Fashion game — The user can dress and style a model.

b An extensive project utilizing instructions from various categories, with code

Beautiful!

modularization. It has a complex structure, and the action and visualization

complement each other. Overall, it is a comprehensive project with a clear

) |
concept.

Project 9: Dogder — A reaction game where the square object needs to avoid black dots.

The source code utilizes a comprehensive range of instructions and control
structures. It involves complex interactions, a well-defined narrative flow, and
efficient visualization. However, the code lacks modularization, resulting in

some code redundancy and reduced readability. Overall, it is a complex project

that showcases a wide range of functionalities. Project 10: Shooter Arcade Game
— A shooting game with different levels of complexity.
An extensive project utilizing instructions from various categories, with efficient visualization. It has a complex
structure, and the action and visualization complement each other. Overall, it is a comprehensive project with a

clear concept, but the source code may be somewhat challenging to navigate due to its complexity

5. Results

Each project was first assessed with a school grade using German grading system from 1(A = very good) to 6 (F
= insufficient). In the second part of the evaluation the test dataset was assessed with the described rubric.

The rubric consists of 17 categories, each of which can be rated on four performance levels (0—3 points). This
results in a maximum attainable score of 51 points (/7 categories x 3 points). To ensure comparability
between the two evaluation phases, the total rubric score was converted into the German grading system using a

linear transformation formula:
5% RS

Grade = 6 —
rade VS

RS: reached score; MS: maximum score

53

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The following graph (Fig.2) illustrates the comparisons of the mean values of the ten assessments. The blue cross
represents the average ratings of the projects using grades without the rubric, while the orange cross represents

the mean rubric scores converted using the formula mentioned above.

Project number

1 2 3 4 5 6 7 8 S 10
A 1 >4
X X X
X
B 2 X Average open X
grading X
C 3 X
B X
o
@ .
D a X X Average using
competece grid
E 5
F 6

Figure 2: The average grades for test dataset. Blue crosses mark average results for grading without a
rubric. Orange crosses mark the average results for grading using the rubric. For better comparison

the score was converted in German school grades from 1(A) to 6(F)

It is noticeable that the projects assessed with the rubric receive significantly lower ratings. Even the best project,
on average, achieves only a good grade (B) compared to grading without the rubric. Four projects do not meet
the minimum requirements (grade D). In the open evaluation without a rubric, most projects achieve good to
excellent grades. Both grading systems show in general the tendency from weak projects to good projects.
Nevertheless, there are some outliers in the evaluation without a rubric, for example regarding projects 2 and 3
or projects 5 and 6. The difference in evaluation is indeed significant, with certain projects showing an average

difference of two grades (e.g., Project 4).

54

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

The following diagram (Fig. 3) shows the individual results of the assessment withouta rubric.

Project number

Grade

@l . 3 ‘

4 cei@ee 5 ce@ee 6 — Participants' assessment
cee@en 7 cei@ee 8 ces@ee 9 ‘
= o¢= = Average

Figure 3: Dispersion of the results after assessing with a school grade with no predetermined criteria.

Average is marked with a cross.

In the first part of subjective grade assessment of the projects, the spread of the grades for the respective projects
is particularly striking. Project 2, for example, is assessed by the experts in a range of grades between 2 (good)
and 4 (sufficient). The dispersion is strikingly high for all projects. Only project 10 is rated as a very good by all
evaluators. Furthermore, it is striking that most projects tend to be assessed in the upper third of the rating range.
The assessment of projects shows wide variation within each individual evaluation. For example, one participant
rates project 2 as well as projects 8 and 9 with a good grade, although in the direct comparison it remains
questionable whether these three projects achieve the same level. At the same time, this participant rates projects
6 and 7 as significantly worse, with a satisfactory grade. Another participant also evaluates project 2 as good, but
again evaluates projects 6,7,8 and 9 with an almost very good grade. In this evaluation model, it is thus not
obvious according to which criteria the evaluations are made and a comparison of the evaluations among each
other becomes almost impossible. Thus, this evaluation method does not appear to be transparent and cannot be

used for the evaluation of the student projects.

When using the rubric, a higher consistency of the distribution of points can be observed (Fig. 4) and the results

of the assessment show usually much lower dispersion.

55

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

50

Competence score

cee@ee 1 2 3

4 cee@ee 5 @6 — Participants' assessment
cee@es 7 cee@ee 8 cee@ee 9 ’
- %= Average

Figure 4: Dispersion of the results after assessing with a rubric. Maximum score result is 51 points for the

best grade. Round dots mark the evaluation of German experts. Average is marked with a cross.

Clear outliers can be observed in projects 6 and 8. In project 6, code outsourcing (Category 15: Build Your Own
Block) in own blocks was sometimes overlooked during the assessment, resulting in an incorrect assessment.
Project 8 was partially classified as having a too high level of mastery. Presumably, differences between the
second and third levels of the rubric can be recognized less easily by inexperienced raters. For example, for this
project, the third level is awarded in the categories on loops and branches, even though the source code has a
level of only two. Despite the observed inconsistencies, the most projects can be assessed more homogeneously
in each case. All ratings are mostly within one grade. This means that projects can be better assigned to the
different levels. Thus, the projects are evenly distributed among the lower, middle, and high score ranges. The
following graph (Fig. 5) shows the average deviation in grade points from the mean assessment grades for the
respective projects with and without rubric. The overall mean deviation is 0.41 without the rubric. Without the
ceiling effect, the deviation would probably be significantly higher, especially for good projects (8-10
comparable with projects 1-7). The overall mean deviation is 0.24 with the rubric, demonstrating a substantial

decrease in rating variability and improved assessment consistency.

56

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

0,8

0,7

0,6

0,5

open grading

Grading with competence grid

0,4

0,3 :
0,2 :
2 3 4 5 6 7 8 9 10

Project number

Avergae deviation from the mean grade

o
|

=

Figure 5: Average deviation from mean grade, blue colour for grading without rubric and orange

colour for grading with the rubric.

The dispersion of values around the mean is significantly smaller by using the rubric. The highest average
deviation is 0.48 grade points. In contrast, without the rubric, the maximum average deviation from the mean is
0.75 grade points. However, particularly as project complexity increases, the dispersion in evaluations with the
rubric also tends to increase. There could be two reasons for this. First, evaluating complex structures requires
more knowledge in assessment, making it more challenging for inexperienced evaluators. It may indicate
inexperienced assessors” inability to differentially assess complexity, as well as their tendency to uniformly
assign a good grade. Second, a smaller evaluation dispersion without the rubric does not necessarily indicate a
better quality of assessment. Rather, as the note scale stops, a ceiling effect occurs. The assessment results show
a ceiling effect, where many projects are concentrated at the higher end of the score range, making it difficult to
distinguish between them. It seems, project 10 is assessed as attaining the highest level by almost all evaluators
without a rubric. Obviously, this project works as a standard in comparison to other projects because it is the
most complicated example. That is the probable explanation for the highest score on the open grading. But if the
projects are mapped to a rubric standard, project 10 does not achieve the best possible grade because it does not
fulfil all the requirements. This project, like project 8, has a complicated structure, so evaluators probably have

difficulties scoring it, even with a rubric. Therefore, this could explain higher dispersion in the evaluation of

57

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

complicated projects. The second reason could be that at higher levels; the rubric allows for more room for
interpretation and evaluative freedom. Overall, it can be still said that in most projects (except projects 8 and 10),
the average deviation from the group mean is significantly smaller when using the framework, as Fig. 5 clearly

shows.

An individual comparison of the ratings by example person (light grey dot) is shown in the following diagram
(Fig. 6). This is a participant who awards a very different rating, both with and without the rubric. The
participant's ratings without the rubric revealed a ceiling effect, as most projects were scored highly, often
receiving A grades. In contrast, when using the rubric, their evaluations became more nuanced and

differentiated, indicating a more refined assessment of the projects.

Project number
1 2 3 4 S 6 7 8
Al @ ® L @ L @ 51

®
©
S

D 4 X 21

Grade
X
Competence score

Figure 6: The results for a single example participant. Orange dots mark the evaluation with a rubric;

blue dots mark the evaluation without a rubric. Corresponding group average is marked with crosses.

The example data set shows the effects of the rubric. Originally, this participant rated projects significantly
higher than the average. For example, project 4 deteriorates from a very good (1, A) grade to a "fail" (5, E).
Projects 1, 3, 5, 6, 8 also experience a significant deterioration. This is an interesting phenomenon that could not
be clarified within the framework of this evaluation. There was a tendency for all evaluators to be significantly
higher at open grading. Furthermore, when the results of example person are compared with the mean values, it

is noticeable that, with the rubric, the assessment is closer to the general mean values. The individual mean

58

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

deviation is 0.04 grading points (2.12 of 51 points). Except for one project (7), the results of open grading by
example person are far from the average grading. The mean deviation with open grading is 0.86 grading points.
The rubric allows each rater to evaluate using the same scale as all other raters.

To examine the consistency of the evaluations and to determine whether the rubric improved the objectivity of
grading, the interrater reliability (IRR) was calculated for both evaluation phases. For the free grading phase
without predetermined criteria, Kendall’s coefficient of concordance (W) was applied, as this method is
appropriate for ordinal data such as school grades (Gibbons, 1993; Olson et al., 2003; Venugopal et al., 2024).
For the rubric-based evaluation, the raw scores were first converted into the German grading system with
increments of 0.25 (e.g., 5.81 — 5.75) to ensure a direct comparison with the free grading phase. A higher
Kendall’s W indicates greater agreement among raters, with values ranging from 0 (no agreement) to 1 (perfect

agreement) (Olson et al., 2003).

Level

o
o
wn
=
=
4]
N
N
4]
w
W
wn
I

Objects
Stage as an object

Communication with a user AND/OR...

Usa of reporter blocks or predicates
Grafical effects, soundeffects, draw...

Hat blocks and multithreading

Object actions
Creating variables

Using variables

Category

(i

Using operators

Using of predicatesin control flows
Using of conditions

Using of loops

Using of lists

Build Your Own Block

Project characteristics

Creativity impression

Emrow row M guessinggame M shooterarcade game

Figure 6: Comparison of results for individual projects by category. Selection of three projects. The

picture shows an average of all graders.

59

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

This quantitative analysis provides an objective measure of the reliability of the evaluation process and
demonstrates whether the rubric successfully reduced subjective variation in grading. The following section first
presents the Kendall’s W values for both evaluation phases and compares the level of agreement among raters.
The interrater reliability analysis revealed a clear difference between the two evaluation phases. Without the
rubric, the agreement among the nine raters was moderate to good, with a Kendall’s W of 0.634 (p <.001).
When using the developed rubric, the level of agreement increased substantially to W = 0.940 (p <.001),

indicating very high to almost perfect concordance between raters.

This result demonstrates that the rubric not only provides a structured framework for evaluation but also
significantly reduces subjective variation in grading. The substantial increase in Kendall’s W suggests that the
competence grid helped the raters to apply more consistent and comparable evaluation criteria, thus improving

the reliability of the assessment process.

Moreover, the designed rubric enables a more refined analysis of project quality at the individual level, providing
a detailed breakdown of each project's strengths and weaknesses. Fig. 7 illustrates this capability, presenting a
comparative analysis of three exemplary projects, highlighting their distinct characteristics and achievements. This
nuanced evaluation allows educators to provide targeted feedback, fostering growth and improvement in each

student's programming skills.

This representation method can help to break down each assessment individually into strengths and weaknesses
as needed. Using the evaluation results, it is possible to explicate single components and compare them.
Specifically in this example, the selected sample dataset could be reviewed in terms of existing concepts and the
level of proficiency achieved on average. For example, in the category Use of conditions, the “shooter arcade
game”- project achieves a high level of mastery, “guessing game” project shows moderate expertise, and the
“row row” project lacks understanding in this area. On the base of this analysis method, it is possible to evaluate

learning goals and correlated results and to give more detailed feedback on each project.

60

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

6. Discussion and Conclusion

The results of this study demonstrate that the rubric, with its 17 categories, is a comprehensive tool for
evaluating programming projects. The primary aim of creating a structured description for creative block-based
programming projects was successfully addressed with this rubric, providing a clear and systematic framework
for assessment. Statistical analysis confirmed the reliability of the rubric. Kendall's W showed a high degree of
agreement between assessors, demonstrating that the rubric supports consistent assessments by different
assessors. At the same time, the distribution of scores indicated a possible ceiling effect, as particularly good
projects achieved the highest possible score in several categories. This result shows that future iterations of the
rubric could benefit from the addition of more advanced descriptions in order to better distinguish particularly
high-performing projects. The lack of correlation between categories suggests that each category provides
unique insights into the project's quality. As a result, the number of categories cannot be reduced without
compromising the effectiveness of the evaluation when the rubric is used to derive a grade. However, for purely
qualitative evaluations, certain categories may be excluded, particularly when specific aspects have not been

covered during instruction.

The comparison of the two assessment forms clearly demonstrated that using a rubric led to criterion-led
assessment, significantly reducing the average deviation of grades and thereby improving comparability between
evaluators. Qualitative feedback from the raters confirmed their satisfaction with the tool, highlighting its clarity,
perceived objectivity, and the sense of “clear conscience” when grading. The included source code examples

were particularly valued, especially by less experienced assessors.

In terms of feasibility, evaluating programming projects with the rubric proved manageable. Assessing a single
project required about nine minutes, totalling roughly 270 minutes for a class of 30 students. While no empirical
data exist for grading times in computer science, this workload is comparable to grading a standard mathematics
test, which typically takes around 360 minutes (Frank et al., 2023) . Thus, the rubric is not only reliable and

comprehensive but also practical for classroom use, even in larger cohorts.

61

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Nevertheless, the rubric has limitations. Its construction is based on student projects and qualitative expert
assessment. As a result, not all possible Snap! categories are currently covered in the rubric, indicating a need for
ongoing research and refinement. There is room for further differentiation of category descriptions, and higher

proficiency levels would benefit from additional examples to support the application of the rubric.

Implementing the rubric in diverse educational contexts may pose challenges, particularly when teachers have
limited experience with programming and assessment. The results of this study indicate that the rubric can be
especially useful in such cases, as it helps to harmonize evaluations and align them with the mean value, as
illustrated in Figure 6. These findings highlight the potential of the rubric to support less experienced teachers

and suggest that future research should explore strategies to further facilitate its effective use.

Currently, there is no standardized, empirically validated framework for the evaluation of block-based
programming projects. Existing approaches vary widely and are often designed for standardized, task-based
contexts rather than authentic, open-ended projects. This study contributes to filling this gap by providing a
structured, qualitative instrument for assessing Snap! projects, while also laying the groundwork for future

comparative studies and broader validation efforts.

The developed rubric may also be applicable to other block-based programming languages such as Scratch.
However, this potential transferability was not examined within the scope of the present study. Future research
should therefore investigate its suitability across different programming environments to validate and possibly
extend its applicability. From the students’ perspective, the rubric can also serve as a reference framework to
understand expectations and support self-assessment. Finally, by providing clear, criterion-based guidance, the
rubric helps to overcome common challenges in evaluating problem-solving skills within the computational

thinking process, particularly in the areas of algorithmic design, parallelization, iteration, and automation.

62

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

References

Andrade, H. G. (2000). Using Rubrics to Promote Thinking and Learning.

Balouktsis, I. (2016). Learning Renewable Energy by Scratch Programming. Emiotquoviky Eretnpida

Hodoywyikod Tunquoros Nymoywywv Hovemotyuiov Iwavvivwv, 9(1), 129. https://doi.org/10.12681/jret.8916

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable programming: Blocks and beyond.

Communications of the ACM, 60(6), 72—80. https://doi.org/10.1145/3015455

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball: Lint-inspired static
analysis of scratch projects. Proceeding of the 44th ACM Technical Symposium on Computer Science Education,

215-220. https://doi.org/10.1145/2445196.2445265

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking.

Da Cruz Alves, N., Gresse von Wangenheim, C., & Hauck, J. C. R. (2019). Approaches to Assess
Computational Thinking Competences Based on Code Analysis in K-12 Education: A Systematic Mapping

Study. Informatics in Education, 18, 17-39. https://doi.org/10.15388/infedu.2019.02

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.

https://doi.org/10.1016/j.compedu.2011.08.006

Déring, N., & Bortz, J. (2016). Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften.

Springer Berlin, Heidelberg. https://doi.org/10.1007%2F978-3-642-41089-5

Frank, M., Thomas, H., & Martin, R. (2023). Arbeitszeit und Arbeitsbelastung von Lehrkrdften an Schulen in

Sachsen 2022: Ergebnisbericht. https://doi.org/10.47952/gro-publ-172

63

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Funke, A., & Geldreich, K. (2017). Measurement and Visualization of Programming Processes of Primary
School Students in Scratch. Proceedings of the 12th Workshop on Primary and Secondary Computing Education

- WiPSCE °17, 101-102. https://doi.org/10.1145/3137065.3137086

Garcia, D. D., Harvey, B., & Segars, L. (2012). CS principles pilot at University of California, Berkeley. ACM

Inroads, 3(2), 58. https://doi.org/10.1145/2189835.2189853

Gesellschaft fiir Informatik (Hrsg.). (2016). Bildungsstandards Informatik—Sekundarstufe I1. Empfehlungen der

Gesellschaft fiir Informatik e. V. erarbeitet vom Arbeitskreis »Bildungsstandards Sll«, 183/184, 88.

Gibbons, J. (1993). Nonparametric Measures of Association. SAGE Publications, Inc.

https://doi.org/10.4135/9781412985291

Gummels, 1. (2020). Wie kooperatives Lernen im inklusiven Unterricht gelingt. Springer Spektrum Wiesbaden.

https://doi.org/10.1007/978-3-658-29114-3

Harel, 1., Massachusetts Institute of Technology, & Media Laboratory (Hrsg.). (1993). Constructionism:

Research reports and essays, 1985-1990 (2. print). Ablex Publ. Corp.

Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.

Jirgens, E., & Lissmann, U. (2015). Pddagogische Diagnostik. Beltz Verlag.

Koh, K. H., Basawapatna, A., Nickerson, H., & Repenning, A. (2014). Real Time Assessment of Computational
Thinking. 2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 49-52.

https://doi.org/10.1109/VLHCC.2014.6883021

Koray, A., & Bilgin, E. (2023). The Effect of Block Coding (Scratch) Activities Integrated into the SE Learning
Model in Science Teaching on Students’ Computational Thinking Skills and Programming Self-Efficacy.

Science Insights Education Frontiers, 18(1), 2825-2845. https://doi.org/10.15354/sief.23.0r410

Krugel, J., & Ruf, A. (2020). Learners’ perspectives on block-based programming environments: Code.org vs.

Scratch. http://doi.acm.org/10.1145/3421590.3421615

64

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language
and Environment. ACM Transactions on Computing Education, 10(4), 1-15.

https://doi.org/10.1145/1868358.1868363

Miladenovi¢, M., Mladenovi¢, S., & Zanko, Z. (2020). Impact of used programming language for K-12 students’
understanding of the loop concept. International Journal of Technology Enhanced Learning, 12(1), 79.

https://doi.org/10.1504/1JTEL.2020.103817

Modrow, E. (2018). Informatik mit Snap!, Snap! In Beispielen. http://ddi-mod.uni-

goettingen.de/InformatikMitSnap.pdf

Moreno-Ledn, J., Roman-Gonzalez, M., Harteveld, C., & Robles, G. (2017). On the Automatic Assessment of
Computational Thinking Skills: A Comparison with Human Experts. Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, 2788-2795.

https://doi.org/10.1145/3027063.3053216

Olson, L., Schieve, A. D., Ruit, K. G., & Vari, R. C. (2003). Measuring Inter-rater Reliability of the Sequenced
Performance Inventory and Reflective Assessment of Learning (SPIRAL): Academic Medicine, 78(8), 844—850.

https://doi.org/10.1097/00001888-200308000-00021

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring children’s learning experience in
constructionism-based coding activities through design-based research. Computers in Human Behavior, 99, 415—

427. https://doi.org/10.1016/j.chb.2019.01.008

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. BasicBooks.

Perera, P., Tennakoon, G., Ahangama, S., Panditharathna, R., & Chathuranga, B. (2021). A Systematic Mapping
of Introductory Programming Languages for Novice Learners. IEEE Access, 9, 88121-88136.

https://doi.org/10.1109/ACCESS.2021.3089560

65

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Price, T. W., & Barnes, T. (2015). Comparing Textual and Block Interfaces in a Novice Programming
Environment. Comparing Textual and Block Interfaces in a Novice Programming Environment.

https://doi.org/10.1145/2787622.2787712

Resnick, M. (2014). Give P’s a chance: Projects, peers, passion, play.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. Communications of

the ACM, 52(11), 60—67. https://doi.org/10.1145/1592761.1592779

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming for all. Communications of the ACM,

52(11), 60. https://doi.org/10.1145/1592761.1592779

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary
grade students. Proceedings of the Ninth Annual International ACM Conference on International Computing

Education Research, 59—66. https://doi.org/10.1145/2493394.2493403

Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational Research, 78(1), 153—189.

https://doi.org/10.3102/0034654307313795

Svedkijs, A., Knemeyer, J.-P., & Marmé, N. (2022). Férderung von Computational Thinking durch ein digitales
Leitprogramm zur blockbasierten Programmiersprache Snap! In B. Stadl (Hrsg.), Digitale Lehre nachhaltig

gestalten. Waxmann Verlag. https://doi.org/10.31244/9783830996330

Tsai, C.-Y. (2019). Improving students’ understanding of basic programming concepts through visual
programming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232.

https://doi.org/10.1016/j.chb.2018.11.038

Venugopal, V., Dongre, A., & Kagne, R. N. (2024). Development of an analytical rubric and estimation of its
validity and inter-rater reliability for assessing reflective narrations. The National Medical Journal of India, 36,

323-326. https://doi.org/10.25259/NMJI 732 21

66

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Weintrop, D., & Wilensky, U. (2015). To Block or Not to Block, That is the Question: Students’ Perceptions of
Blocks-Based Programming. Proceedings of the 14th International Conference on Interaction Design and

Children, 199-208. https://doi.org/10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school

computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 3.

Weintrop, D., & Wilensky, U. (2018). Comparing Block-Based and Text-Based Programming in High School
Computer Science Classrooms. ACM Transactions on Computing Education, 18(1), 1-25.

https://doi.org/10.1145/3089799

Wen, F.-H., Wu, T., & Hsu, W.-C. (2023). Toward improving student motivation and performance in
introductory programming learning by Scratch: The role of achievement emotions. Science Progress, 106(4),

00368504231205985. https://doi.org/10.1177/00368504231205985

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Measuring
computational thinking in middle school. ACM Transactions on Computing Education, 215-220.

https://dl.acm.org/doi/10.1145/2157136.2157200

Wiliam, D. (2011). Embedded formative assessment. Solution Tree Press.

Wolf, K., & Stevens, E. (2007). The Role of Rubrics in Advancing and Assessing Student Learning. The Journal

of Effective Teaching, 7(1), 3—14.

Zhang, N., & Biswas, G. (2019). Defining and Assessing Students’ Computational Thinking in a Learning by
Modeling Environment. In S.-C. Kong & H. Abelson (Hrsg.), Computational Thinking Education (S. 203-221).

Springer Singapore. https://doi.org/10.1007/978-981-13-6528-7 12

67

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Towards a consensus on program elements of specialized
computer science / information technology (CS/IT) programs in

high schools: A Delphi study

Jonathan D. Becker, J.D., Ph.D.

Virginia Commonwealth University

Amy D. Corning, Ph.D.

Virginia Commonwealth University

Jon S. Graham, M.A., M.S.

Virginia Commonwealth University

James T. Carrigan, L.C.S.W., M.S.W.

Virginia Commonwealth University

DOI: 10.21585/ijcses.v7i3.236

Abstract

In our increasingly technological and advanced times, demand for K-12 education in computer science and
information technology (CS/IT) is growing. Current data offer insight into student access to computer science
education and course-taking. In addition to the expansion of individual course offerings, there is also a growing
number of specialized CS/IT programs in high schools. However, there has been no systematic attempt to
document the landscape of those programs. This study is part of a larger landscape study of secondary CS/IT
programs in Virginia and uses a consensus-based approach to identify the common elements that expert and
practitioner panelists believe should be included in such a program. The results reveal strong consensus on a
wide range of program goals, activities, and curricular elements, suggesting that there are many opportunities to

create purposeful and coherent CS/IT programs in high schools.

Keywords: computer science, information technology, high school, programs

68

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

1. Introduction

1.1 Understanding the landscape of computer science/information technology (CS/IT) programs in high schools

Educators and other stakeholders are keenly aware of the need for high-quality computing education at the
secondary level — on the one hand, to enhance the diversity and thus the vibrancy and sustainability of the
computing workforce, and on the other, to prepare citizens for a world increasingly reliant on computing. The
need for computing education exists at multiple levels of schooling, but high school may be a critical juncture,
when contexts and experiences influence students’ engagement, self-efficacy, and belonging in ways that affect
their interest and post-secondary persistence, with respect to both STEM (e.g., Bottia et al., 2015, 2018; Legewie

& DiPrete, 2014) and computing specifically (Eisenhart & Allen, 2020; Master et al., 2016; NASEM, 2021).

On a state level, Virginia’s status as a technology hub lends particular urgency to issues of STEM education
generally and computing education in particular. Over the past two decades, the Commonwealth of Virginia has
invested considerable resources into STEM education programs at the high school level — in part through the
establishment of schools and programs focusing on computing, computer science, and information technology.
Virginia was also one of the first states to develop Computer Science Standards of Learning (Virginia
Department of Education [VDOE], 2022a), and the first state to adopt a K-12 computer science framework
(Crowder et al., 2020). A number of Virginia’s STEM-focused high schools and programs offer computing and
information technology-oriented education, and many of these schools and programs appear to share common
elements, including emphasis on advanced mathematics and computer science coursework, authentic and hands-
on learning, projects and internships, career exposure, development of workplace skills, and opportunities to earn

college credits.

This article reports on one part of a more comprehensive environmental scan of specialized high school
computer science/information technology (CS/IT) programs in Virginia. In partnership with the Virginia
Department of Education (VDOE), we have conducted a detailed census of schools and programs designed to
support secondary students in pursuing computing education. One part of the project involves web- and survey-

based research to gather information about the programs in terms of characteristics such as

69

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

selectivity/inclusivity, program length, cohesiveness of program community, location, and student
demographics. That is, the goal of that part of the project is to be able to describe what is offered by programs.
The part of the research project reported herein is an attempt to understand what experts believe should be

offered by specialized high school CS/IT programs.

1.2 Research Question and Significance

To understand beliefs about what specialized high school CS/IT programs should offer students, we used the
Delphi Method among a panel of CS education experts whose professional backgrounds ranged from classroom
teacher to university professor. Through three rounds of questions posed to our panel, areas of consensus and

dissensus emerged that allowed us to surface understanding of what specialized CS/IT programs should offer.

Specifically, the study was guided by the following research question: what common educational and
experiential elements (e.g., advanced courses, degrees/college credits, credentials, hands-on/authentic
experiences, internships, workplace skill development) do educators believe are important for specialized

secondary CS/IT programs/schools to provide?

This study is significant because while a number of Virginia’s STEM-focused high schools and programs offer
CS/IT-oriented education, and many of them appear to share common elements, at present we have no
systematic understanding of the prevalence of these elements across schools/programs. Nor do we have a
conceptual map of the outcomes to which they are intended to lead. This study involves critical first steps that
lay the groundwork for understanding similarities and differences among CS/IT-focused programs and schools

and will help us develop appropriate measures for evaluating their effectiveness.

2. Literature Review

2.1 Defining CS Education

Computer science as a discipline has long struggled to define itself as distinct from other disciplines, including

mathematics and engineering. Today, with the growth of fields like artificial intelligence, data science,

70

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

cybersecurity, and human-computer interaction, new questions of the disciplinary boundaries of computer

science as a discipline have emerged.

These disciplinary and definitional struggles are evident in computer science education. Those charged with
teaching within the discipline, from elementary school to postsecondary education, have had to figure out what
their students need to know and what skills they need within a rapidly changing society. In K-12 education,
many states, including Virginia, have adopted a definition of computer science drawn from Tucker et al. (2006).
According to this definition, computer science is “the study of computers and algorithmic processes, including
their principles, their hardware and software designs, their applications, and their impact on society” (p.

2). Virginia describes computer literacy (the general use of computers and programs), educational technology
(applying computer literacy to school subjects), and digital citizenship (the appropriate and responsible use of
technology) as the building blocks of computer science (Commonwealth of Virginia Board of Education, 2017).
Furthermore, information technology shares key principles with computer science but is largely focused on

applications of computer science, such as software installation as opposed to software development.

These definitional and disciplinary overlaps present challenges to educators and policymakers in charge of
developing courses and programs of study. They also present challenges to policymakers and researchers
attempting to understand and report on computer science offerings in schools. As an example, for the purposes of
our study, we settled on the “CS/IT” nomenclature to ensure that the research addressed the full range of

programs that might include CS-related education.

2.2. The Demand for CS Education

Definitional challenges notwithstanding, there is clear demand for and growth in computer science education in
K-12 education. According to a report from Code.org (Code.org et al., 2023), in 2023, 57.5% of U.S. public high
schools offered at least one foundational computer science course. This percentage is up from 53% in 2022 and
represents the largest year-to-year growth documented by Code.org. Furthermore, across the 35 states that

provided relevant data, 5.8% of high school students were enrolled in one of those foundational computer

71

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

science courses. Finally, states allocated more than $120 million for computer science education, the most ever

allocated in one year.

This growth in CS education comes from a few different directions. From a federal policy perspective, while CS
education had been discussed for decades, CS education was specifically mentioned in federal education policy
for the first time in the 2015 Every Student Succeeds Act (ESSA) which reauthorized the Elementary and
Secondary Education Act (ESEA). Specifically, computer science was included in the definition of a “well-
rounded” education in section 8102 of ESEA of 1965. However, CS education got a major boost from the federal
government when, in 2016, the Computer Science for All initiative was launched. That initiative offered $4
billion for states and $100 million for school districts that agreed to expand computer science education over ten

years (Marshall & Grooms, 2022).

Undoubtedly, this demand is also fueled by societal changes and the changing workforce. That is, to the extent
that K-12 education is aimed at preparing students for the workforce, schools must help students explore
information technology and computer science (Muraski & Iversen, 2022). And, as Marshall & Grooms (2022)
document, industry and private sector actors have been significantly involved in advocacy of CS education,
though such influence networks are often focused on private interests and not on broader policy goals including

equity or equality of opportunity.

2.3. The Effects of CS Education

Alongside the growing demand for CS education, there has been no shortage of research on pedagogical
techniques within CS education. However, there is less research on its overall impacts. It may be a bit early to
assess the effect of this new policy emphasis, but there has been some research on the relationship between CS
education and the development of skills such as computational thinking as well as the relationship between CS

course-taking in K-12 education and the selection of STEM majors in college.

Outcomes that have been examined include interest in CS (Clarke-Midura et al., 2020; Sabin et al., 2017; Starrett

et al., 2015; Webb & Rosson, 2011) and CS self-efficacy (Aivaloglou & Hermans, 2019; Aritajati et al., 2015;

72

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Elizabeth Casey et al., 2017). The research on the development of computational thinking skills via CS education
is quite robust. Lee et al. (2022) conducted a systematic review of the research on CS education and K-12
students’ computational thinking (CT) skills and found “strong evidence that CS education promotes the
development of students’ CT in the K-12 setting while improving students’ creative and critical thinking skills”
(p. 10). Considering longer term outcomes, computer science course-taking in high school has been associated
with the selection of STEM majors in both two-year and four-year institutions (Lee, 2015; Giani, 2022; Armoni

& Gal-Ezar, 2023).

2.4. The Challenges for CS Education

Nearly a decade into the “CS for All” era, one of the most significant challenges CS education faces is that CS
education has not been for all. The most recent State of Computer Science Education report from Code.org
shows that schools in rural and urban areas, as well as smaller schools, are less likely to offer a foundational CS
course. Also, “Black/African American students, Hispanic/Latino/Latina/Latinx students, and Native
American/Alaskan students are less likely to attend a school that offers foundational computer science” (p. 5).
CS-related outcomes are inequitable as well. Based on data from the International Computer and Information
Literacy Study (ICILS) in 2018, Karpinski et al. (2021) found that “...regardless of what proxy for
socioeconomic status is employed, and in line with expectations, students from more advantaged backgrounds
perform better in both [Computer and Information Literacy] CIL and [Computational Thinking] CT tests,

compared with their peers from less advantaged backgrounds” (Karpinski et al., 2021, p. 3).

The availability of well-qualified CS education teachers is an additional equity challenge for the field. “In order
to fully realize the promise of computing education, we need to ensure that students have highly qualified
teachers with knowledge of computing, and that teachers are implementing pedagogical approaches that center
students’ lived experiences” (Shah and Yadav, 2023. P. 469). For both CTE and general education CS courses in
K-12 education, the challenge is finding teachers who have both the pedagogical and content knowledge needed

to best facilitate learning in computer science.

73

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Finally, a real challenge in the K-12 CS education space is figuring out what students need to know and be able
to do as a result of taking CS courses and enrolling in CS/IT programs in order to....??. In an increasingly
technological society, those choices are important but difficult. Therefore, this study aims to inform those

curricular conversations.

3. Research Design

3.1 Delphi method study

Our research employed the Delphi method to elicit beliefs from a panel of experts on computer science education
to see where there is consensus (or dissensus) on the goals and characteristics of specialized secondary CS/IT
programs. In the Delphi method, “[T]he aim is to reach agreement or a convergence of opinion, and the
structured process allows for the effective amalgamation of information” (Drumm et al., 2022, p. 3). There are
variations across studies in how the Delphi Method is carried out, but, generally, a panel of experts is asked to
complete multiple rounds of questionnaires. The first-round questionnaire includes mostly open-ended questions;
data from that questionnaire are used to generate a second questionnaire consisting of five-point, agree-disagree
scale questions. In most cases, a third questionnaire is used to seek consensus and/or prioritization in areas where

there was consensus.

3.2 Study Sample

Our study included three rounds of questionnaires (described below) administered to a panel of individuals with
experience in CS education and likely to be informed about specialized computer science and information
technology programs for Virginia high school students. We cast a wide net to identify potential participants,
drawing on sources including known CS/IT program directors, professional contacts, individuals recommended
by our partner, VDOE, etc. We chose not to include representatives from business or industry. At this point in
our research, we were primarily concerned with understanding the needs of students and families and the
capacities of teachers, schools, and programs — not with workforce or employer demand or pipelines, though of

course the different realms are interconnected. In addition, some schools and programs actively work with

74

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

industry partners to better understand their needs through curriculum, credentials offered, etc., so business

interests are to some extent already reflected.

With these goals in mind, we developed a list of 56 potential participants. We then selected 39 to contact, with a
view to including individuals in a range of roles at different types of institutions and organizations, in different
regions of Virginia, who might represent a spectrum of perspectives on specialized CS/IT programs. We
contacted potential participants by email, inviting them to participate, explaining the purpose of the study and
providing details, and offering them a $25 gift card incentive for completing all three rounds. Of those we
contacted, 23 agreed to participate, and 17, or 44%, completed all three question rounds. Five were not willing to
participate (13%), and 11 never responded (28%). Three referred us to other individuals within their institution
who were better positioned to respond to our request; one of the three referrals agreed to participate, and we

replaced the three original invited participants with the three referrals for the purpose of these calculations.

3.3 Study Questionnaires

The Round 1 questionnaire consisted of nine open-ended questions (some in multiple parts). Panelists were
asked about their perceptions of specialized high school CS/IT programs, including their intended goals, skills
they should foster, what sorts of experiences they should offer; panelists were also asked about their views on
admissions approaches and program recruitment. Round 2 was designed to ascertain the degree of consensus
about program goals and other elements. The themes and language used by participants in Round 1 formed the
basis for seven sets of closed-ended questions and three further open-ended questions in Round 2. Questions
again asked about program goals, skills taught/learned, experiences offered, and approaches to admissions — all
in closed-ended format. Foth et al. (2016) reviewed studies using the Delphi method in nursing and found that
the studies that predefined consensus described it as a percentage of agreement for an item, “...usually 60%
agreement or higher (median = 75%)” (p. 118). Diamond et al. (2014) found a similar median consensus level in

their review of Delphi studies. We defined “consensus” as 70% agreement or higher.

The purpose of Round 3 was twofold. First, we wanted to encourage participants to consider their own

perspectives in light of others’ responses before responding to a final set of questions, so we provided

75

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

participants with a summary report of the Round 2 findings. Second, since there was so much consensus
generated in Round 2, in the final round we chose to ask participants which of the consensus elements they
would prioritize in specialized high school CS/IT programs. For example, there was strong consensus on a large
number of goals for such programs, so we asked the panelists to tell us which three goals should be emphasized.

Participants received both the Round 2 summary and the Round 3 questionnaire at the same time.

4. Findings

The findings about common elements of specialized HS CS/IT programs are described below, and are organized

into three categories: program goals, program activities, and program skills/competencies.

4.1 Program Goals

Using the data from Round 1, we identified nine possible goals for specialized high school CS/IT programs. The
goals clustered around two broad themes: specialized CS/IT education as a means to pursue learning about
CS/T (e.g., the item “allowing students explore in interest in CS/IT”), and specialized CS/IT education as
preparation for post-secondary activities (e.g., “providing students with a foundation for post-secondary

education in CS/IT.”

On eight of the nine goals, Round 2 consensus was nearly complete, with over 90% of the panelists agreeing or
strongly agreeing with each, as shown by the orange bars in Figure 1. Even the goal endorsed by the smallest
percentage — helping students obtain a job in CS/IT after HS graduation — was supported by nearly 80%. More
than 70% of panelists strongly agreed with six of the nine listed goals. The three that did not reach consensus
based on strong agreement were promoting access to CS/IT for students historically marginalized in CS/IT
education (67% strongly agreed), providing students with a strong foundation for post-secondary education in
CS/IT (61% strongly agreed), and helping students obtain a job in CS/IT after HS graduation (17% strongly

agreed).

In Round 3, panelists were asked to choose the three of the nine goals from Round 2 that they saw as most

important for programs to emphasize. The blue bars in Figure 1 show the percentage of participants who selected

76

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

each goal as one of the three most important, with priority goals falling into three broad groups. The first group,
selected by more than 40%, included equipping students with widely applicable CS/IT skills, helping students
prepare for a career in CS/IT, allowing students to explore an interest in CS/IT, and promoting access to CS/IT
for students historically marginalized in CS/IT fields. Only the first of these was selected by more than half the
panelists. The second group of prioritized goals included those selected by one third of panelists or slightly
fewer, including: supporting students in developing transferable CS/IT skills for college or the workplace,
making students aware of CS/IT career possibilities, and providing a sequenced opportunity to allow students to
go deeper in their learning of CS/IT. Finally, two goals were selected by the lowest percentages of respondents:
providing students with a foundation for post-secondary education in CS/IT and helping students get a job in
CS/IT after high school graduation. Even though some programs espouse these goals, our panelists may have

assigned them lower priority because each addresses the needs of only a subset of high schoolers.

Panelists also responded to an open-ended question on the Round 2 questionnaire inviting them to comment on
their agree—disagree ratings, providing further insight into their thinking about program goals. Three themes
emerged from those data. The first theme reflected a belief that specialized CS/IT programs should provide a
wide range of experiences to students. These experiences included specific elements such as “multiple offerings
for juniors and seniors, depending on what they want to do post-high school,” and more general
recommendations such as “Opportunity and exploration. Life skills and knowledge, not necessarily career
specific.” A second theme was the importance of CS/IT programs offering work-based learning and career
readiness elements that prepare students for the workplace. The third theme involved the need for CS/IT
programs to teach the technical skills necessary to be knowledgeable about and successful in computer science
and information technology. Specific skills included cybersecurity, software development, programming, Unix,

Python, Microsoft, and Google.

4.2 Program Activities

Using the data from Round 1 as our starting point, we identified 10 possible activities that participants thought
specialized high school CS/IT programs should offer, and asked about each in a closed-ended, agree—disagree

format in Round 2. Figure 2 below shows the activities, along with the percentage of panelists who agreed or

77

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

strongly agreed that they should be offered (the yellow bars) in the Round 2 questionnaire. Figure 2 also shows
the percentage of panelists who chose each activity as one of the three most important to emphasize (in blue) in

Round 3.

Figure 1. What should be the goals of specialized CS/IT programs - and which
should be top priorities? (N=17)

u Agree or strongly agree that should be a goal
m Selected as one of top 3 most important goals

Equip students with widely applicable CS/IT skills

Help students prepare for a career in CS/IT

Allow students to explore an interest in CS/IT

Promote access to CS/IT for students historically
marginalized in C/IT

Support students in developing transferable CS/IT skills for
college or the workplace

Make students aware of CS/IT career possibilities

Provide a sequenced opportunity to allow students to go
deeper in their learing of CS/IT

Provide students with a foundation for post-secondary
education in CS/IT

Help students get a job in CS/IT after HS graduation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Consensus that programs should include the 10 activities was almost complete: approximately 90% of the
panelists agreed or strongly agreed that each activity should be included in programs. The only activities that did
not receive 90% support were “visiting CS/IT professionals at their place of work,” and “connecting or
networking with professionals and others in the community.” Percentages strongly agreeing were the highest for

hands-on learning activities (94%), solving real-world problems (89%), and participating on teams (78%).

Again, on the Round 3 questionnaire, respondents were asked to select the three activities that they thought were

most important for specialized CS/IT programs to emphasize. Consensus was identified for only one of the ten

78

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

activities, “engaging in hands-on learning activities,” with 71% of participants selecting the activity for

emphasis. Considering the highest priority activities, there is an emerging consensus around constructivist-

oriented pedagogy. That is, at least the first two highest priority activities reflect a possible consensus about the

value of constructivist-oriented pedagogy. For example, one participant shared that they

...believe teachers need to be intentional about creating opportunities and projects where students have to

work together. The curriculum for a lot of these programs really lends itself to students working

independently and at their own pace. The more students can communicate and collaborate in the

classroom, the better because that is reflective of how they will function, at least some of the time, in the

workforce.

Figure 2. Which activities should specialized CS/IT programs include - and which

Engaging in hands-on learning activities

Solving real-world problems

Participating in a CS/IT-related internship
or other immersive work experience

Working on projects that address issues of
concern to students or their communities

Participating on teams

Earning industry credentials

Working with an advisor, career counselor,
or teacher to plan steps toward a career

Hearing about CS/IT careers or industry
from practicing professionals

Connecting or networking with
professionals

Visiting CS/IT professionals at their place
of work

0

S

are top priorities? (N=17)

Agree or strongly agree that programs should involve
u Selected as one of top 3 most important activities

10% 20% 30%

40%

50%

60%

70%

80% 90%

Despite the CTE focus of many CS/IT programs in Virginia, none of the six specific work-based learning

elements was universally seen as important for programs to emphasize. Just over and just under one third felt

that experiences such as participating in internships (35%) and earning industry credentials (29%) were among

100%

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

the most important experiences to emphasize, while much smaller percentages prioritized working with an
advisor, career counselor, or teacher to plan steps toward a career (18%), hearing about CS/IT careers or industry
from practicing professionals (18%), connecting or networking with professionals (12%), or visiting CS/IT
professionals at their place of work (6%). However, a total of 71% of panelists prioritized at least one of the six
work- or career-oriented experiences, suggesting that panelists agreed on the value of work-based learning, just

not the specific experiences.

4.3 Program Skills/Competencies

To identify potential skills or competencies that participants believed were important to include in specialized
CS/IT programs, we analyzed responses to the Round 1 questionnaire. Our analysis generated nine potential
CS/IT-related skills or competencies. In round 2, as Figure 3 shows, over 80% of panelists agreed or strongly
agreed that program curricula should address each skill. Considering strong agreement only, 72% strongly
agreed that specialized programs should help students learn to ensure the safety and security of private
information on computing systems and networks, 67% strongly agreed that students should learn to troubleshoot

non-coding-related problems, and 61% strongly agreed that students should learn to debug code.

In contrast to our approach for program goals and activities, we did not use the third-round questionnaire to ask
the panelists to pick the three skills or competencies that programs should emphasize. Furthermore, skills and
competencies are likely to vary across programs with different foci (e.g. a program within a programming
pathway would have a different curriculum than a pathway focused on, say information security). In an open-
ended question in Round 2, panelists had the opportunity to explain in their own words what they thought
students should learn in a specialized high school CS/IT program. From these responses, one theme linked
learning to the purpose of the program and the ostensible focus of the curriculum. As one participant put it, “I
think it depends on what the purpose of the programs are: prep for job out of high school, prep for certification

programs, prep for college courses, or prep for almost any career in STEM.”

80

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Figure 3. Percent agreeing or strongly agreeing on program curriculum elements:
Specialized high school CS/IT programs should help students learn to... (N=18)

ensure the safety and security of private information on computing systems and networks @
troubleshoot non-coding-related computing problems @

debug @

understand the basic elements of a computer network @

examine the societal impact of technology @

practice responsible digital citizenship @

program Q

identify different programming languages @

understand the software development lifecycle @

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

This purpose-dependent theme was echoed by another participant, who stated “I think that some topics should be
emphasized more or less by students, depending upon the student’s focus more on CS or more on IT.” Another
noted the importance of program and curriculum responsiveness to diverse student interests and career plans:
“we want to provide [sic] them with a variety of concepts so they can make informed choices about programs

[sic] options after high school.”
4.4 Summary of Common Program Elements

Table 1 lists the goals, activities, and skills/competencies that the panel of experts indicated should be the
elements of a specialized high school CS/IT program. There was consensus (>70% agreed or strongly agreed)
around each of the listed elements, which are sorted in order of level of consensus. The darkest shading reflects
100% consensus; the second darkest shade reflects a minimum of 89% consensus for activities and skills; the

lightest gray represents 84% consensus; and white represents consensus between 70% and 83%. For goals and

81

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3

ISSN 2513-8359

activities, the three elements with highlighted borders were chosen by the highest number of panelists as key

elements programs should emphasize.

Table 1. Common program elements as identified by the panel of experts

GOALS

ACTIVITIES

SKILLS/COMPETENCIES

Allow students to explore an

interest in CS/IT

Engaging in hands-on learning

activities

Ensuring the safety and security of private
information on computing systems and

networks

Support students in developing

Solving real-world problems

Troubleshooting non-coding kinds of

career possibilities

address issues of concern to

students or their communities

transferable skills for college or computing problems
the workplace
Make students aware of CS/IT Working on projects that Debugging

Provide a sequenced opportunity
to allow students to go deeper in

their learning of CS/IT

Hearing about CS/IT careers
or industry from practicing

professionals

Understanding the basic elements of a

computer network

Equip students with widely
applicable CS/IT skills

Participating on teams

Examining the societal impact of

technology

Help students prepare for a career

in CS/IT

Participating in a CS/IT-
related internship or other

immersive work experience

Practicing responsible digital citizenship

Provide students with a
foundation for post-secondary

education in CS/IT

Earning industry credentials

Programming

82

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Promote access to CS/IT for Working with an advisor, Identifying different programming
students historically marginalized | career counselor, or teacher to | languages

in CS/IT plan steps toward a career

Help students get a job in CS/IT | Visiting CS/IT professionals Understanding the software development

after HS graduation at their place of work lifecycle

Connecting or networking
with professionals and others

in the community

4. Discussion

At the end of the final questionnaire, we offered the following prompt to the panelists: Having now completed
three rounds of questionnaires, how has the process made you think about specialized CS/IT programs or CS
education in a new or different way? For example, one participant wrote, “I’ve thought about things I haven’t
considered before,” and “it brought into focus that programs really are so limited and there are tough choices to
be made. We cannot be everything to everyone.” Similarly, one panelist offered a very good summary of the
findings of this study by writing that the process had led them to have more respect for “building the program

better. There are lots of moving parts.”

The many moving parts are visible in the many different possible goals, activities, and curriculum elements
identified in Round 1. Then, in Round 2, there was consensus that CS programs should reflect nearly all the nine
possible goals and ten possible activities. Furthermore, when asked in Round 3 which three of the nine consensus
goals they would emphasize, the goal that panelists picked most frequently was equipping students with widely
applicable CS/IT skills. Panelists appeared to believe that specialized high school CS/IT programs should be
broad enough such that students could either pursue postsecondary education in CS or be prepared for entry into
the modern workforce. That belief informs as well as reflects the design of CS/IT programs. A significant
proportion of the existing programs are under the CTE umbrella, and CTE tends to be organized around “career
clusters” and pathways. Yet a number of those programs also include a dual enrollment option through which

students can earn college credit, suggesting that students who study CS in high school have a range of future

83

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

options. As one participant noted, “I think we need to be conscious of not making HS programs only career
oriented — it also needs to be a time for exploration and discovery.” Balancing the workforce development
orientation of many specialized high school CS/IT programs with opportunities for exploration and discovery

may be a real challenge.

From a curriculum and pedagogical perspective, the participants favored more constructivist-oriented programs.
That is, the participants prioritized hands-on, project-based learning that addressed real-world problems of
practice in computer science. There was wide consensus on the inclusion of high-quality work-based learning
opportunities in specialized CS/IT programs, but those sorts of activities were prioritized at a lower level than
other activities. These findings, too, present opportunities as well as challenges. That is, there are plenty of
technologies and tools available for teachers to engage in CS activities that are oriented toward constructivism
or, better, constructionism (CITE). That there are so many possibilities, though, is what presents a challenge. The

curricular and pedagogical possibilities can be overwhelming.

Ultimately, we contend that the degree and breadth of consensus is reflective of the demand for CS education in
the K-12 context. There is so much that we can be doing to help young people to be productive citizens in a
society increasingly mediated by computing technologies. As of the end of 2024, 11 states have computer
science graduation standards (Code.org, 2024). And, while requiring that students take at least one CS class
improves access to CS education, this study suggests that a single course is unlikely to sufficiently educate
students. Specialized CS/IT programs in secondary schools offer opportunities for students to go beyond what

they can learn through a single course required for graduation.

The significance of the study reported herein lies in its unique focus on specialized CS education programs rather
than on pedagogy or course enrollments. There is a growing number of landscape reports about CS education,
and the Expanding Computing Education Pathways (ECEP) Alliance provides access to a number of those state-
level reports (ECEP, 2022a) as well as state-level data dashboards (ECEP, 2022b). Those reports and dashboards
are all focused on CS access in terms of course-taking; we are not aware of efforts to systematically document
beliefs about common elements secondary CS/IT programs should provide. Our other investigation explores the

elements secondary CS/IT programs are currently offering. Though not yet complete, that study has already

84

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

documented dozens of CS/IT programs for high school students just in Virginia. The findings from this
common elements study provide us with a conceptual framework for understanding the educational opportunities
provided by the programs identified in the other part of the larger study. Our intent is to use that framework to
advance a research agenda aimed at understanding the outcomes of secondary CS/IT programs. The current

study makes clear that the framework is necessarily comprehensive with lots of moving parts.

Acknowledgments

This research was funded by a Quest Fund grant through Virginia Commonwealth University.

No part of this manuscript was aided in any way by generative artificial intelligence.

References

Aivaloglou, E., & Hermans, F. (2019). Early Programming Education and Career Orientation: The Effects of
Gender, Self-Efficacy, Motivation and Stereotypes. Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 679—685. https://doi.org/10.1145/3287324.3287358

Aritajati, C., Rosson, M. B., Pena, J., Cinque, D., & Segura, A. (2015). A Socio-Cognitive Analysis of Summer
Camp Outcomes and Experiences. In Proceedings of the 46th ACM Technical Symposium on

Computer Science Education., 581-586.

Armoni, M., & Gal-Ezer, J. (2023). High-school computer science — Its effect on the choice of higher education.

Informatics in Education, 22(2), 183-206. https://doi.org/10.15388/infedu.2023.14

Bae, C.L., & Lai, M.H. (2020). Opportunities to participate in science learning and student engagement: A
mixed methods approach to examining person and context factors. Journal of Educational Psychology,

112(6), 1128—1153. http://dx.doi.org/10.1037/edu0000410

85

https://doi.org/10.1145/3287324.3287358
https://doi.org/10.15388/infedu.2023.14
http://dx.doi.org/10.1037/edu0000410

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Bottia, M.C., Stearns, E., Mickelson, R.A., Moller, S., & Parker, A.D. (2015). The relationships among high
school STEM learning experiences and students’ intent to declare and declaration of a STEM major in

college. Teachers College Record, 117(3), 1-46.

Bottia, M.C., Mickelson, R.A., Jamil, C., Giersch, J., Stearns, E., & Moller, S. (2018). The role of high school
racial composition and opportunities to learn in students’ STEM college participation. Review of

Educational Research 55, 446-476.

Calabrese Barton, A. & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. Journal of

Research in Science Teaching, 46(1), 50-73.

Clarke-Midura, J., Sun, C., & Pantic, K. (2020). Making apps: An approach to recruiting youth to computer

science. ACM Transactions on Computing Education, 20(4), 1-23. https://doi.org/10.1145/3425710

Code.org, Computer Science Teachers Association, & Expanding Computing Education Pathways Alliance.

(2023). 2023 State of computer science education. https://advocacy.code.org/2023 _state_of cs.pdf

Commonwealth of Virginia Board of Education. (2017). Computer science Standards of Learning for Virginia
public schools.

https://www.doe.virginia.gov/home/showpublisheddocument/9926/638026394162470000

Commonwealth of Virginia Board of Education. (2020). Digital learning integration Standards of Learning for
Virginia public schools.

https://www.doe.virginia.gov/home/showpublisheddocument/11286/638031727527100000

Corning, A., Becker, J., Broda, M., Hope, S., Lucas, B., Senechal, J., Sions, H. (2021). CodeRVA’s Fourth Year

Report. Metropolitan Educational Research Consortium.

Corning, A., Broda, M. D., Lucas, B. L., Becker, J. D., & Bae, C. L. (2023). An inclusive school for computer
science: Evaluating early impact with propensity score matching. Studies in Educational Evaluation,

79, 1-13. https://doi.org/10.1016/j.stueduc.2023.101293

86

https://doi.org/10.1145/3425710
https://advocacy.code.org/2023_state_of_cs.pdf
https://www.doe.virginia.gov/home/showpublisheddocument/9926/638026394162470000
https://www.doe.virginia.gov/home/showpublisheddocument/11286/638031727527100000
https://doi.org/10.1016/j.stueduc.2023.101293

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Crowder, A., Dovi, R., & Naff, D. (2020). Integrated STEM education in Virginia: CodeVA Elementary
Coaches Academy. In J. Anderson & Y. Li (Eds) Integrated approaches to STEM education: An

international perspective (pp. 447-467). Springer.

Diamond, L. R., Grant, R. C., Feldman, B. M., Pencharz, P. B., Ling, S. C., Moore, A. M., & Wales, P. W.
(2014). Defining consensus: a systematic review recommends methodologic criteria for reporting of

Delphi studies. Journal of clinical epidemiology, 67(4), 401-409.

Drumm, S., Bradley, C., & Moriarty, F. (2022). ‘More of an art than a science?’ The development, design, and
mechanics of the Delphi Technique. Research in Social and Administrative Pharmacy, 18(1), 2230-

2236. https://doi.org/10.1016/j.sapharm.2021.06.027

ECEP (Expanding Computing Education Pathways). (2022a). Landscape reports.

https://ecepalliance.org/resources/toolkits-guides/landscape-reports/

ECEP (Expanding Computing Education Pathways). (2022b). State data dashboards. https://ecepalliance.org/cs-

data/state-data-dashboards/

Eisenhart, M., & Allen, C.D. (2020). Addressing underrepresentation of young women of color in engineering
and computing through the lens of sociocultural theory. Cultural Studies of Science Education, 15, 793—

824.

Elizabeth Casey, J., Gill, P., Pennington, L., & Mireles, S. V. (2017). Lines, roamers, and squares: Oh my! using
floor robots to enhance Hispanic students’ understanding of programming. Education and Information

Technologies, 23 (4), 1531-1546. https: //doi.org/10.1007/s10639-017-9677-z

Foth, T., Efstathiou, N., Vanderspank-Wright, B., Utholz, L. A., Diitthorn, N., Zimansky, M., & Humphrey-
Murto, S. (2016). The use of Delphi and Nominal Group Technique in nursing education: A review.

International journal of nursing studies, 60, 112-120.

87

https://doi.org/10.1016/j.sapharm.2021.06.027
https://ecepalliance.org/resources/toolkits-guides/landscape-reports/
https://ecepalliance.org/cs-data/state-data-dashboards/
https://ecepalliance.org/cs-data/state-data-dashboards/

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Gamoran, A. (2016). Will latest U.S. law lead to successful schools in STEM? Science, 353(6305), 1209-1211.

Giani, M. (2022). How attaining industry-recognized credentials in high school shapes education and

employment outcomes. Thomas B. Fordham Institute. https://files.eric.ed.gov/fulltext/ED625598.pdf

Gray, D.L., Hope, E.C., & Matthews, J.S. (2018). Black and belonging at school: A case for interpersonal,

instructional, and institutional opportunity structures. Educational Psychologist, 53(2), 97-113.

Karpinski, Z., Biagi, F., & Di Pietro, G. (2021). Computational thinking, socioeconomic gaps, and policy

implications. IEA Compass: Briefs in Education No. 12. IEA.

Kwon, K., Ottenbreit-Leftwich, A. T., Brush, T. A., Jeon, M., & Yan, G. (2021). Integration of problem-based
learning in elementary computer science education: effects on computational thinking and attitudes.

Educational Technology Research and Development, 69, 2761-2787.

Lee, A. (2015). Determining the effects of computer science education at the secondary level on STEM major
choices in postsecondary institutions in the United States. Computers & Education, 88.

https://doi.org/10.1016/j.compedu.2015.04.019

Lee, S. J., Francom, G. M., & Nuatomue, J. (2022). Computer science education and K-12 students’
computational thinking: A systematic review. International Journal of Educational Research, 114,

102008.

Legewie, J., & DiPrete, T.A. (2014). The high school environment and the gender gap in science and

engineering. Sociology of Education, 87(4), 259-280.

Marshall, S. L., & Grooms, A. A. (2022). Industry’s push for computer science education: Is computer science

really for all?. Policy Futures in Education. https://doi.org/10.1177/14782103211045601

88

https://files.eric.ed.gov/fulltext/ED625598.pdf
https://doi.org/10.1016/j.compedu.2015.04.019
https://doi.org/10.1177/14782103211045601

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Master, A., Cheryan, S., & Meltzoff, A.N. (2016). Computing whether she belongs: Stereotypes undermine girls’
interest and sense of belonging in computer science. Journal of Educational Psychology, 108(3), 424—

437.

Means, B., Wang, H., Young, V., Peters, V.L., & Lynch, S.J. (2016). STEM-focused high schools as a strategy
for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching,

53(5), 709-736.

Means, B., Wang, H., Wei, X., Lynch, S., Peters, V., Young, V., & Allen, C. (2017). Expanding STEM

opportunities through inclusive STEM-focused high schools. Science Education, 101(5), 681-715.

Means, B., Wang, H., Wei, X., Iwatani, E., & Peters, V. (2018). Broadening participation in STEM college

majors: Effects of attending a STEM-focused high school. AERA Open, 4(4), 1-17.

Muraski, J. M., & Iversen, J. (2022). Growing Computer Science and Information Technology Education in K-
12: Industry Demand and Ecosystem Support. Journal of the Midwest Association for Information

Systems (JMWALIS), 2022(2), 2.

NASEM (National Academies of Sciences, Engineering, and Medicine). (2021). Cultivating interest and
competencies in computing: Authentic experiences and design factors. The National Academies Press.

https://doi.org/10.17226/25912

National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in
science, technology, engineering, and mathematics. The National Academies Press.

https://doi.org/10.17226/13158.

Perez, T., Cromley, J. G., & Kaplan, A. (2014). The role of identity development, values, and costs in college
STEM retention. Journal of Educational Psychology, 106(1), 315-329.

https://doi.org/10.1037/a0034027

89

https://doi.org/10.17226/25912
https://doi.org/10.17226/13158
https://doi.org/10.1037/a0034027

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Ryoo, J.J., Margolis, J., Lee, C.H., Sandoval, C.D.M., & Goode, J. (2013). Democratizing computer science
knowledge: Transforming the face of computer science through public high school education. Learning,

Media, and Technology, 38(2), 161-181.

Sabin, M. C., Deloge, R., Smith, A., & DuBow, W. (2017). Summer learning experience for girls in grades 7-9

boosts confidence and interest in computing careers. Journal of Computing Sciences in Colleges..

Saez-Lopez, IM., Sevillano-Garcia, ML. & Vazquez-Cano, E. (2019). The effect of programming on primary
school students’ mathematical and scientific understanding: educational use of mBot. Education Tech

Research Dev 67, 1405-1425. https://doi.org/10.1007/s11423-019-09648-5

Shah, N., & Yadav, A. (2023). Racial justice amidst the dangers of computing creep: A dialogue. TechTrends,

67,467-474. https://link.springer.com/article/10.1007/s11528-023-00835-z

Starrett, C., Doman, M., & Garrison, C. (2015). Computational Bead Design: A Pilot Summer Camp in
Computer Aided Design and 3D Printing for Middle School Girls. Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, 4.

https://doi.org/http://dx.doi.org/10.1145/2676723.2677303

Tucker, A., McCowan, D., Deek, F., Stephenson, C., Jones, J., & Verno, A. (2006). A model curriculum for K-
12 computer science: Report of the ACM K-12 task force curriculum committee (2nd ed.). Association

for Computing Machinery.

Virginia Department of Education. (2022a). Computer science. https://www.doe.virginia.gov/teaching-learning-

assessment/instruction/computer-science

Virginia Department of Education. (2022b). CTE Governor’s STEM Academies.

https://www.doe.virginia.gov/teaching-learning-assessment/k-12-standards-instruction/career-and-

technical-education-cte/governor-s-stem-academies

90

https://doi.org/10.1007/s11423-019-09648-5
https://link.springer.com/article/10.1007/s11528-023-00835-z
https://doi.org/http://dx.doi.org/10.1145/2676723.2677303
https://www.doe.virginia.gov/teaching-learning-assessment/instruction/computer-science
https://www.doe.virginia.gov/teaching-learning-assessment/instruction/computer-science
https://www.doe.virginia.gov/teaching-learning-assessment/k-12-standards-instruction/career-and-technical-education-cte/governor-s-stem-academies
https://www.doe.virginia.gov/teaching-learning-assessment/k-12-standards-instruction/career-and-technical-education-cte/governor-s-stem-academies

International Journal of Computer Science Education in Schools, February 2026, Vol. 7, No. 3
ISSN 2513-8359

Virginia Department of Education. (2022¢). Governor’s schools. https://www.doe.virginia.gov/teaching-

learning-assessment/specialized-instruction/governor-s-schools

Virginia Department of Education. (2022d). Profile of a Virginia graduate.

https://www.doe.virginia.gov/parents-students/for-students/graduation/policy-initiatives/profile-of-a-

virginia-graduate

Webb, H. C., & Rosson, M. B. (2011, March). Exploring careers while learning Alice 3D: A summer camp for
middle school girls. In Proceedings of the 42nd ACM technical symposium on Computer science

education (pp. 377-382).

91

https://www.doe.virginia.gov/teaching-learning-assessment/specialized-instruction/governor-s-schools
https://www.doe.virginia.gov/teaching-learning-assessment/specialized-instruction/governor-s-schools
https://www.doe.virginia.gov/parents-students/for-students/graduation/policy-initiatives/profile-of-a-virginia-graduate
https://www.doe.virginia.gov/parents-students/for-students/graduation/policy-initiatives/profile-of-a-virginia-graduate

https://www.innovation-tank.de/teaching/

