Estimating the Effect of a Teacher Training Program on Advanced Placement® Outcomes
Keywords:
computer science, professional development, teacher trainingAbstract
This study employs a potential outcomes modeling approach to estimate the causal effect of Code.org’s Professional Learning Program on Advanced Placement (AP) Computer Science Principles test taking and qualifying score earned for a recent cohort of 167 schools compared to a matched group of comparison schools. Results indicate substantial and significant increases in both Computer Science AP test taking and qualifying score earning for all students. In addition, the significant effects were even greater for Computer Science AP test taking and qualifying score earned by female and minority students when impact ratios are analyzed separately. This study provides evidence of a teacher training program that is having a significant and important impact on preparing more students to succeed in computer science and improve the future of computer science education in this country.
Keywords: computer science, professional development, teacher training
Downloads
References
Austin, P. C. (2008). A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Statistics in Medicine, 27, 2037-2049. DOI: https://doi.org/10.1002/sim.3150
Beede, D. N., Julian, T. A., Langdon, D., McKittrick, G., Khan, B., and Doms, M. E., Women in STEM: A Gender Gap to Innovation (August 1, 2011). Economics and Statistics Administration Issue Brief No. 04-11. Available at SSRN: https://ssrn.com/abstract=1964782 or http://dx.doi.org/10.2139/ssrn.1964782 DOI: https://doi.org/10.2139/ssrn.1964782
Dawid, A. P. (2000). Causal inference without counterfactuals. Journal of the American Statistical Association, 95(450), 407-424. DOI: https://doi.org/10.1080/01621459.2000.10474210
Dougherty, C., Mellor, L. & Jian, S. (2006). The relationship between Advanced Placement and college graduation. (National Center for Educational Accountability: 2005 AP Study Series, Report 1). Austin, TX: National Center for Educational Accountability.
Glass, T.A., Goodman, S.N., Hernan, M.A., & Samet, J.M. (2013). Causal inference in public health. Annual Review of Public Health, 34, 61-75. DOI: https://doi.org/10.1146/annurev-publhealth-031811-124606
Goode, J. (2007). If You Build Teachers, Will Students Come? The Role of Teachers in Broadening Computer Science Learning for Urban Youth. Journal of Educational Computing Research, 36(1), 65-88. DOI: https://doi.org/10.2190/2102-5G77-QL77-5506
Hargrove, L., Godin, D., Dodd, B. (2008). College outcomes comparisons by AP and non-AP high school experiences (College Board Research Report 2008-3). New York: The College Board.
Holland, P. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81(396), 945-960. DOI: https://doi.org/10.1080/01621459.1986.10478354
Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical Society: Series B. 53, 597-610.
Keele, L. (2015). The statistics of causal inference: A view from political methodology. Political Analysis, 23, 313-335. DOI: https://doi.org/10.1093/pan/mpv007
Louckes-Horsely, S., Stiles, K.E., Mundry, S., Love, N., Hewson, P.W. (2010). Designing Professional Development for Teachers of Science and Mathematics (3rd edition). 69-70.
Mattern, K.D., Marini, J.P., & Shaw, E.J. (2013). The relationship between AP Exam performance and college outcomes. (College Board Research Report 2009-4) New York: The College Board.
Mattern, K.D., Shaw, E.J., & Xiong, X. (2009). Are AP students more likely to graduate from college on time? (College Board Research Report 2013-5) New York: The College Board.
McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods, 9, 403-425. DOI: https://doi.org/10.1037/1082-989X.9.4.403
Morgan, R., & Klaric, J. (2007). AP students in college: An analysis of five-year academic careers (College Board Research Report No. 2007-04). New York: The College Board.
Mouza, C., Marzocchi, A, Pan, Y., & Pollock, L. (2016). Development, Implementation, and Outcomes of an Equitable Computer Science After-School Program: Findings From Middle-School Students. Journal of Research on Technology in Education. 48. 1-21. 10.1080/15391523.2016.1146561. DOI: https://doi.org/10.1080/15391523.2016.1146561
Murphy, D., & Dodd, B. (2009). A comparison of college performance of matched AP and non-AP student groups. (College Board Research Report No. 2009-6). New York: The College Board.
Pearl, J. (2009). Causality: models, reasoning, and inference. 2nd Edition. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511803161
Ridgeway, G., McCaffrey, D., Morral, A., Burgette, L, & Griffin, B. (2015). “twang: Toolkit for weighting and analysis of nonequivalent groups.†Available at http://cran.r-project.org/web/packages/twang/twang.pdf.
Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
Rosenbaum, P.R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33-38.
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of the American Statistical Association, 100(469), 322-331. DOI: https://doi.org/10.1198/016214504000001880
Rubin, D. B. (2007). The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statistical Medicine, 26, 20-36. DOI: https://doi.org/10.1002/sim.2739
Rubin, D. B., & Thomas, N. (1996). Matching using estimated propensity scores, relating theory to practice. Biometrics, 52, 249-264. DOI: https://doi.org/10.2307/2533160
Sax, L. J., Lehman, K. J., Jacobs, J. A., Kanny, M. A., Lim, G., Monje-Paulson, L., & Zimmerman, H. B. (2017). Anatomy of an Enduring Gender Gap: The Evolution of Women’s Participation in Computer Science, The Journal of Higher Education, 88:2, 258-293, DOI: 10.1080/00221546.2016.1257306 DOI: https://doi.org/10.1080/00221546.2016.1257306
Shaw, E. J., Marini, J. P., & Mattern, K.D. (2013). Exploring the utility of Advanced Placement participation and performance in college admission decisions. Educational and Psychological Measurement, 73, 229-253. DOI: https://doi.org/10.1177/0013164412454291
Stuart, E. A. (2010). Matching methods for causal inference: a review and a look forward. Statistical Science, 25(1), 1-21. DOI: https://doi.org/10.1214/09-STS313
West, S. G., & Thoemmes, F. (2010). Campbell’s and Rubin’s perspectives on causal inference. Psychological Methods, 15(1), 18-37. DOI: https://doi.org/10.1037/a0015917
Yoon, K. S., Duncan, T., Lee, S. W.-Y., Scarloss, B., & Shapley, K. (2007). Reviewing the evidence on how teacher professional development affects student achievement (Issues & Answers Report, REL 2007–No. 033). Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southwest. Retrieved from http://ies.ed.gov/ncee/edlabs
Published
How to Cite
Issue
Section
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).