

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

2

International Journal of Computer
Science Education in Schools

May 2017, Vol 1, No 2

Table of Contents
Articles

Page

Christiane Gresse von Wangenheim, Nathalia Cruz Alves,

Pedro Eurico Rodrigues, Jean Carlo Hauck

Teaching computing in a Multidisciplinary Way in Social

Studies Classes in School – A Case Study

Claire Johnson

3 - 16

Learning basic programming concepts with Game Maker 17 - 37

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

3

Teaching Computing in a Multidisciplinary Way in Social Studies

Classes in School – A Case Study

Christiane Gresse von Wangenheim1
Nathalia Cruz Alves1

Pedro Eurico Rodrigues 2

Jean Carlo Hauck 1
1Federal University of Santa Catarina

2University of São Paulo

DOI: 10.21585/ijcses.v1i2.9
Abstract
In order to be well-educated citizens in the 21st century, children need to learn computing in school. However,
implementing computing education in schools faces several practical problems, such as a lack of computing
teachers and time in an already overloaded curriculum. A solution may be a multidisciplinary
approach, integrating computing education within other subjects in the curriculum. The present study
proposes an instructional unit for computing education in social studies classes, with students learning
basic computing concepts, including computational thinking, by programming history related games
using Scratch. The instructional unit is developed following an instructional design approach and is applied and
evaluated through a pilot case study in four classes (5th and 7th grade) with a total of 105 students at a
school in Florianópolis/SC/Brazil. Results provide a first indication that the instructional unit enables the
learning of basic computing concepts (specifically programming) in an efficient, effective and entertaining
way increasing also the interest and motivation of students to learn computing.
Keywords: computer science, social studies teaching, K-12, scratch, programming, computational thinking

1. Introduction
1.1 Why is computing important?
Computing is becoming increasingly ubiquitous in our lives. Knowing fundamental concepts of computing,
beyond the simple use of Information Technology (IT), enables people to be productive regardless of their
professional area (Seehorn et al., 2011). Therefore, there is a growing consensus that it is important to
provide opportunities for children to learn computing starting in elementary school (Naughton, 2012). And,
it is no longer enough to only focus on teaching IT literacy, the capability to use today’s technology
(Lin, 2002). Students have to acquire IT fluency, which adds the capability to independently learn and use new
technology as it evolves, including the active use of computing (Seehorn et al., 2011). Therefore, students
need to learn computational thinking (Wing, 2006) an approach to problem solving in a way that can be
implemented on a computer involving a set of concepts, such as abstraction, recursion, iteration, etc. as well as
computing practice including programming and the use of software tools to solve problems.

1.2 Teaching computing in schools
Currently, the introduction of computing education in schools is a global trend supported by several
initiatives such as Code.org or Computing at School among others. These initiatives support computing
education by providing age appropriate programming environments such as Scratch (MIT, 2016) or Snap!
(2016)), curriculum guidelines, lesson plans and materials (Seehorn et al., 2011) as well as workshops, courses
etc. (CodeClubBrasil, 2016). However, most of these initiatives focus on teaching computing as a stand-alone
subject (Pazinato and Teixeira 2013) (Wilson and Moffat, 2010) (Aureliano and Tedesco, 2012). This approach
may be problematic in practice, as it may be difficult to find time for teaching another subject in an
already overloaded school curriculum (MEC, 1998) as to find well-trained teachers for computing education in
schools (Google & Gallup, 2015).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

4

1.3 Teaching computing in a multidisciplinary way

A solution may be the integration of computing education in a multidisciplinary way within existing subjects in
the curriculum (Qualls and Sherrell, 2010). There exist several proposals of teaching computing in related
subjects such as physics, mathematics, etc. (Andrade, 2013) (Pinto, 2010). However, in order to obtain a broader
acceptance and also to attract girls that may have a preference for different subjects, an alternative may be the
integration in social studies classes, having students study a history topic by learning computing competencies at
the same time (Code.org, 2013) (Ncwit, 1x). Yet, so far there exist only very few work focusing on integrating
the teaching of computing in different knowledge areas. Table 1 presents an overview on related work as
identified through a systematic literature review (Alves, 2016).

Table 1. Summary on related work

Title/Reference Objective School
year

Integration
with

Programming
language

Embedding Scratch in US
History/Geography (Scratched;
Randall, 2009)

Program an interactive animation on a
theme related to social studies.

5th History and
geografy

Scratch

Using App Inventor & History as
a Gateway to Engage African
American Students in Computer
Science (Jimenez and
Gardner-Mccune, 2015)

Use aspects of computational thinking
aligned with historical thinking to
introduce students to computer science
within History classes.

Not
informed

History App Inventor

Animal tlatoque: attracting
middle school students to
computing through
culturally-relevant themes
(Franklin et al., 2011)

Use Scratch to engage students in creating
animations about animals and Mayan
culture, creating an interdisciplinary
experience that combines programming,
culture, biology, art, and storytelling.

7th and
higher

Biology, art
and History

Scratch

Thus, although, there exist already some work in this direction, the results are not readily applicable in our
context in Brazilian schools, as the History theme addressed in the existing instructional units is culturally
relevant only to where the studies were conducted, as well as the fact that the units are not available in Brazilian
Portuguese. In this respect, this article presents an instructional unit (IU) for the development of a digital game
dealing with a history topic as part of social studies classes.
2. Method
The objective of this research is the development, application and evaluation of an instructional unit for
computing education in a multidisciplinary way in schools. To achieve this goal, an exploratory case study was
conducted to understand the phenomena observed during the application of the IU in a particular context and
identify directions for future work (Fig. 1).

Figure 1. Research method.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

5

The case study is performed according to the procedure proposed by Yin (2013) and Wohlin et. al (2012).

Study definition. The study is defined in terms of objective, research questions and research design. From the
objective, analysis questions and measures are systematically derived using the Goal/Question/Metric (GQM)
approach (Basili et al., 1994). Data collection instruments are defined with respect to the measures.
Study execution. The execution of the study is carried out adopting ADDIE (Branch, 2009) as instructional
design approach. First, the instructional unit is developed. Therefore, the learners and the instructional
environment are characterized. Learning needs are elicited and the learning objectives are defined. In accordance
to the context, the instructional strategy is designed, defining its content, sequence and instructional methods to
be adopted. Instructional material is developed in accordance to the instructional strategy. Then, the instructional
unit is applied in the classroom and evaluated, collecting data as defined by the study definition.
Analysis and interpretation. The collected data is analyzed in relation to the research questions, using
quantitative and qualitative methods. Then, the results are interpreted and discussed.
This research was approved by the Ethics Committee of the Federal University of Santa Catarina (No. 1021541).
3. Multidisciplinary Instructional Unit UNIfICA
3.1 Definition of the IU
In alignment with the ACM/CSTA K-12 curriculum guidelines (Seehorn et al., 2011), the purpose of the
instructional unit UNIfICA1 is to teach basic computing concepts by creating a game with Scratch, related to a
History topic. The main focus is on teaching programming concepts (loops, conditionals, event handling, etc.),
the application of the software engineering cycle and collaborative practices. Students should also understand
what algorithms are and how algorithms and problem solving work. Regarding the Scratch environment,
students should be able to describe what can be done with the environment as well as being able to use the
environment to create, play and share a game. With respect to the History subject (MEC, 1998), the instructional
unit should help to reinforce the understanding of the reality in multiple temporal dimensions
focusing specifically on regional cultural issues in in Santa Catarina at 5th grade or global topics in
ancient civilizations (Europe, Greece and Ancient Rome) at 7th grade. Students should also understand the
differences between cultures and ways of living/thinking/doing.

The target audience is school students, aged 8 to 14 years, who already know how to use computers, but do not
have computing competencies. The unit is expected to be taught by a History teacher (with a basic computing
knowledge) together with a teacher providing IT support in schools.
3.2 Instructional strategy
3.2.1 Scratch
The instructional unit uses Scratch (MIT, 2016), a free block-based visual programming language and online
community developed at the MIT Media Lab. It is inspired by programming languages for young people like
LOGO and Squeak Etoys (Resnick, 2007). Despite being based on languages aimed at children and young
people, Scratch was designed to be different from other environments, to be simpler, easier to use and more
intuitive (Guzdial, 2004). It allows to program interactive stories, games, and animations by simply using drag
and drop blocks to perform different commands or actions (Fig. 2) (Malan and Leitner 2007)
(Monroy-Hernández and Resnick, 2008). It is one of the most popular programming languages for young people
with more than 16 million users worldwide. The primary goal of Scratch is to help children (ages 8 and up) to
develop essential 21st century learning competencies (Rusk, Resnick and Maloney, 2006).

Figure 2. Scratch programming environment.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

6

3.2.2 Design of the instructional unit

During the instructional unit, first basic programming concepts and the Scratch environment are presented. The
instructor teaches the development of an exemplar puzzle game in an active learning approach in which the
concepts are presented step-by-step and the students immediately apply them by creating the game. After the
initial familiarization, students begin creating their own game related to a History topic. These topics are
assumed to have been studied beforehand in the social studies class through expositive lectures, reading and
discussions. In order to give ideas, several examples of Scratch games related to History topics are demonstrated.

The students then develop an idea for a game related to the content of the class, choosing the kind of game and
its mechanics. Then, they iteratively and incrementally design, program and test the game in pairs or small
groups with up to three students. The created games are shared in a studio via the Scratch online community. The
students are encouraged to play and comment on the games. In the end of the instructional unit, the experiences
are discussed in class.

Table 2: Syllabus of the IU

Lesson (2 hours each) Instructional method Resources Evaluation
Measurement 1 - Student pre-unit

questionnaire
1. Introducing Scratch
- Access the Scratch
environment
- Program an example game
illustrating basic commands

- Practical activity
following the
step-by-step
presentation of the
instructor

- Instructor guide
- Scratch environment
- Computers
- Classroom projector

2. Designing a game on a
history topic
- Division of students in
groups.
- Design of their game
(selection of game type &
mechanics and history topic).

- Presentation of
example games by the
instructor
- Practical activity in
small groups/pairs.

- Example games
- Scratch environment
- Instructional
material from history
classes
- Computers
- Classroom projector

3…5. Programming and
testing the game

- Practical activity in
small groups/pairs.
- Individual support
provided by
instructor(s)
answering questions
of the students.

- Example games
- Scratch environment
- Instructional
material from history
classes
- Computers

- Assessment rubric
for evaluating the
student’s programs
- Dr. Scratch for
analyzing complexity
of the programs

6. Finalization of the projects
- Sharing and trying out the
games developed by the class.
- Debriefing on the
instructional unit.

- Practical activity in
small groups/pairs.
- Discussion

- Scratch environment
- Computers

Measureme1nt 2 - Student post-unit
questionnaire
- Teacher post-unit
questionnaire
- Parent, teacher and
student feedback
collection

In accordance to the instructional strategy, the instructional materials have been developed and are available
online in Brazilian Portuguese at https://computacaonaescola.paginas.ufsc.br/unidade-instrucionalinterdisciplinar/
under the Creative Commons license.

1 Instructional unit developed in Portuguese: “Unidade Instrucional Interdisciplinar de Computação e História”.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

7

3.2.3 Dr. Scratch

To assess the complexity of the games developed by the students, the static code analysis tool Dr. Scratch
(Moreno-León and Robles, 2015) is used. Dr. Scratch is a free open-source web tool to automatically analyze
Scratch projects that assigns a score in terms of computational thinking and programming concepts used. The
analyzed areas include: Logic, Parallelism, User Interaction, Data Representation, Flow Control,
Synchronization, and Abstraction. Table 3 illustrates how the score is defined with respect to each of these areas.

Table 3: Areas analyzed by Dr.Scratch.

Area Score definition

Logic Use of "if then else" commands.

Parallelism Use of 2 or more commands that execute at the same time.

User Interaction Use of commands that do some kind of interaction with the user, e.g.: mouse use, keystroke.

Data Representation Use of commands that modify actor, variable, and lists properties.

Flow Control Use of “for”, “while” commands.

Synchronization Use of commands that wait or send messages to synchronize actions.

Abstraction Use of commands to create functions and use of sprites in an advanced way.

4. Application of the IU
The developed instructional unit was applied in two 5th grade classes (5M and 5V) and two 7th grade classes
(7A and 7B) at the Autonomia school during the first semester 2015 (Table 4). Autonomia is a private
school that offers early childhood education, primary and secondary education.
Table 4: Overview on the application.

Grade Class Number of students Average number of computing instructors present to support
the application of the IU (in addition to the subject teacher)

5th 5M 24 4
5V 21 1

7th 7A 31 3
7B 29 1

Total 105

The classes were taught by the history teacher of the Autonomia school. As the objective of the application was
to pilot the developed instructional unit, the classes were also supported by computing instructors
(professors and undergraduate students) from the Autonomia school. The instructional unit was taught as part of
the regular social studies classes. In total, six lessons were taught biweekly in accordance to the
availability of each class/instructors/etc. The number of computing instructors varied among the classes
depending on their availability (Tab. 4). The subject teacher and the computing instructors provided assistance
during the development of the games by the students. Undergraduate students from the Federal University of Santa
Catarina supported the preparation of instructional materials and the management of backups of the students’
work.

Figure 3. Students during the IU.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 8

Since the school does not have a specific computer room, classes were conducted in the students’ classrooms
using notebooks. Due to some Internet connection problems, both Scratch versions (online and offline) have
been used during the classes. Some examples of the results developed by the students are presented in Figure 4
and are available online2.

Figure 4. Examples of games developed by the students.
5. Evaluation of the Instructional Unit
5.1 Definition of the evaluation
The goal of this study is to explore and to understand aspects related to the instructional unit for teaching
computing in schools, in a multidisciplinary way, in social studies classes. Based on this goal, the following
analysis questions have been defined:

AQ1. Are the learning objectives (both in terms of computing and in terms of social studies) achieved using the
instructional unit?
AQ2. Does the instructional unit facilitate learning?
AQ3. Does the instructional unit promote a pleasant and enjoyable learning experience?
AQ4. Does the instructional unit provide a positive perception of computing?
5.2 Data Collection
Data has been collected from the students before and after the instructional unit via questionnaires and the
teacher after the unit. Data on the complexity and commands used in the developed games has been analyzed
using the tool Dr.Scratch (Section 3.2.3). In addition, observations from parents, students and teacher have been
collected informally by the instructors.

2 Class 5M: https://scratch.mit.edu/studios/1192816/
Class 5V: https://scratch.mit.edu/studios/1192820/
Class 7A: https://scratch.mit.edu/studios/1192828/
Class 7B: https://scratch.mit.edu/studios/1192830/

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 9

Table 5. Overview on the quantity of the data collected.

Grade Student Teacher Games Observations from
parents, students and

teacher
pre-unit

questionnaire
post-unit

questionnaire
post-unit

questionnaire
5th 45 45 1 18 Yes
7th 60 54 1 23 Yes

Total 105 99 2 41 Yes

5.3 Data Analysis

Data was analyzed in a qualitative and quantitative way using descriptive statistics with respect to the analysis
questions. As no significant difference between the data collected in the different classes (neither related to grade
nor history topic) was identified, it was analyzed by simple pooling without being weighted, creating one single
sample.

In general, all students created a game, including various game genres as shown in Table 6. Most of the students
actively participated throughout the computing lessons, demonstrating enthusiasm and willingness.
Table 6. Distribution of the games developed per genre.

Game genre A game Amount of games developed
Action that emphasize movements, usually based on reactions. 13
Quiz where the player needs to answer questions to a particular

knowledge area.
12

Adventure where the player follows a story through texts/songs/images, e.g.,
puzzles.

11

Incomplete game
or without genre

that does not have a clear genre or was not finished. 5

5.3.1 Are the learning objectives achieved using the instructional unit?

All students were able to use the Scratch environment for programming a game with ease. The students used the
initially presented commands and found the environment very intuitive to explore further commands, indicating
that they understood and were able to apply programming concepts (Fig. 5).

Figure 5. Frequency distribution of commands/resources used in the developed games

Many games (more than 68%) used basic commands such as conditional logic mostly to manipulate actor’s
appearances, backgrounds and game scores. Other commands widely used include loops, internal events and
logical operators. Furthermore, a large number of games (more than 46%) also used variables mainly for
controlling the game score. Among the most used ones also were interactivity commands in order to allow the
players to interact with the game. In addition, a large number of games used commands for the parallel execution
of scripts due to the games’ mechanics and the intuitive way in which they are supported in the Scratch
environment. This shows that students learned programming concepts varying from simple concepts such as
logical operations to more advanced concepts such as synchronization.

39	
36	

32	
28	

23	
22	

21	
19	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	

Variables	

Logical	operators	

Internal	Events	

Loops	

Condi6onal	logic	

Interac6vity	

Sharing	

Paralleliza6on	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 10

A main strength of the Scratch environment is its flexibility, with the possibility to create any kind of game. It
also provides diverse support for the game design. For example, to design characters or backgrounds, the
students either used images from the Scratch image gallery or searched on the Internet (e.g. using Google image
search). They also used the Scratch drawing tool to draw from scratch or to modify images. This allowed the
students to use actors and scenarios in accordance to the respective History topic. The Scratch image gallery and
drawing tool turned to be a great feature especially in moments without Internet connection, enabling the design
of characters and backgrounds offline within the Scratch environment.

Indirectly by programming the games, students also learned how to use basic steps in algorithmic problem
solving which contributed to the learning of computational thinking and to understand that software is a
sequence of instructions being followed by a computer. Starting from an idea for their game they typically
divided it into parts, and then designing, programming and testing each part immediately in the Scratch
environment. Thus, implicitly following a cycle of problem statement, solution design, programming and testing,
enabled them also to have an initial notion of a software engineering process for developing computer programs.
Working together on the game also helped the students to learn to develop software collaboratively. This has
turned out to be a main strength of the IU as they helped each other by executing a kind of pair programming,
with one student programming and the other accompanying, suggesting and reviewing the code being written.
When facing a problem they were not able to resolve on their own, students asked for help of one of the
instructors. It was clear that the possibility to freely choose both the game genre and the game design stimulated
a discussion and contribution of ideas of almost all students within their groups. However, very few students
were distracted by the possibility to access other websites and/or by problems with the notebook and/or instable
Internet connection, not focusing on the game development. On the other hand, students were very eager to show
the results they achieved to others, which motivated those to achieve similar results. We also observed that
students willingly explained how they had done something implementing a kind of peer instruction.

The students themselves also perceived these learning effects. After the instructional unit, most students believed
that they can make computer programs. However, only some of the students thought that they reached higher
competence levels (e.g., being able to explain to a colleague how to make a program) (Fig. 6).

Analysing the games with respect to their History content and based on feedback from the subject teacher after a
debriefing session with the students at the end of the instructional unit, we can observe that the respective
learning objectives have also been achieved by the majority of the students. By developing the games, the
students demonstrated knowledge about the way of life of different groups, in different times and spaces, in their
cultural and social manifestations, recognizing similarities and differences between them and their conflicts. This
understanding can be observed not only through the choice of approapriate and differentiated actors and
backgrounds in the games, but also through the selection of related actions and game flow (in the case of action
games) and/or questions (in quiz games).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 11

5.3.2 Does the instructional unit facilitate learning?
Most students found the lessons very easy or easy, although, in general, students consider making computer
programs rather difficult (Fig. 7).

This perception of the students could also be confirmed through the feedback from the teacher (Tab. 7) and
qualitative comments from the students (Tab. 8). In general, students easily learned how to use the Scratch
environment. Many students learned how to use different commands on their own or asked their colleagues or
the instructors for help. Especially the possibility to immediately execute and test programs was observed as
essential to support the learning process, making it easy for students to find errors quickly and to correct them
and, thus, learning by trial and error.
Table 7. Responses from the teacher’s questionnaires.

 Question Answers

Very easy Easy Difficult Very difficult

I noticed that the students found the classes 2 answers

I noticed that for students to learn how to use
Scratch was

 2 answers

I noticed that for students programming is 2 answers

Students considered the freedom to develop any kind of game in the context of the respective History topic very
positive. Yet, on the other hand we observed that such a degree of flexibility also required a large amount of
support by the instructors as students faced very different issues.

Table 8. Summary of qualitative feedback by the students.

General
evaluation of
the IU

"Great, easy and fun."
"Cool, it was fun to create a game and play other games, although sometimes I had a hard time."
"I loved it! I had no idea how fun computing is and it is not necessarily that difficult."
"I found the lessons very interesting, even having some problems."
"Complicated.
"Very complicated with such a short time to develop the game."

Strengths "That I was able to surpass the objectives."
"That I knew how to do things."
"The challenges."
"That I was able to program something that worked and was cool.”
"The method of learning that was used."

Weaknesses "When I did not know how to do things."
"When I was frustrated that my program did not work.”
"The difficulty of the commands, I did not quite understand how they are used."
"Difficulties of the games."
"Sharing the game, I found this very complicated."
"Very complicated to share the game, it stopped working in the middle of sharing."

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 12

In addition, problems with the technical infrastructure also increased the complexity of the lessons. For example,
when being without Internet connection, students had to draw actors/scenarios from scratch (and/or by
modifying some from the Scratch image gallery) rather than simply use images found on the Internet. Yet, it was
impressive that even those problems did not hinder the majority of the students to develop their games,
demonstrating a high degree of persistence. An additional problem has been the need of parents to confirm the
creation of an account on the Scratch site before the account can be used.
5.3.3 Does the instructional unit promote a pleasant and enjoyable learning experience?
The majority of the students evaluated the lessons as excellent or good and considered them fun (Fig. 8).

This positive assessment is also confirmed by the responses from the teacher (Tab. 9) and by the majority of
students that indicates that the time in class passed quickly or very quickly (Fig. 9).

Table 9. Responses from the teacher’s questionnaires.

 Question Answers

Lots of fun Fun Boring Very boring

I noticed that students found that programming is 2 answers

I noticed that students found that the classes were 2 answers

 Strongly agree Agree Disagree Strongly
disagree

I noticed that students like to come to computer
classes

 2 answers

 Very quickly Quickly Slowly Very slowly

For me classes passed 2 answers

 Excellent Good Regular Poor

The instructional strategy of the unit is 2 answers

The teaching material is 2 answers

Figure 9. Students’responses on the time passing during the classes.

0	

10	

20	

30	

40	

50	

N
um

be
r	o

f	s
tu
de

nt
s	

Very	Quickly	

Quickly	

Slowly	

Very	slowly	

No	answer	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 13

Still, several students thought that the time passed slowly/very slowly. One of the reasons may be due to the
problems we faced with the IT infrastructure. Several times no Internet connection was available, which
hindered the search for images or made it impossible to save projects on the online Scratch environment in order
to continue working on them in the next class. Another problem observed was that notebooks started to run out
of battery at the end of the school period and students had to switch notebooks in order to continue their work. A
different problem was that in one class the lectures were taught by the subject teacher only without further
assistance (see Tab. 4). In this situation, it took longer to answer the individual questions of the students, which
delayed the continuation of their work.

However, in general, the students assessed the IU positively (Tab. 10). They enjoyed the possibility to create
characters/scenarios and to freely design their games. A majority also indicated that they would like to have
more such computing classes. The students generally welcomed the computing instructors enthusiastically
commenting their delight in having a computing class, expressing also disappointment when the classes ended.
Many students would have liked the classes to last longer or to occur more frequently. Only very few students
did not like the classes.
Table 10. Discursive responses of the students.

What do you
think of these
classes?

"I thought these classes were awesome!"
"I loved them! I had no idea that computing is fun and not necessarily that difficult. "
"I found the lessons great, fun, interesting and learning a lot "
"I think it was a unique and enjoyable experience."
"I found it interesting and cool, but it's was not enough time."
"I found it very cool to do this work with Scratch, as we learned a little bit how it is to work with
computing, and I hope to have more classes like this."
"I found it very cool, fun and spectacular! I liked a lot to have learned this! Scratch is great."
"I thought it was cool, but I think that the instructors could have paid more attention."
"I was a bit bored with these classes and had a headache as well."
"The classes are boring, and I did not like them."

What did you
like most?

"Being able to design the game freely."
"Everything, especially to create the characters."
"The freedom we had to create our own stories."
"That we learned how to make games and to work with computing in a little bit more elaborated way."
"Being able to learn how to work with Scratch, developing a great work."
"I liked to learn how to use Scratch, since I never had used it before."
"The outcome of the games."
"The last class when we played the games ourselves."

What did you
like less?

"That the lessons passed very quickly and that we had only 1 lesson every 15 days."
"That the lessons were not given every week."
"That there were very few classes."
"The large number of classes until the final presentation."
"Instructors did not listen to me when I asked for help."
"Help was delayed in classes."
"To have to redo 8 times the game in Scratch."
"The notebook battery always ran out when it was my turn."
"Having to share one computer."

5.3.4 Does the instructional unit provide a positive perception of computing?
Students demonstrated willingness to learn computing and to continue programming with Scratch (Fig. 10).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 14

0	

5	

10	

15	

20	

25	

30	

35	

40	

Lots	of	fun	 Fun	 Boring	 Very	boring	I	don't	know	No	answer	

N
um

be
r	o

f	s
tu
de

nt
s	

Before	the	IU	

ANer	the	IU	

Figure 10. I want to learn more about how to make
computer programs.

The IU also seems to help to transmit the perception that computing is fun (Fig. 11). This was also endorsed by
the observations of the instructors and asnwers of the teachers, who noticed that students were motivated to learn
more about computing. The teachers also confirmed several impacts by learning computing in a fun and
motivating way (Tab. 11).

Table 11. Responses from the teacher’s questionnaires.

 Question Answers

Strongly
agree

Agree Disagree Strongly
disagree

I noticed that students want to learn more about computing 2 answers

I noticed that students liked programming 2 answers

I noticed that learning to program also teaches students abstraction and
logic

 2 answers

I noticed that learning computing encourages students to think creatively 2 answers

I noticed that learning computing encourages students to explore new
things

2
answers

I noticed that learning computing teaches the student to deal with failures
and successes

2
answers

I noticed that learning computing improves student concentration 2 answers

I noticed that computing classes stimulate the sharing of knowledge
among students

 2 answers

 Figure 11. Making a computer programs is:

0	

20	

40	

60	

80	

Yes	 No	 No	answer	

N
um

be
r	o

f	s
tu
de

nt
s	

ANer	IU	

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 15

The ability to solve something that seemed impossible at first was reported by many students as one of the most
motivating features of the IU. They also highlighted positively the collaboration with their colleagues,
exchanging ideas as well as explaining programming commands to each other. Often students also showed each
other what they achieved in their games, which kept many of the students motivated to also complete their game.
Some parents also commented that they observed that the fact that their children learned how to make games
instead of just simply playing games, kept them motivated. The fact that the game is made entirely by them, and
that in the end they can play their own games, gave the children a feeling of empowerment.

5.4 Threats to Validity
Several factors in the research design of our study may have influenced the validity of the results. One threat is
related to the way of measuring the evaluation objectives. To reduce errors, we adopted a systematic
measurement approach (Basili et al., 94) to systematically refine the evaluation objective in analysis questions
and measures, operationalized by data collection instruments. In order to reduce threats due to
misunderstandings, the questionnaires were carefully designed, reviewed and piloted using the target audience’s
language. Answers have also compared to the observations and informal comments collected during the IU.

Another treat may be the sample size. However, a sample size of 105 students can be considered acceptable,
even, although, there have been small changes with respect to the participants during the study (e.g., children
changing schools and/or not being present in all lessons). However, to allow generalizability of the results it will
be necessary to repeat the study in other schools. Still, the results of this study are a first significant feedback on
the application of the instructional unit in the context of an exploratory research.

6. Conclusion

Following the trend for computing education in schools, this article proposes a way on how to integrate
computing education in a multidisciplinary manner in social studies classes in Brazil. An initial evaluation of this
instructional unit with 4 classes (with a total of 105 students) provides a first indication that the unit can be
effective to achieve learning outcomes with respect to computing practice & programming, computational
thinking and collaboration besides reinforcing History topics. Participating students were able to understand and
practice the design, programming and testing of games, thereby also learning concepts related to computational
thinking. The students easily used the Scratch environment. The instructional unit was designed in a way it also
stimulated their collaborative skills through pair programming and by sharing their knowledge and results with
their colleagues. Moreover, although, students consider computing difficult, they enjoyed the classes having fun.
In consequence, the classes resulted in an increased interest of the students in computing and programming
expressing their eagerness for more computing classes in school.

References

Alves, N. C. (2016). Desenvolvimento de uma unidade instrucional interdisciplinar para ensinar computação no
ensino fundamental. Undergraduate thesis (Graduation in Computer Science). Brazil, Federal University of
Santa Catarina.

Andrade, M., Silva, C., & Oliveira, T. (2013). Desenvolvendo games e aprendendo matemática utilizando o
Scratch. Simpósio Brasileiro de Jogos e Entretenimento Digital. São Paulo, 260-263.

Aureliano, V. C. O., & Tedesco, P. C. A. R. (2012). Avaliando o uso do Scratch como abordagem alternativa
para o processo de ensino-aprendizagem de programação. In XX Workshop sobre Educação em
Computação (p. 10).

Basili, V. R., Caldeira, G., Rombach, H. D. (1994). Goal Question Metric Paradigm. In Encyclopedia of
Software Engineering, John Wiley and Sons.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer.
Code.org. (2016). 4 Ways to Recruit Girls to Try Computer Science. [online] Available at: https://code.org/girls.
CodeClubBrasil. (2016). [website] Retrieved from http://codeclubbrasil.org.br/.

Google & Gallup. (2015). Searching for Computer Science: Access and Barriers in U.S. K-12 Education, [online]
Retrieved from http://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 16

Guzdial, M. (2004). Programming environments for novices. Computer Science Education Research. Lisse, The
Netherlands: Taylor & Francis, 127-154.

Lin, H. S. (2002). IT Fluency: What Is It, and Why Do We Need It?. Technology Everywhere: A Campus
Agenda for Educating and Managing Workers in the Digital Age. Jossey-Bass, San Francisco, 39-49.

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE Bulletin, 39(1),
223-227.

MEC. (1998). Parâmetros Curriculares Nacionais, Terceiro E Quarto Ciclos Do Ensino Fundamental. Brazil.
MIT. (2016). Scratch. [online] Retrieved from http://scratch.mit.edu/.

Monroy-Hernández, A., & Resnick, M. (2008). FEATURE empowering kids to create and share programmable
media. interactions, 15(2), 50-53.

Moreno-León, J., & Robles, G. (2015, November). Dr. Scratch: A web tool to automatically evaluate Scratch
projects. In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 132-133).
ACM.

Naughton, J. (2012). Why All Our Kids Should Be Taught How to Code. The Guardian. Guardian News and
Media.

Ncwit. (2013). Top 10 Ways of Recruiting High School Women into Your Computing Classes. [online] Retrieved
from

https://www.ncwit.org/resources/top-10-ways-recruiting-high-school-women-your-computing-classes/top-10-wa
ys-recruiting.

Pazinato, A. M., Teixeira, A. C. O. (2013). Uso do Software SCRATCH no Desenvolvimento da Aprendizagem e
na Interação Construtivista dos Alunos. Proceedings of the 10th National Education Congress (EDUCERE),
Curitiba, Brazil.

Pinto, A. S. (2010). Scratch na aprendizagem da Matemática no 1º Ciclo do Ensino Básico: estudo de caso na
resolução de problemas. Master Thesis in Child Studies, 2010, University of Minho, Braga, Portugal.

Q Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated into the
curriculum. Journal of Computing Sciences in Colleges, 25(5), 66-71.

Branch, R. M. (2009). Instructional Design: The ADDIE Approach. Springer.

Resnick, M. (2007). Sowing the Seeds for a more creative society. Learning and Leading with Technology. US
& Canada: International Society for Technology in Education (ISTE), 18-22.

Rusk, N.; Resnick, M. and Maloney, J. (2006). Scratch and 21st Century Skills. MIT Media Lab. US: Lifelong
Kindergarten Group.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'Grady-Cunniff, D., ... & Verno, A. (2011). CSTA
K--12 Computer Science Standards: Revised 2011.

Snap! [online] Retrieved from https://snap.berkeley.edu/.
Wilson, A., Moffat, D. C. (2010). Evaluating Scratch to introduce younger schoolchildren to programming.

Proceedings of the Psychology of Programming Interest Group Workshop, Madrid, Spain.
Wing, Jeanette M. (2006). Computational thinking. Communications of the ACM, Vol. 49, No. 3, 33-35.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business Media.

Yin, R. K. (2013). Case study research: Design and methods. Sage publications.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 17

Learning basic programming concepts with Game Maker

Claire Johnson
claire.johnson70@virginmedia.com

DOI: 10.21585/ijcses.v1i2.5
Abstract

Game Maker is widely used in UK secondary schools, yet under-researched in that context. This paper presents
the findings of a qualitative case study that explores how authoring computer games using Game Maker can
support the learning of basic programming concepts in a mainstream UK secondary setting. The research
draws on the learning theory of constructionism, which asserts the importance of pupils using computers as
‘building material’ to create digital artefacts (Papert, 1980; Harel and Papert, 1991), and considers the extent to
which a constructionist approach is suitable for introducing basic programming concepts within a contemporary,
game authoring context. The research was conducted in a high achieving comprehensive school in South East
England. Twenty-two pupils (12 boys; 10 girls; 13-14 years old) completed a unit of work in computer game
authoring over an eight-week (16 x 50 minute lessons) period. In planning and developing their games, they
worked in self-selected pairs, apart from two pupils (one boy and one girl) who worked alone, by choice. Nine of
the ten pairs were the same gender. Data were collected in planning documents, journals and the games pupils
made, in recordings of their working conversations, and in pair, group and artefact-based interviews. Findings
indicate that as well as learning some basic programming concepts, pupils enjoyed the constructionist-designed
activity, demonstrated positive attitudes to their work, and felt a sense of achievement in creating a complex
artefact that had personal and cultural significance for them. However, the findings also suggest that the
constructionist approach adopted in the research did not effectively support the learning of programming
concepts for all pupils. This research arises out of a perceived need to develop accessible, extended units of work
to implement aspects of the Computing curriculum in England. It suggests that using Game Maker may offer a
viable entry, and identifies the programming concepts and practices which pupils encountered, the difficulties
they experienced, and the errors they made when authoring computer games. It also offers recommendations to
increase the readiness with which students engage with key programming concepts and practices when using this
visual programming software. In so doing it makes a practical contribution to the field of qualitative research in
secondary computing education.

Keywords: Game Maker, visual programming, making computer games, Key Stage 3 computing

1. Introduction

A well-designed computing curriculum will introduce computer programming across a variety of contexts. In
addition to learning textual programming languages, such as Python, to complete short ‘closed’ tasks (popular
projects at lower secondary level may include creating chatbots, quizzes, calculators and drawing tasks (e.g. PG
Online, 2013; Roffey, 2013a, 2013b)), pupils may benefit from using visual languages to undertake more
‘open-ended’ programming projects. This paper argues that extended projects such as making computer games
are an important element of the computing curriculum because they give pupils the opportunity to engage with
the design process, emphasising the importance of planning and testing as key programming practices, as well as
developing pupils’ computational thinking skills and building their resilience as learners.

1.1 Purpose and objective of the study

The purpose of the research was to explore the introduction of a new unit of work delivered as part of the
curriculum in school, in which pupils created a computer game using Game Maker software (YoYo Games,
2007), a visual programming tool. Pupils were in 8th Grade, known as Year 9 in England. The unit of work
followed was an implementation of a constructionist learning activity, characterised by its collaborative work
pattern, extended time frame and personally and culturally meaningful outcomes (Kafai and Resnick, 1996).
Pupils worked in pairs over an 8 week, 16 hour period to plan and make their games. In their pairs, they worked

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 18

collaboratively, in so far as they pursued a single goal, negotiating and sharing their conceptions of the task and
how to tackle its elements, co-constructing their understandings through interactions with each other and the
software. At other times, they worked cooperatively within their pairs, pursuing separate tasks, or with other
members of the class, viewing each other’s work in progress, sharing their knowledge and showing others how
to solve problems or achieve particular effects.

The research considers whether the game authoring activity supports the learning of basic programming concepts
in a mainstream secondary setting and seeks to answer the following questions:

1. What programming concepts and practices do pupils encounter when authoring computer games using Game
Maker?

2. What difficulties do pupils experience and what errors do they make when programming computer games
using Game Maker?
3. To what extent is a constructionist approach suitable for this kind of work?

2. Related work

Game Maker is widely used in UK secondary schools, but under-researched in that context (Johnson, 2014).
Although a growing body of literature internationally refers to Game Maker, most studies provide little detail of
the programming concepts learned when using this visual programming tool, and are rarely situated in the
mainstream secondary phase.
Research conducted in the United States reports how Game Maker has been used at tertiary level to introduce
computing concepts associated with game implementation (Chamillard, 2006; Dalal et al., 2009). In this context,
Game Maker’s graphical interface was found to be useful for introducing programming concepts before
transitioning to a textual language and resulted in improved student performance in programming assessments
(Hernandez et al., 2010; Dalal et al., 2012). Other US research describes how Game Maker was used in a
summer camp for pupils in Years 6-12 (n=18) (Guimaraes and Murray, 2008) and highlights the importance of
allowing students to practice reading and modifying code in sample games before they engage in code creation
themselves, noting that students are usually given the task of creating programs before they have learned how to
read and understand them.

US researchers have also investigated how Game Maker can be used to address learning objectives in other
subjects, as well as supporting the learning of computer science concepts (Doran et al., 2012). This study
describes the evolution of a 10 week out-of-school game authoring programme and makes the following
recommendations: i) give pupils time to plan and write the pseudocode for their program segments before they
implement their games; ii) include ‘guided errors’ to increase pupils’ debugging abilities (pupils responded best
when they were encouraged to make mistakes rather than avoid them) iii) clarify the sorts of games pupils can
realistically create and include more structure, targeted lessons and more development time.

At primary level, Baytak and Land’s work investigates how authoring games with Game Maker can enhance the
learning of science (Baytak et al., 2008; Baytak and Land, 2010; Baytak et al., 2011). This case study research
follows Year 5 pupils (n=10) who make games to teach younger pupils about nutrition. Findings show that the
activity was engaging for pupils and allowed them to represent their knowledge about nutrition in concrete and
personally meaningful ways (Baytak and Land, 2010). However, there were challenges, notably with
implementing game designs with limited programming skills. While the research observes that pupils used
increasing numbers of actions in their games as the project progressed, there is no reference to learning about
programming beyond this. Game Maker also features in research surrounding the development of a
‘computational thinking’ curriculum (Jenson and Droumeva, 2015) at primary level. The instructional
framework followed focusses on variables, functions, mathematical operations and conditionals. Results of pre-
and post-tests show that CS knowledge improved over the 15-hour intervention, but the authors emphasise the
need to provide a structured and scaffolded curriculum that includes direct instruction of computational concepts
in addition to self-directed learning.
Seaborn et al., (2012) describe the development of a game construction curriculum to replace a traditional
secondary computer science class. High school students (n=12) were taught elementary programming using
Game Maker over a six month semester and worked in groups of 3 to create 3 computer games, alternating their
roles as artist, designer and programmer for each. In addition to collecting students' overall impressions, they

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 19

evaluated students' technical competency and self-efficacy at the start and end of the semester. Their findings
show that the curriculum had a positive, statistically significant effect on CS concept comprehension, but no
detail is given about these concepts. Other Game Maker research does not investigate the learning in
programming that is achieved when pupils create computer games. Rather, the focus is on how the software has
been used to enhance particular aspects of learning, such as creativity (Eow et al., 2010), digital literacy and
multi-literacies (Sanford and Madill, 2007; Beavis and O'Mara, 2010; Beavis et al., 2012; O'Mara and Richards,
2012), multimedia design (Beavis et al., 2012), game design (Redfied and Uhlig, 2012) and how the program has
been used as a motivation for learning in other subjects (Fluck and Meijers, 2006; Baytak et al., 2008), or to
enhance collaborative working practices and promote social constructivist learning environments (Madill and
Sanford, 2009). There are few studies which focus on Game Maker and how it is used to introduce programming
concepts in the UK secondary curriculum (Hayes and Games, 2008; Daly, 2009) and few studies of whether
authoring computer games increases young people’s understanding of computer science concepts (Denner et al.,
2012; Seaborn et al., 2012), or what kind of knowledge students learn from creating games using visual
programming languages (Koh et al., 2010). Moreover, there are few studies, which look at the learning of
computing concepts through game authoring within a classroom setting (Wilson et al., 2012).

This paper then, addresses a gap in the literature relating to the use of Game Maker in the lower secondary
school/middle school IT/Computing curriculum.
3. Methodology
3.1 Research design

The purpose of the research was to gain an understanding of what pupils learned and what difficulties they
encountered when making a computer game using Game Maker - it is therefore a qualitative enquiry. Case
study was selected as the research method since it allowed the study of an evolving situation, namely, the
introduction of a unit of work in game authoring with a group of Year 9 pupils. A single case design was chosen
on the basis that the class selected is a ‘typical’ case of a wider population of Year 9 pupils. Lessons learned
from typical cases are assumed to be informative about the experiences of the average [child/class] (Yin, 2009:
48).

While the case study method is criticised for lacking reliability, validity and generalisability, these are not the
chief concern of qualitative research (Merriam, 1998); rather, the focus is on understanding the particular case
(Evers and Wu, 2007: 201). To strengthen the reliability of the method in the face of such criticisms, Yin
recommends the development of a case study database (Yin, 2009: 45) to store data and procedures followed, so
that the research could be replicated. For the current study, a database of pupil voice recordings and interview
data, transcripts, interview schedules, and the coding system used at the analysis stage was created and stored in
NVivo 8 (QSR International, 2008). Additionally, documented research procedures, data collection guidelines
and a lesson sequence were produced, which serve to strengthen the reliability of the research.
A framework for the analysis of programming concepts evidenced in the games authored was constructed with
reference to documents defining generic computer programming concepts appropriate for the students within this
age group (e.g. OCR, 2011; Seehorn et al., 2011; CAS, 2012; Edexcel, 2012; NAACE, 2012; Saeli et al., 2012)
and is presented in Table 1.

Table 1: Concepts used to frame the analysis of programming constructs

Programming concepts Definition

Program interaction Input/output, event driven. Events are used as input data.

Functions (actions) Actions are used to create outputs in the game.

Sequence Events and actions are sequenced in a sensible order.

Conditional statements Test/check actions are used to test conditions.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 20

Loops The step/alarm event or repeat action is used to create a loop.

Variables Variables (e.g. score, lives) are used to store data in the game.

Logical operators Logical operators (AND, OR, NOT) are used.

Boolean logic Boolean logic (true, false) is used.

Relational operators Relational operators (=, <, >) are used in expressions.

Mathematical operators Mathematical operators (+, /, *, -) are used in expressions.

Coordinates Coordinates are used to specify screen position (x, y) of objects.

Angles Angles are used to specify direction of movement of objects.

Negative number Negative number is used (e.g. to define speed, position, score).

Randomness Randomness is used (e.g. to define position or number).

Relative/absolute value Relative/absolute value is applied to define score or position.

3.2 Sample

The research was conducted with one mixed ability year 9 (8th Grade) class (n=22; 12 boys, 10 girls; 13-14 years
old) at a comprehensive school in South East England. Ten of the pupils in the group achieved ‘above average’
values in their average Cognitive Abilities Test (CAT) scores, which suggests that the group was of above
average ability with respect to national profiles.

The sample was achieved by selecting an ‘accessible’, ‘ordinary’, ‘typical’ case (Creswell, 2007). Purposive
sampling was achieved within the case in terms of which pupils were selected as members of the interview
groups, and for the paired interviews. Three boys and three girls were selected for each group interview, and of
these, two were selected from each of the higher, average and lower ability ranges. For the paired interviews,
four boys and three girls were selected to represent a similar ability spread. Seventeen of the twenty-two pupils
in the class were interviewed either as part of a pair or a group. Pupil voice recordings, authored games and
documents were not sampled; all units produced were included in the analysis.
Pupils worked in self-selected pairs over an 8-week, 16-hour period to plan and make their games. Nine of the
ten pairs were the same gender; two pupils worked alone, by choice. The lesson planning broadly followed the
system development life cycle and was structured to provide a frame and focus for each lesson, a mix of
teacher-led, independent and pair work, a range of video, print and computer-based resources; an integration of
written, oral and computer-based activities included playing sample games and following a structured set of
video tutorials (Jones and Wilson, 2008) to learn to use the software, before planning and making an original
game. Homework was set once a week and asked pupils to write about their work in progress and to describe
any problems or difficulties they experienced.
3.3 Data collection and analysis

Within the case study, several methods of data collection were selected to strengthen the internal validity of the
data: data were drawn from recordings of pupils’ working conversations, pair and group interviews, and by
scrutinising the planning and design documents they produced and the computer games they created.
Data set
i) Ten transcripts of digital voice recordings of pupil pairs’ working conversations (4 hours, 28 minutes).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 21

ii) Two transcripts of semi-structured interviews with two focus groups of 6 pupils (3 boys; 3 girls) talking about
their game authoring experience (2 x 43 minutes).

iii) Three transcripts of artefact-based paired interviews, in which pupils’ games were loaded and used as the
focus (1 x 39 minutes, 1 x 33 minutes, 1 x 53 minutes).
iv) Twelve authored games.
v) Eighty-five pupil documents. Pupils documented their reflections on aspects of their work in an ongoing
written journal and completed planning documents (storyboard, game design document, game interactions).
vii) Observation notes recorded throughout the fieldwork.

Transcripts of pupils’ voice recordings, interviews and written documents were coded for references to
programming concepts and areas of difficulty encountered. Games were play-tested and an initial analysis
identified components of each game and categorised actions and events used. Programming constructs evidenced
(see Table 1) were recorded for each pair. A written log of the program code was annotated, to identify which
elements functioned as intended and what errors were made.
4. Findings

Although Game Maker was designed to enable users to create computer games without the need to learn a
‘difficult’ textual programming language, the young people in this study found some aspects challenging.
Analysis of the data shows that, in general, programming errors most frequently occurred due to a lack of
precise, logical thinking and a lack of testing/checking. Pupils were not used to thinking algorithmically,
decomposing problems, or reading and evaluating their code because these practices had not yet been embedded
in the research school.
4.1 Program design

Before they began to make their games, pupils were asked to plan the game interactions by listing objects and
specifying the events and actions for them. Some pupils did not complete this task effectively because they were
unaccustomed to decomposing programs into their constituent parts, and were not practised in applying precise,
logical thinking when planning the interactions in their game. They were also reluctant to spend time on
planning tasks because they wanted to begin making their games in the software.

Their Pupils’ initial plans were characterised by incompleteness (not all objects in the game were listed, not all
events or actions were visualised or described). Pupils sometimes conflated events and actions, did not break
down object behaviour into separate events, or assigned multiple actions to one event, instead of to separate,
distinct events. This ‘merging’ of separate processes is found to be a common source of error in novice
programmers (Spohrer and Soloway, 1989).
Later in the planning process, pupils began to separate events and actions, and introduced a wider range of inputs
into their plans (for example, they included non-user inputs such as conditional statements, as well as
user-controlled inputs, such as a key press). This suggests that they were beginning to ‘think computationally’,
and that an understanding of the need for decomposition and precision in program design was beginning to
emerge.
4.2 The language of programming

In their initial planning documents, most pupils did not appropriate the language of Game Maker, or the terms
they had come across in the tutorials they followed, which made their plans less supportive to them in the
implementation phase. Some pupils misinterpreted the context specific meaning of words like ‘event’, ‘action’
and ‘room’. For example, they understood the word ‘event’ to mean ‘something which happens’ in the narrative
of the game, rather than an input. This misunderstanding of natural language terms in programming contexts is
identified in the literature as a common source of error in novice programmers (see du Boulay, 1986; Pea, 1986).
However, 4/12 pairs used correct terminology in their plans; these pupils also produced the most complete
games.
Although not all programming terms are made explicit in Game Maker, making a game introduced pupils to
some programming concepts (objects, events, variables) and also words to describe states, behaviours and
interactions (solid, visible) and aspects of game design (collision, sprite, room, challenge, goal). In the interview
transcript, more than half of pupils (12/22) made references to enjoying using this domain-specific visual
language and becoming increasingly fluent in it. New words gave them access to new concepts and pupils

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 22

began to use these words as their understanding of computational concepts emerged, such as one pair who
confidently discussed their use of variables.

However, not all pupils found this ‘new language’ easy to embrace. For some the specialised language was a
barrier and they avoided using actions whose referents they did not understand, and did not make use of error
message text or action definition text to further their learning.
4.3 Learning programming concepts
Using Game Maker introduced pupils to several basic programming concepts and gave them some understanding
of the precision and detail required in constructing game programs. Figure 1 illustrates how Game Maker’s
visual environment represents some of these programming concepts.

Figure 1: Programming constructs in Game Maker

Table 2: Programming concepts evidenced in authored games

Programming concept No. of
games Comment

Program interaction
(input/output, event driven) 12 All games contained events as triggers for game action (range =

5-84; mode = 11-20).

Functions (actions) 12 All games contained functions (actions) (range = 5-170; mode =
11-30).

Sequence 12 All games involved sequencing actions.

Variables 12 All games included at least one variable (speed, score, lives,
health, position x/y, gravity).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 23

Boolean logic (true, false) 9 True/false values were used in nine games to loop sound or to set
objects as solid.

Coordinates 9 Coordinates were used to define object location in nine games.

Relative/absolute value 9
These values were used in nine games to add or subtract values
from score, health or lives variables; to set speed and specify
position.

Negative number 8
Negative number was used to refer to direction, position or to set
the value for variables (e.g. score, lives, depth, speed) in eight
games.

Conditional statements 6 Half of all games included at least one conditional statement.

Loops 6 Five games included a step event as a looping structure. In one
game the alarm event was also used to repeat an action.

Relational operators
(<, >, =)

6 Relational operators were used in expressions in six games.

Randomness 5 Randomness was used to define object position or creation of an
object in five games.

Angles 4 Angles were used to define direction of movement in four games.

Logical operators
(AND, OR, NOT)

1 The logical operator ‘NOT’ was used in one game.

Mathematical operators
(+, -, /, *)

1 Mathematical operators were used in expressions in one game.

The following sections elaborate on the findings associated with the programming concepts in Table 2, as used
in the games pupils created.
Events
In Game Maker, all program interaction is achieved by selecting events (user inputs such as a key press, or
non-user inputs, such as a collision between two objects). In learning to use these events, pupils were introduced
to the idea of event-driven programming and to the key patterns of interaction in a game program (see Figure 3).

Figure 3: The event selector

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 24

Whilst pupils were used to the idea that the keyboard and mouse are input devices, in making a game program
they learned that inputs can also be controlled by non-user events, such as collisions, conditions and other game
states. This expanded understanding of inputs was important learning. Pupils found it easier to understand those
events which are user-activated (i.e. keyboard/mouse events), than those which are not (i.e. step and alarm
events). Problems occurred with the use of events because pupils sometimes confused events with actions, chose
the wrong event, duplicated events in more than one object, or used conflicting events.

The average number of different event types used in each game was 5, although the average total number of
events used was 23. The most frequently used event was the create event (see Figure 4), commonly used to set
an object in motion when the game is run, or to set variables (such as score or lives) for it. The mouse event was
used correctly in 9/12 games, usually to select a menu button, or to navigate between screens.
Keyboard events were used in 7/12 of the games, typically to control the movement of the player character using
the arrow keys. Some pupils who used keyboard events had less success in controlling the stop/start movement
of their player characters, since they did not implement an event to control the stopping of movement.

Figure 4: Type of events used in the games

Key press and key release events were used in 5/12 games to control the movement of an object. The key press
event was also used to create an instance of an object when the space bar was pressed, to give the appearance
that a missile had been fired, for example. The collision event was used in 10/12 games as a mechanism to make
objects disappear, to collect items or gain points and to decrease lives or score.
The alarm event was used in two out of twelve games to make things happen from time to time, without user
input - for example, to set an interval between bullets firing. The step event was used in 5/12 games, most often
to check values relating to object position and then to perform a particular action. For example, one pair used the
step event to make objects on a scrolling background reappear at random positions on the screen when they had
disappeared from view:

Event type

0

2

4

6

8

10

12

Crea
te

Collis
ion

Mou
se

Key
boa

rd
Step

Key
 P

res
s

Othe
r

Key
 R

elea
se

Destr
oy

Alar
m

Draw

Event

No
 o

f g
am

es

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 25

Obj_rocks
Step event:
If y is larger than room_height
Jump to position (random(room_width), -120)

The step event was also used to repeat an action, such as destroying instances of objects once they have
disappeared from view or creating objects intermittently, for example:

Obj_enemy
Step event:
If y is larger than room_height + 32
Destroy the instance
 With a chance of 1 out of 180 perform the next action
Create instance of object obj_s_enemybullet at relative position (0, 16).

Such use of the alarm and step events introduced pupils to the programming concept of repetition, and illustrated
alternative mechanisms for controlling this pattern. Pupils learned that within the game loop, certain events occur
continuously or repeat if certain conditions are met or game states are reached.
The other event was used in 4/12 games. Use of this event introduced the idea that game inputs are not only
achieved by user input but also by game states (i.e. when there are no more lives, when a level is completed,
when an animation ends).

The draw event was used in one game to display the score, health and lives graphics on the screen. However, the
use of this event was not intuitive. Pupils did not understand that these items are displayed on screen by
assigning a draw event/draw life images action to an invisible ‘controller’ object, or that a separate object was
needed to display them.

The correct use of these events suggests that pupils understood the idea of simple, event-driven programming
involving the concrete use of the mouse or keyboard, or the collision between two objects, as inputs. They also
learned that outputs can be controlled by non-user inputs and game states, however, such events are more
abstract and were used less frequently.
Objects

Using Game Maker introduced pupils to the concept of object-oriented programming - they learned that a game
is made up of objects, which are programmed entities. However, while they found it straightforward to view the
player character and other game resources as objects, some found it more difficult to understand that interface
controls, such as ‘start’ or ‘exit’ buttons, were also programmable objects or that invisible objects can be created
to manage other game resources, such as governing the display of score, health and lives graphics.

In particular they learned that for the user to be able to interact with objects, they had to be created as separate
entities. This was not immediately obvious to some:

TB: “I didn’t realise you had to have rooms for the game to be made and have all the sprites and objects and
have them all separately. Lots of different parts of it, that you have to build up layers to the game.” (Pupil A)

Some pupils did not initially understand that the visual appearance of the game is separate from its underlying
functionality. They learned that in Game Maker, objects, rather than sprites (the visual appearance assigned to
objects) hold programmed behaviour.

“There are some things that aren’t really sort of logical in the first place, but you can understand them after a
while … like having a sprite and then an object. I dunno, the sprites don’t seem to do much on their own.” (Pupil
B)

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 26

This idea that the visual appearance of a computer game is separate from the underlying program behaviour was
important learning for pupils. In making a game, they began to develop an understanding of what goes on
‘behind the scenes’ of the technologies they use at home:

“Yeah, ‘cos when you play a game you just take it for granted, really, as something that just ... works. I didn’t
even know you could make a game. I’ve never had any experience of that ever.” (Pupil C)
Actions

Specifying the actions, which objects should perform, is the central programming task of creating a game in
Game Maker. In using actions, pupils learned to construct their game program in individual steps and gained
practice in sequencing instructions. Errors sometimes occurred when pupils duplicated or used conflicting or
incomplete actions, or had difficulty in setting the correct parameters or arguments to achieve required
behaviours.
The most commonly used actions were those, which define object movement. Other commonly used actions
were related to object destruction or progression between levels. Test or set score and lives actions were also
widely used.

Figure 5: The control actions

More abstract actions such as test expression and set alarm were used less frequently.

Most of the actions used were pre-programmed (see Figure 5). However, the execute script and execute code
actions can be used to introduce pupils to writing functions themselves using Game Maker’s textual
programming language, GML. In this study, only one pupil used the execute script action, sourcing a script from
the Game Maker Community forum (Overmars, 2003). In fact, there was little support for using these actions in
the teaching sequence followed or the commercial resources provided (e.g. Giles et al., 2008; Jones and Wilson,
2008; Reeves, 2008; Waller, 2009); more recent resources similarly do not feature the use of scripts in their core
content (see PG Online, 2014) and this is an area for development in resources and sequences of lesson plans
which make use of the software.

Parameters and arguments

In Game Maker, once an action is selected, parameters or arguments need to be set for it. Some pupils found this
challenging and much of their working conversation was concerned with what values to use:

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 27

“When you drag [an action] across it comes up with an option about all the different settings that you can add
to it and that’s what’s hard, because you’ve got to work out which settings it needs.” (Pupil D)

“I used to [wonder why] computer games used to take so long to come out, and now I know it’s ‘cos … every
little bit in there needs to have, like, loads of complicated things just to do that.” (Pupil E)

The idea that behaviours, such as speed and direction, have to be defined for an object in order for it to move
was also new. In Game Maker these behaviours are defined as properties of an object, and involve pupils making
decisions and having to think logically about the effects of those decisions:

AW:“ What I mean is, when you drag [an action] over you’ve got to actually properly say what you want it to do
… you drag the [action] across that you want, but it’s actually putting the text into that box to say ‘Actually, I
want it to do this’…” (Pupil D)

Setting the parameters for actions introduced more abstract concepts, such as whether a value is relative or
absolute, for example. The concept of relative value was most often encountered when pupils wanted to program
a score mechanic for their games. They learned to set the score relative to its current value, rather than to an
absolute value and this was new thinking for some. In nine of the twelve games, relative values were applied to a
variable, to add or subtract from the score, to subtract lives or to decrease health. Relative value was also used to
specify object position in five games and in setting the speed in one game, where it was used in error.
Sequence

Creating a game in Game Maker involves selecting events and actions for an object and putting them in a logical
order, since they are executed sequentially from the top, downwards. Pupils learned about the importance of
sequence when, for example, errors in the sequence in which events or actions were ordered meant that the game
did not function as intended and when the sequence in which rooms were ordered in the resources tree affected
which room was displayed first when the game was run. In this respect, using Game Maker supports the
development of algorithmic thinking; pupils learn to define specific instructions for carrying out a process, in a
visual and/or textual format (see Figure 2).

Figure 2: Game Maker’s visual and textual information
Variables
Pupils learned that the use of variables is important in computer games, since the player’s score or health, an
object’s speed, direction and position, for example, have to be defined and stored in the game for it to give
meaningful game play. In Game Maker, several commonly used local variables (x, y, speed, direction, gravity)
and global variables (score, lives, health) are inbuilt - they do not have to be declared, as is normally the case in
textual programming languages. However, although this makes their use straightforward, it ‘hides’ the
underlying concept. All pupils in the study used at least one inbuilt variable but some may have done so without
understanding. Most pupils (20/22) did not use the term ‘variable’ to refer to these features. Variables were

Collision Event with object
obj_ball1:

If lives are equal to 0

 Display message: Bad Luck!

 Show the highscore table

 Background: <undefined>

 Show the border

 New color: 255, other color: 33023

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 28

not always set or tested correctly and only one pair attempted to create a variable after following a tutorial. These
findings suggest that the concept of variables and the role they play in game programs needs to be explicitly
taught when using Game Maker.
Conditional statements

Conditional statements are achieved in Game Maker by selecting one of the test or check actions that test or
check a game state and then trigger one or more actions if the condition is evaluated as true (see Figure 6). While
6/12 games included at least one conditional statement, some pupils found it difficult to implement this
construct, suggesting that aspects of games, which make use of conditions, need to be clearly modelled if they
are to be successfully used by all.

Figure 6: A conditional statement

The most common conditional statement used in the games was the test variable action, which was used in 4/12
games; test lives and test score actions were also used in five games. The test variable action was most often
used to check the position of an object on the screen to see if it had passed beyond the boundary of the room, in
which case, it would reappear at another location, to remain visible:

Obj_tree
Step event:
If y > room_height
Move to position (random(room_width), -65).
Loops

Another key concept which pupils encountered is that some processes within a program need to be repeated.
This is achieved using a ‘loop’ construct. Game Maker operates a continuous loop during game execution and by
using the step event, pupils can specify what actions they want to occur in each step of the loop (Chamillard,
2006). Six pairs in this study used the step event for this purpose. For example, one pair used the step event to
make an object reappear after it had disappeared from view. In this case, the step event checks the position of the
object every second and relocates it every time it disappears beyond the visible area of the game room:

Obj_snowboarder
Step event:
If y > than room_height

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 29

 Move to position (random(room_width), -65)

Use of a conditional statement also allows code to be executed repeatedly based on a Boolean condition (true or
false) (Kuruvada et al., 2010a). Six pairs used this method to achieve a loop construct.
Using actions such as these taught pupils how many factors have to be considered when creating a game
program and the importance of precise, logical thinking in setting arguments and parameters. It also developed
their understanding of the structural patterns used in programs, such as conditional statements, loops, and
variables.
4.4 Use of mathematical concepts

As well as learning about the programming concepts described above, pupils learned that some mathematical
concepts are important in game programs and that these are often used in setting the parameters, arguments and
expressions of an action.
Coordinates

The pupils in this study had some prior knowledge of coordinates from their learning in other subjects, but
developing a computer game where spatial boundaries are mapped and object position is specified using
coordinates was a new application of that knowledge. Pupils learned to conceptualise the room, rather than the
screen, as the game space. They learned that an object’s position is defined by x and y coordinates and how to
use these values to prevent objects from disappearing from view or to make objects reappear, once they had
travelled off screen.

Coordinates were used in 9/12 games to define object position, to indicate the screen location of health or lives
graphics, or to move an object to a particular position, as in the following examples:

Obj_player character
Collision event with obj_tree:
Set the number of lives relative to -1
Move to position (320, 48)

Obj_controller
Draw event:
Draw the lives at (16, 420) with sprite spr_life
At position (180, 440) draw the value of score with caption
Angles

Another mathematical concept that pupils met in a new context was the use of angles to specify an object’s
direction of movement. Pupils most often set this value by selecting directional arrows in the move in directions
action. At other times, angles needed to be specified. Angles were used to define direction in 4 games, such as in
the following example where an angle of 270 is used to determine a downwards movement:

Obj_player character
Step event:
If relative position (0, 1) is collision free for only solid objects
 Set the gravity to 0.5 in direction 270

Negative number

Negative number was used in 8/12 games for several purposes: in three games to refer to direction of movement,
where a negative value equates to a move down (-y) or to the left (-x); in three games to define object position
and in five games to decrease the value for score, health or lives variables. Negative number was also used to
specify the depth and the vertical speed of an object. Using negative number and understanding its effects for

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 30

these various purposes was a new way of thinking for most pupils.
Randomness

Pupils had met the concept of randomness in their mathematics lessons, but in making a game they learned that
this quality could be usefully applied to enhance game play. The idea that random behaviour can be programmed
was novel to pupils. Three pairs used random values to control the reappearance of objects on screen once they
had disappeared from view. They learned to set the x coordinate of the object so that it reappeared at random
positions across the room width:

MD:“The jump to given position function is set to x = random (room_width) and y = -50 … [so] that the cars
appear in random positions above the screen. This eliminates the look of repetition that games can sometimes
have.” (Pupil B)

Randomness was used to define object position in five games, for example, when an object was set to jump to a
random position, following a collision event. One pair used the test chance action to randomise the creation of
an object, so that this could not be predicted by the player.
Boolean logic

Pupils also learned that Boolean logic is used to define certain object properties, using true/false values, for
example, to set an object as ‘solid’ or ‘persistent’ or to specify whether a sound should loop or not. In all the
games ‘true’ values were used to define an object as visible. In two games this property was set to ‘false’ to
make an object invisible. The idea that such properties have to be specified was a new way of thinking for pupils
and strengthened their understanding of the precision and detail required in constructing computer game
programs.
Boolean logic is also implied in the use of conditionals where a condition is evaluated as either ‘true’ or ‘false’.
This binary construct is a common feature of multiple computing processes and becoming aware of its various
applications developed pupils’ ability to think computationally.
Relational and mathematical operators

4.5 Program organisation

In creating a game, pupils were not only introduced to programming concepts, but also to practices relating to
program organisation.
Naming conventions
In Game Maker, prefixes such as spr_, obj_, back_ are used to name and identify different types of game
components. The resources used in the study introduced pupils to these naming conventions and 7/12 pairs used
them effectively most of the time. However, some pupils did not initially understand the need for correctly
naming their game components or realise that to do so is useful in terms of managing game assets, referring to
objects in the game program and for reading or checking program code.
Code commenting

Although code commenting was not covered in the lesson sequence, some pupils learned about the practice by
viewing sample game code. One pair added a comment action to their game to remind themselves what the code
meant:

Obj_player character
Step event:
COMMENT: Check whether in the air
If relative position (0,1) is collision free for Only solid objects
 Set the gravity to 0.5 in direction 270
Else
 Set the gravity to 0 in direction 270

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 31

COMMENT: Limit the vertical [sic] speed
If vspeed is larger than 12
 Set variable vspeed to 12

Another pair reused code that contained comments to clarify it:
// The direction the sprite faces (down, left, up, right)
direction_faced = "down";

// The current action (none, walk, run)
action = "none";

However, pupils would have benefitted from greater focus on this aspect of programming. Adding comments
encourages pupils to read and check their code more closely and gives them useful practice in documenting their
understanding of the programs they create, an important part of learning to program (CAS, 2012).
4.6 Testing and debugging

As they created their games, pupils were continually testing them to see if the events and actions they applied to
objects produced the desired outcomes. Some pupils checked their code and identified obvious errors, but others
did not. Observation notes record that generally, pupils were not systematic when trying to correct errors and
achieved much of their debugging by trial and error. More emphasis needed to be placed on reading Game
Maker’s textual object information to eliminate obvious errors.

Pupils also needed more support to read and understand Game Maker’s error messages, which identify the
reason for the error, the object where the error occurred, the event where the error occurred and the number of
the action which caused the error, as shown in the following example:

FATAL ERROR in
action number 1
of Mouse Event for Left Button
for object instructions_obj:

COMPILATION ERROR in code action
Error in code at line 2:

Move Patrick around using the arrow direction buttons on the keyboard at position 2: Assignment operator
expected.

In fact, from observation of pupils, they found such error messages discouraging and avoided reading them; only
one pair ran their game in debug mode to identify errors. While constructionist learning theory asserts that pupils
need to be given the freedom to get things wrong (Papert, 1999), since programming is a continual process of
debugging, the data reported here suggest that the planning of lessons needs to focus more closely on showing
young people how to approach errors as a source of information, rather than as a problem.
5. Discussion
Based on the observations above, this section makes recommendations for how to improve teaching sequences,
which use Game Maker to introduce basic programming concepts. It also considers the extent to which
constructionist approaches are suitable for this kind of work. The findings of this study suggest that most pupils
appeared to need support with being specific and precise at the planning stage, in listing the objects, events and
actions required in their games and in using the correct terminology to refer to them; in short, more emphasis
needs to be placed on program design, so that pupils effectively plan the game interactions, before they begin to
implement their game. This finding is supported by other studies, which also acknowledge children’s reluctance

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 32

to engage in or make use of planning work and their preference for focusing on aspects, which give immediate
feedback and satisfaction, such as graphics and animation (see Howland et al., 2013).

Whilst Game Maker provides a concrete, visual representation of programming constructs, the findings reported
above suggest that some additional theoretical input is necessary to ensure that the underlying concepts have
been understood. This can be achieved by encouraging pupils to read the textual information that corresponds to
the graphical code they produce (see Figure 2) and to annotate the programming constructs they use. In so doing,
pupils practise using programming terms and interpreting a pseudocode equivalent to the visual action icons they
select. This encourages them to develop and check the logic of their games and takes them one step closer to
expressing code in a textual format.

To support the development of their own games, whilst drawing attention to key programming concepts,
teaching sequences need to incorporate a range of scaffolded activities - for example: provide code walkthroughs
for common game mechanics and the programming constructs required to achieve these; introduce code reading
and code writing tasks, where pupils work with partially completed programs to extend functionality or correct
errors; show pupils how to read error messages and/or run their games in debug mode. This would ensure that
pupils’ preferences for practical work are met at the same time as providing targeted support for making their
games. While such approaches have been successfully used in academic studies related to the use of Game
Maker (e.g. Guimaraes and Murray, 2008; Hernandez et al., 2010), they are rarely recommended in the
educational resources available for the software, which show pupils how to make a game, but do not draw out
the underlying programming concepts. To remedy this, project briefs need to specify the programming concepts
that pupils should use in their games. For example: a score must be set to introduce the use of variables; a score
must be tested to illustrate the use of a conditional statement; an action must be repeated to show the application
of a loop in a game program, and so on.
The findings of this study also underline the importance of using correct terminology to refer to programming
concepts when using visual languages such as Game Maker and suggest that the ‘language of programming’
needs to be made more explicit in teaching sequences, especially where those terms are hidden by the software.
For example, Game Maker’s step events or alarm events hide the program iterations/loops which they generate;
test/check actions hide that they are conditional statements; common variables are set by default for all objects -
but the word ‘variable’ is not used to refer to them. Such key words need to be brought into use early on. Pupils
should be encouraged to use technical terms in their design documents and throughout and teachers need to
articulate the programming knowledge that pupils have acquired by drawing attention to the language of Game
Maker’s event selector (see Figure 3) and action icons, particularly the core programming constructs of
conditions, variables and loops (see Figure 5). To do so gives pupils an insight into some of the building blocks
of computer programs, and demystifies the language used. As pupils begin to use the vocabulary and language of
programming, so they begin to think computationally (Grover, 2011) and realise that use of precise language is
important for learning to program.

The lesson sequence used in this study was structured following constructionist principles and the data reported
here suggest that while making a game in Game Maker using a ‘learning by doing’ approach can introduce
pupils to basic programming concepts with some success, certain concepts, such as conditionals, loops, and
variables need more direct instruction if they are to be understood and applied effectively by all pupils.

The need for direct instruction is significant. The theory of constructionism suggests that ‘learning by doing’ and
exploratory learning are valid ways of working. However the findings in this study suggest that such approaches
may not be appropriate for learning some programming concepts and this idea is supported in several studies
which also observe that some programming concepts need to be formally introduced if they are to be used
effectively (see Kelleher and Pausch, 2007; Maloney et al., 2008; Kuruvada et al., 2010b; Schelhowe, 2010;
Denner et al., 2012). While some studies support the idea that ‘bricolage’ is a valid way to learn programming
concepts for some learners (McDougall and Boyle, 2004; Stiller, 2009), others suggest that exploratory learning
does not lead all pupils to an understanding of the structure and operation of a programming language or lead
them to develop skills such as problem decomposition, planning or systematic testing and debugging; it can also
lead to inefficient or frustrating programming experiences (Kurland et al., 1987). Furthermore, the
constructionist approach used in this study appeared not to maximize the learning of core programming concepts
for all pupils. This finding gives support to research which makes a similar claim for other programming
environments (see Ben-Ari, 2001; Beynon and Roe, 2004; Beynon and Harfield, 2010; Meerbaum-Salant et al.,
2011); it appears that constructionist approaches may not be well suited to the early stages of learning to
program (Guzdial, 2009).

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 33

In terms of whether making computer games is a suitable context for introducing basic programming concepts,
this research found great variation in the extent to which pupils used programming constructs when making their
games, with some pupils using very few - and this finding is echoed in other studies (e.g. Bruckman et al., 2000;
Maloney et al., 2008; Denner et al., 2012). Other studies also conclude that the games produced only illustrated
an understanding of the targeted computer science concepts (Chamillard, 2006; Carbonaro et al., 2010).

Research surrounding the use of other visual programming languages to teach basic programming concepts
makes similar claims (e.g. Lavonen et al., 2003; Meerbaum-Salant et al., 2011; Denner et al., 2012). In these
studies, concepts were only learned when students were explicitly taught the concepts while they created projects
that used the concepts (Meerbaum-Salant et al., 2011: 168). Other studies found that while some concepts may
be learned without instruction, others need a formal introduction if they are to be used effectively (Maloney et
al., 2008; Schelhowe, 2010), since, in creating a computer game, pupils learn basic programming concepts
without necessarily being aware that they are using those concepts (Kuruvada et al., 2010a; Good, 2011). In
particular, it seems that computer game authoring does not deliver the more complex concepts well without
additional teacher input (Denner et al., 2012).

6. Limitations
Despite the contributions made by the research, it also has its limitations:

• The research was conducted with one pilot group (n=23) and one main study group (n=22) in a
high-achieving school in an affluent area of South East England. Its findings may not be replicable in
different settings.

• Although the group was mixed ability, 10/22 pupils achieved ‘above average’ values in their average
CAT scores; 7 pupils achieved a CAT score of 120 or higher in one or more CAT measures, which
suggests that the group was of above average ability. Its findings may not be replicable in different
populations.

• The study represents one implementation of a teaching sequence for computer game authoring, using

Game Maker. It is acknowledged that the particular set of lessons, the game authoring software, and
resources made available to the pupils in this study will have delimited their learning of programming
concepts. Its findings may not be replicable using other software.

• The small scale of the study limits the reliability and the validity of the findings in so far as additional
findings may emerge in larger populations. Its findings are best evaluated as one amongst other case
studies of game authoring projects, which investigate different tools and settings (see for example,
Kafai, 1996; Lavonen et al., 2003; Willett, 2007; Robertson and Howells, 2008; Zorn, 2008; Games,
2010; Hernandez et al., 2010; Baytak and Land, 2011b; Kafai and Peppler, 2012; Macklin and Sharp,
2012; Minnigerode and Reynolds, 2013).

While these are limitations they do not negate the insights into the pedagogy of computer game authoring gained
by conducting this research. The local, small-scale, particular features of the present study hold value, since
“phenomena are … present in the smallest particulars of practices and institutions” (Maclure, 2006: 230) and can
make a useful contribution to the field, or prompt further research of a larger scale.
7. Conclusion
The findings reported here suggest that the level of programming knowledge pupils acquired in creating their
computer games using Game Maker is, in Pea and Kurland’s terms, Level ii - code generator (Pea and Kurland,
1984). At this level, pupils can write simple programs following examples, read and understand someone else’s
program and detect and correct some errors. There is less evidence of program planning or understanding of how
to make programs more efficient.

Whilst their research implies that this level of programming knowledge is not sufficient, the observations
recorded in this paper suggest that making a computer game with Game Maker introduced pupils to some basic

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 34

programming concepts and developed their ability to think computationally, engaged them in an iterative design
process and gave them some exposure to program planning and testing within an extended project. Goals for
programming education need to be realistic and achievable for all abilities in the limited time available at Key
Stage 3 and bearing in mind the fact that many teachers need further training to feel confident in delivering this
aspect of the Computing programme of study (Nesta, 2014; CAS, 2015). This paper has outlined some areas of
difficulty for pupils and offers several recommendations for how to increase the likelihood that key
programming concepts and practices are successfully encountered and understood when creating a computer
game using Game Maker.

References
Baytak, a. & Land, S. 2010. ‘A case study of educational game design by kids and for kids.’ Procedia - Social
and Behavioral Sciences, 2 (2), 5242-5246.

Baytak, A., Land, S. & Smith, B. 2011. ‘Children as educational computer game designers: an exploratory
study.’ The Turkish Online Journal of Educational Technology, 10 (4), 84-92.

Baytak, A., Land, S., Smith, B. & Park, S. 2008. ‘An exploratory study of kids as educational game designers.’
In: Simonson, M. (ed.) Proceedings of the 31st Annual Convention of the Association for Educational
Communications and Technology. Orlando, USA, 6-9 November. Bloomington, USA: AECT Publications.
39-47.
Beavis, C. & O'mara, J. 2010. ‘Computer games - pushing at the boundaries of literacy.’ Australian Journal of
Language and Literacy, 33 (1), 65-76.

Beavis, C., O'mara, J. & Mcneice, L. (eds.) 2012. Digital games: literacy in action. Kent Town, Australia:
Wakefield Press.

Ben-Ari, M. 2001. ‘Constructivism in computer science education.’ Journal of Computers in Mathematics and
Science Teaching, 20 (1), 45-73.
Beynon, M. & Harfield, A. 2010. ‘Constructionism through construal by computer.’ Paper presented at
Constructionism 2010. Paris, France, 16-21 August.

Beynon, M. & Roe, C. 2004. ‘Computer support for constructionism in context.’ In: LOOI, C., SUTINEN, E.,
Sampson, D., Aedo, I., Uden, L. & Kahkonen, E. (eds.) Proceedings of the International Conference on
Advanced Learning Technologies. Joensuu, Finland, 30 August-1 September. Los Alamitos, USA: IEEE.
216-220.

Bruckman, A., Edwards, E., Elliott, J., Jensen, C. 2000. ‘Uneven achievement in a constructionist learning
environment.’ In: Fishman, B. & O'connor-Divelbiss, S. (eds.) Proceedings of the 4th International Conference
of the Learning Sciences. Ann Arbor, USA, 14-17 June. Mahwah, USA: Lawrence Erlbaum Associates.
157-163.
Carbonaro, M., Szafron, D., Cutumisu, M. & Schaeffer, J. 2010. ‘Computer-game construction: a gender-neutral
attractor to Computing Science.’ Computers & Education, 55 (3), 1098-1111.
CAS, 2012. Computer Science: a curriculum for schools. CAS.

CAS, 2015. Closing the gap to achieve a world class computing teaching workforce. BCS. [Online]. Available:
http://academy.bcs.org/sites/academy.bcs.org/files/Computing%20At%20School%20-%20Closing%20the%20G
ap%202015.pdf [Accessed 14/06/16].
Chamillard, A. 2006. ‘Introductory game creation: no programming required.’ In: Baldwin, D., Tymann, P.,
Haller, S. & Russell, I. (eds.) Proceedings of the SIGSCE Technical Symposium on Computer Science
Education. Houston, USA, 1-5 March. New York, USA: ACM. 515-519.

Dalal, N., Dalal, P., Kak, S., Antonenko, P. & Stansberry, S. 2009. ‘Rapid digital game creation for broadening
participation in computing and fostering crucial thinking skills.’ International Journal of Social and Humanistic
Computing, 1 (2), 123-137.

Dalal, N., Kak, S. & Sohoni, S. 2012. ‘Rapid digital game creation for learning object-oriented concepts.’ In:
Cohen, E. & Boyd, E. (eds.) Proceedings of Informing Science & IT Education Conference. Montreal, Canada,
22-27 June. Santa Rosa, USA: Informing Science Institute. 237-247.
Daly, T. 2009. ‘Using introductory programming tools to teach programming concepts: a literature review.’ The

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 35

Journal for Computing Teachers. Autumn issue. 1-6. ISTE.

Denner, J., Werner, L. & Ortiz, E. 2012. ‘Computer games created by middle school girls: can they be used to
measure understanding of computer science concepts?’ Computers & Education, 58 (1), 240–249.
DFE 2013. The National Curriculum in England: Computing - programmes of study - Key Stages 3 and 4. DfE.
Doran, K., Boyce, A., Finkelstein, S. & Barnes, T. 2012. ‘Outreach for improved student performance: a game
design and development curriculum.’ Proceedings of the 17th Annual Conference on Innovation and Technology
in Computer Science Education. Haifa, Israel, 3-5 July. New York, USA: ACM. 209-214.

Du Boulay, B. 1986. ‘Some difficulties of learning to program.’ Journal of Educational Computing Research, 2
(1), 57-73.
Edexcel 2012. GCSE Computer Science specification. Edexcel.
Eow, Y., Wan Ali, W., Mahmud, R. & Baki, R. 2010. ‘Computer games development and the appreciative
learning approach in enhancing students’ creative perception.’ Computers & Education, 54 (1), 146-161.

Fluck, A. & Meijers, M. 2006. ‘Game making for students and teachers from isolated areas’ [Online]. Available:
http://www.une.edu.au/simerr/pages/projects/79gamemaking.php. [Accessed 05/08/13].
Giles, J., Beard, S. & Street, S. 2008. ICT 4 life. Harlow: Pearson Education Ltd.
Good, J. 2011. ‘Learners at the wheel: novice programming environments come of age.’ International Journal of
People-Oriented Programming, 1 (1), 1-24.

Grover, S. 2011. ‘Robotics and engineering for middle and high school students to develop computational
thinking.’ Paper presented at the Annual Meeting of the American Educational Research Association, New
Orleans, USA, 7-11 April.

Guimaraes, M. & Murray, M. 2008. ‘An exploratory overview of teaching computer game development.’
Journal of Computing Sciences in Colleges, 24 (1), 144-149.
Guzdial, M. 2009. ‘Question everything: how we teach intro CS is wrong.’ Computing Education Blog [Online].
Available: http://computinged.wordpress.com/2009/10/02/question-everything-how-we-teach-intro-cs-is-wrong/
[Accessed 07/0716].

Harel, I. & Papert, S. (eds.) 1991. Constructionism: research reports and essays 1985-1990. Norwood, USA:
Ablex.

Hayes, E. & Games, I. 2008. ‘Making computer games and design thinking.’ Games and Culture, 3 (3-4),
309-332.
Hernandez, C., Silva, L., Segura, R., Schimiguel, J., Ledon, M., Bezerra, L. & Silveira, I. 2010. ‘Teaching
programming principles through a game engine.’ CLEI Electronic Journal, 13 (2), 1-8.

Howland, K., Good, J., & Du Boulay, B. 2013. ‘Narrative Threads: a tool to support young people in creating
their own narrative-based computer games.’ In: Pan, Z., Cheok, A., Muller, W., Iurgel, I., Petta, P., Urban, B.
(eds.) Transactions on edutainment X: lecture notes on computer science Vol. 7775. Heidelberg, Germany:
Springer. 122-145.

Jenson, J. & Droumeva, M. 2015. ‘Making games with Game Maker: A computational thinking curriculum case
study.’ In: Munkvold, R. & Kolås, L. (eds.) Proceedings of the 9th European Conference on Games Based
Learning. Steinkjer, Norway, 8-9 October. Reading, UK: Academic Conferences and Publishing Limited.
260-268.
Johnson, C. 2014. ‘I liked it but it made you think too much’: a case study of computer game authoring in the
Key Stage 3 ICT curriculum. PhD thesis, University of East Anglia, UK. [Onine]. Available:
https://ueaeprints.uea.ac.uk/53381/1/2014JohnsonCPhD.pdf [Accessed 12/07/16].
Jones, D. & Wilson, D. 2008. Pixel8 Game Maker tutorials. teach-ict.com Ltd.

Kafai, Y. & Resnick, M. 1996. ‘Introduction.’ In: Kafai, Y. & Resnick, M. (eds.) Constructionism in practice:
designing, thinking and learning in a digital world. Mahwah, USA: Lawrence Erlbaum Associates.
Kelleher, C. & Pausch, R. 2007. ‘Using storytelling to motivate programming.’ Communications of the ACM,
50 (7), 58-64.

Koh, K., Basawapatna, A., Bennett, V. & Repenning, A. 2010. ‘Towards the automatic recognition of
computational thinking for adaptive visual language learning.’ In: Hundhausen, C., Pietriga, E., Díaz, P. &

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 36

Rosson, M. (eds.) Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing.
Madrid, Spain, 21-25 September. Los Alamitos, USA: IEEE. 59-66.

Kurland, M., Clement, C., Mawby, R. & Pea, R. 1987. ‘Mapping the cognitive demands of learning to program.’
In: Perkins, D., Lochead, J. & Bishop, J. (eds.) Thinking: progress in research and teaching. Hillsdale, USA:
Lawrence Erlbaum. 333-358.

Kuruvada, P., Asamoah, A., Dalal, N. & Kak, S. 2010a. ‘Learning computational thinking from rapid digital
game creation.’ Proceedings of the 2nd Annual Conference on Theoretical and Applied Computer Science.
Stillwater, USA, 5 November. Stillwater: Oklahoma State University. 31-36.
Kuruvada, P., Asamoah, A., Dalal, N. & Kak, S. 2010b. ‘The use of rapid game creation to learn computational
thinking.’ [Online]. Available: http://arxiv.org/ftp/arxiv/papers/1011/1011.4093.pdf [Accessed 14/06/16].

Lavonen, J., Meisalo, V., Lattu, M. & Sutinen, E. 2003. ‘Concretising the programming task: a case study in a
secondary school.’ Computers & Education, 40 (2), 115-135.

Madill, L. & Sanford, K. 2009. ‘Video-game creation as a learning experience for teachers and students.’ In:
Ferdig, R. (ed.) Handbook of research on effective electronic gaming in education. Hershey, USA: Information
Science Reference. 1257-1272.
Maloney, J., Peppler, K., Kafai, Y., Resnick, M. & Rusk, N. 2008. ‘Programming by choice: urban youth
learning programming with Scratch.’ In: Dougherty, J., Rodger, S., Fitzgerald, S. & Guzdial, M. (eds.)
Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education. Portland, USA,12-15
March. New York, USA: ACM. 367-371.

Mcdougall, A. & Boyle, M. 2004. ‘Student strategies for learning computer programming: implications for
pedagogy in informatics.’ Education and Information Technologies, 9 (2), 109-116.

Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. 2011. ‘Habits Of Programming In Scratch.’ In: Rößling, G.,
Naps, T. & Spannagel, C. (eds.) Proceedings of the Conference on Innovation and Technology in Computer
Science Education. Darmstadt, Germany, 27-29 June. New York, USA: ACM. 168-172.
NAACE 2012. Draft Naace curriculum framework: Information and Communication Technology (ICT) Key
Stage 3. NAACE.

NESTA 2014. ‘How can teachers prepare for the new computing curriculum?’ [Online]. Available:
http://www.nesta.org.uk/blog/how-can-teachers-prepare-new-computing-curriculum [Accessed 29/07/14].
OCR 2011. GCSE in Computing specification. 2nd edition. OCR.
O'mara, J. & Richards, J. 2012. ‘A blank slate: using Game Maker to create computer games.’ In: BEAVIS, C.,
O'mara, J. & Mcneice, L. (eds.) Digital games: literacy in action. Kent Town, Australia: Wakefield Press. 57-64.

Overmars, M. 2003. Game Maker Community forum [Online]. Available: http://gmc.yoyogames.com/
[Accessed 14/07/16].
Papert, S. 1980. Mindstorms - children, computers, and powerful ideas. New York, USA: Basic Books.
Papert, S. 1999. ‘Eight big ideas behind the Constructionist Learning Lab.’ [Online]. Available:
http://stager.org/articles/8bigideas.pdf [Accessed 16/01/15].

Pea, R. 1986. ‘Language-independent conceptual “bugs” in novice programming.’ Journal of Educational
Computing Research, 2 (1) 25-36.

Pea, R. & Kurland, M. 1984. ‘On the cognitive effects of learning computer programming.’ New Ideas in
Psychology, 2 (2), 137-168.
Pg Online, 2013. Introduction to Python. PG Online Ltd.
Pg Online, 2014. Programming with Game Maker. PG Online Ltd.

Redfield, C. & Uhlig, P. 2012. ‘Game development class in 6 weeks.’ In: RESTA, P. (ed.) Proceedings of
Society for Information Technology & Teacher Education International Conference. Austin, Texas, USA, 5-9
March. Chesapeake, VA: Association for the Advancement of Computing in Education. 2612-2617
Reeves, B. 2008. ICT Interact for KS3: pupil’s book 3. London: Hodder Education.
Roffey, C. 2013a. Python Basics. Cambridge: Cambridge University Press.
Roffey, C. 2013b. Python: Next Steps. Cambridge: Cambridge University Press.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 37

Saeli, M., Perrenet, J., Jochems, W. & Zwaneveld, B. 2012. ‘Programming: teachers and pedagogical content
knowledge in the Netherlands.’ Informatics in Education, 11 (1), 81-114.

Sanford, K. & Madill, L. 2007. ‘Recognising new literacies: teachers and students negotiating the creation of
video games in school.’ Proceedings of the Digital Games Research Association Conference. Tokyo, Japan,
24-28 September. DiGRA. 583-589.

Schelhowe, H. 2010. ‘Using construction kits: just learning how to program a computer - or is there more
educational benefit?’ Paper presented at the Digital Media and Learning Conference, La Jolla, USA, 18-20
February.
Seaborn, K., Seif El-Nasr, M., Milam, D. & Yung, D. 2012. ‘Programming, PWNed: Using digital game
development to enhance learners’ competency and self-efficacy in a high school Computing Science course.’ In:
Smith King, L., Musicant, D., Camp, T. & Tymann, P. (eds.) Proceedings of the 43rd ACM technical
symposium on Computer Science Education, Raleigh, North Carolina, USA February 29 - March 3. New York,
USA: ACM. 93-98.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O'grady-Cunniff, D., Boucher Owens, B., Stephenson,
C. & Verno, A. 2011. CSTA K-12 Computer Science standards. ACM.

Spohrer, J. & Soloway, E. 1989. ‘Novice mistakes: are the folk wisdoms correct?’ In: Soloway, E. & Spohrer, J.
(eds.) Studying the novice programmer. Hillsdale, USA: Lawrence Erlbaum Associates. 401-416.
Stiller, E. 2009. ‘Teaching programming using bricolage.’ Journal of Computing Sciences in Colleges, 24 (6),
35-42.
Waller, D. 2009. Basic projects: Game Maker. Oxford: Payne-Gallway.

Wilson, A., Hainey, T. & Connolly, T. 2012. ‘Evaluation of computer games developed by primary school
children to gauge understanding of programming concepts.’ In FELICIA, P. (ed.) Proceedings of the 6th
European Conference on Games Based Learning. Cork, Ireland, 4-5 October. Reading: Academic Publishing
International Ltd. 549-558.
Yoyo Games 2007. Game Maker 7. [Computer program]. YoYo Games Ltd.

International Journal of Computer Science Education in Schools, May 2017, Vol. 1, No. 2
ISSN 2513-8359

 38

